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Detecting and quantifying
deep sea benthic life using
advanced object detection
Karthik H. Iyer1*, Camilla M. Marnor 1, Daniel W. Schmid1

and Ebbe H. Hartz2

1Bergverk AS, Sandefjord, Norway, 2AkerBP ASA, Lysaker, Norway
We present a new dataset combined with the DeepSee model, which utilizes the

YOLOv8 architecture, designed to rapidly and accurately detect benthic lifeforms

in deep-sea environments of the North Atlantic. The dataset consists of 2,825

carefully curated images, encompassing 20,076 instances across 15 object-

detection classes based on morphospecies from the phyla Arthropoda,

Chordata, Cnidaria, Echinodermata, and Porifera. When benchmarked against a

published dataset from the same region, DeepSee achieves high performance

metrics, including an impressive mean Average Precision (mAP) score of 0.84,

and produces very few false positives, ensuring reliable detection. The model

processes images at 28–50 frames per second (fps) for images sized at 1280

pixels, significantly increasing processing speed and reducing annotation

workloads by over 1000 times when compared to manual annotation. While

the model is not intended to replace the expertise of experienced biologists, it

provides a valuable tool for accelerating data analysis and increasing efficiency.

As additional data becomes available, augmenting the dataset and retraining the

model will enable further improvements in detection capabilities. The dataset

and model are designed for extensibility, allowing for the inclusion of other

benthic lifeforms from the North Atlantic and beyond. This capability supports

the creation of high-resolution maps of benthic life on the largely unexplored

ocean floor of the Norwegian Continental Shelf (NCS) and other regions. This will

facilitate informed decision-making in marine resource exploration, including

mining operations, bottom trawling, and deep-sea pipeline laying, while also

contributing to marine conservation and the sustainable management of deep-

sea ecosystems.
KEYWORDS

deep sea benthic life, object detection, machine learning, marine resources, MPA
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1 Introduction

The deep sea remains one of the least explored frontiers on Earth,

with limited high-resolution data available on its biological diversity.

Previous work in this domain has often been constrained by the low

resolution and limited scope of available data (Ramirez-Llodra et al.,

2010). Recent advancements in technology have resulted in large

amounts of high-resolution images and video footage captured by

remotely operated vehicles (ROVs). While this wealth of data holds

immense potential for scientific discovery, e.g. of new megafaunal

species or communities, the sheer volume makes manual annotation

of observed megafaunal species impractical. This is where machine

learning (ML) can play a pivotal role, automating the annotation

process and enabling more efficient analysis of these vast datasets.

Notably, studies (Schoening et al., 2016; Liu and Wang, 2021; Fu

et al., 2022; Liu et al., 2023; Lyu et al., 2023; Xu et al., 2023; Geisz et al.,

2024) have demonstrated the efficacy of object detection/

segmentation techniques in similar environments, underscoring the

potential of ML in this field.

The objective here is to contribute to the emerging, high-

resolution database on benthic life by leveraging ML to process and

annotate the extensive video footage particularly in the North

Atlantic. Object detection in computer vision involves identifying

and localizing objects within an image. The method provides both the

classification of objects and their precise locations within the image.

This is particularly useful in various applications such as autonomous

driving, security surveillance, and environmental monitoring. Over

the past two decades, object detection has undergone a remarkable

evolution, with several groundbreaking models significantly

advancing the field. Region-based Convolutional Neural Networks

(R-CNN) (Girshick et al., 2014) introduced a two-stage approach

involving region proposals and classification. Fast R-CNN (Girshick,

2015) and Faster R-CNN (Ren et al., 2015) improved speed and

efficiency by integrating these stages and introducing a Region

Proposal Network. The Single Shot MultiBox Detector (SSD) (Liu

et al., 2016) uses a single network to predict bounding boxes and class

probabilities directly, enhancing speed while maintaining accuracy.

The You Only Look Once (YOLO) (Redmon et al., 2016) family of

models is a single stage detector that uses one pass of the network to

identify and classify objects, significantly improving speed by

predicting bounding boxes and class probabilities simultaneously.

Subsequent versions (Redmon and Farhadi, 2017; Wang et al., 2023;

Redmon and Farhadi, 2018; Bochkovskiy et al., 2020; Jocher, 2020;

Jocher, 2023; Wang A. et al., 2024; Wang C.-Y. et al., 2024)

introduced various enhancements including batch normalization,

deeper networks, and optimized feature aggregation. These

models offer various trade-offs between accuracy, speed, and

computational complexity, with the choice depending on specific

application requirements.

In this paper, we present the DeepSee dataset, a comprehensive

collection of annotated images from the Arctic Mid-Ocean Ridge,

the Norwegian Sea, and the Greenland Sea. This dataset is designed

to support the development of ML models capable of detecting and

classifying benthic organisms. The DeepSee object detection model,

trained on this dataset, is capable of processing vast amounts of
Frontiers in Marine Science 02
footage quickly with high precision and recall. The model provides a

valuable addition to the traditional workflow of manual annotation

by significantly reducing the load on human annotators. By

deploying such models, we aim to streamline the annotation

process, making it easier for biologists to conduct their research

and ultimately supporting informed decision-making regarding

deep-sea resource management and protection.

The implications of our work, and others like it, extend beyond

mere academic inquiry; they are particularly relevant in the context of

various anthropogenic activities that can disturb benthic ecosystems.

Mining Operations: As deep-sea mining becomes increasingly

viable, particularly with recent proposals from the Norwegian

government to open parts of its Exclusive Economic Zone (EEZ)

for mining operations (https://www.regjeringen.no/no/aktuelt/

horing-av-forste-konsesjonsrunde-for-havbunnsmineraler/

id3047008/) and the ongoing interest in mining polymetallic

nodules in the Clarion-Clipperton Zone (CCZ) (Gollner et al.,

2022), object detection models can help monitor biodiversity as

well as community and abundance changes in these areas. By

identifying sensitive habitats and taxa before mining activities

commence, stakeholders can make informed decisions that

minimize ecological impact.

Bottom Trawling: This fishing method has been criticized for its

destructive effects on seafloor habitats over vast areas globally

(Kroodsma et al., 2018). Our models can be employed to assess

areas impacted by bottom trawling by detecting and cataloging

benthic life before and after trawling events. This data can be used

to guide regulations aimed at sustainable fishing practices.

Deep-Sea Pipeline Laying: The installation of pipelines for oil

and gas transport poses risks to benthic ecosystems (Clare et al.,

2023). By utilizing our object detection capabilities during pipeline

construction projects, operators can identify critical habitats that

need protection or monitoring during installation processes.

Environmental Monitoring: Continuous monitoring of deep-sea

environments is crucial for assessing changes over time due to climate

change or human activity. Our ML models can add to the toolbox of

deep-sea benthic monitoring (Lim et al., 2020; Gallego et al., 2024) by

automating the detection of shifts in species distribution or abundance,

providing timely data that can influence conservation strategies.

Marine Protected Areas (MPAs): Effective management of MPAs

requires robust data on biodiversity within these regions. Today,

proposed MPAs of the NE Atlantic largely depend on biophysical

habitat mapping founded on bathymetric analysis (Evans et al., 2015;

Legrand et al., 2024). Our dataset and models can facilitate ongoing

assessments of benthic life within MPAs, ensuring that these

protected areas fulfill their conservation objectives.

Pollution Tracking: The detection of marine debris is

increasingly important as pollution levels rise in oceanic

environments. Our models can assist in identifying and

quantifying debris impacts on benthic communities, contributing

to efforts aimed at mitigating pollution effects.

In summary, integrating advanced machine learning techniques

into deep-sea research workflows enhances our understanding of

benthic ecosystems and provides valuable tools for addressing human

impacts on these environments. Our work seeks to promote
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collaboration between technology and biology, contributing to

informed decision-making in deep-sea resource management

through accurate, rapid and comprehensive ecological data analysis.
2 Methods

2.1 Model

In this study, we utilize the YOLOv8 model architecture as the

basis of the DeepSee model for detecting benthic lifeforms on the

ocean floor. The model is selected for its balance of speed and

accuracy, making it well-suited for processing large volumes of

underwater imagery efficiently. YOLOv8 begins by dividing the

input image into a grid of cells. Each cell is responsible for

detecting objects that fall within its area. The model uses a deep

convolutional neural network (CNN) to extract important features

from the image. This process identifies key details such as edges,

shapes, and textures, which are crucial for recognizing different

objects. For each cell in the grid, YOLOv8 predicts multiple

bounding boxes. A bounding box is an imaginary rectangle that

outlines where an object is located in the image. Along with the

coordinates (center point, width, and height) of these boxes, the

model also predicts a confidence score that indicates how likely it is

that an object of a certain class (a particular morphospecies in this

study) is present within that box. Each bounding box prediction

comes with class probabilities. This means that for each box, YOLOv8

assigns a score to each possible object class, indicating how likely it is

that the object belongs to each class. After predicting multiple

bounding boxes for potential objects, YOLOv8 uses a technique

called non-maxima suppression to eliminate overlapping boxes.

This step ensures that only the most accurate bounding boxes are

retained for each detected object, reducing clutter and improving

clarity in the final output.

To detect benthic lifeforms, the DeepSee model is trained on a

custom dataset comprising underwater images annotated with

various benthic species. The training utilizes the YOLOv8x model

weights (largest model in the family) as a starting point to leverage the

advanced features of this architecture and to maximize prediction

accuracy. Initially, the AdamW optimizer is employed for the first

10,000 iterations which helps with initial convergence. After 10,000

iterations, the optimizer is switched to Stochastic Gradient Descent

(SGD) to refine the model further. SGD is known for its stability and

convergence properties, which are beneficial in the later stages of

training to fine-tune the weights precisely. To enhance the model’s

performance, data augmentation techniques are applied during

training. These include random rotations, flips, scaling, color

adjustments and image and label blending to simulate various

underwater conditions and improve the model’s robustness. The

default loss function is used in training which is a composite of three

components: “box”, “dfl”, and “cls”. The “box” loss refers to the loss

associated with bounding box regression, ensuring the predicted

boxes accurately localize the benthic organisms. The “dfl”, or

Distribution Focal Loss, focuses on the distribution of predictions

to enhance the model’s confidence in detecting objects andminimizes
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the effects of class imbalance in the dataset. The “cls” component is

the standard classification Cross Entropy Loss, which deals with the

accuracy of class predictions. Other hyperparameters including the

learning rate and loss function weighting are tuned on the dataset

over multiple iterations, each lasting 200 epochs. Through this

comprehensive training procedure, the DeepSee model is fine-

tuned to effectively detect and classify benthic lifeforms. Final

training is carried out over 400 epochs with an early stopping

criterion of 100 epochs, i.e. the model will stop training if no

improvement is detected over 100 epochs. The best model over

these epochs is used for inference.
2.2 Dataset

The DeepSee dataset is initially constructed using frame grabs

(906 images) from videos captured by remotely operated vehicles

(ROVs) during deep-sea surveys in the Arctic Mid-Ocean Ridge, the

Norwegian Sea, and the Greenland Sea (Figure 1). The locations are

mostly from regions broadly classified as marine mountainous

terrain. High-quality images, where instances of one or more

classes are distinctly visible, are selected for the training dataset.

Note that class in this context is a ML-term that represents a distinct

object, not to be confused with the biological taxonomic rank ‘class’.

An instance refers to an occurrence of a class in an image.

Variations in camera equipment, video resolution, ROV

altitude and speed, and lighting conditions introduce significant

diversity in image quality, presenting challenges in selecting

appropriate training material. While this variation can enhance

the model’s ability to classify unseen data (Geisz et al., 2024), it is

crucial to maintain high image and annotation quality to prevent an

increase in false positives. Therefore, careful selection of training

data is essential. The ROV camera perspectives range from top-

down views to sub-parallel orientations relative to the seafloor,

providing a comprehensive dataset with the organisms seen from

multiple angles. Optimal video material includes segments with at

least full HD resolution, sufficient lighting, minimal seafloor

sampling activity to avoid obscured views from suspended

particulate matter, and proximity to the seafloor to ensure good

visibility of organisms and their morphological characteristics.

Some images are cropped to exclude cases where organisms are

not fully visible or cannot be clearly identified as a unique class to

reduce erroneous detections. To enhance dataset diversity and

increase the number of instances per class, additional images

from published datasets have been incorporated. These include

images of megabenthic communities from the Schulz Bank (Meyer

et al., 2022; Meyer et al., 2023) (141 images), ophiuroids (Marnor,

2022) (74), and various fish and asteroids species from the Open

Images Dataset V6/7 (Kuznetsova et al., 2020) (1778 images). It

should be noted that the Open Images Dataset contains more than

10,000 images of fish and asteroids which largely consist of shallow

water species. These images included many incorrect annotations

that needed significant manual revision and curation. This

comprehensive approach aims to improve the model’s robustness

and accuracy in detecting benthic life in the deep sea.
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The resulting dataset comprises 2,825 images, each annotated with

bounding boxes by a single observer. To ensure consistency, a second

observer conducts a quality check of the annotations. Overall, the

images contain 20,076 instances across 15 different lifeform classes

(Figures 2, 3, Supplementary Table S1). The classes are chosen based on

distinct morphospecies and groups of morphospecies that share a

similar morphology. The classes must have enough instances in the

video and image material so that they can be used for training, e.g.

some organisms like the octopus Cirrotheutis muelleri have been

observed in the video footage but cannot be used to train the model

due to their rarity. Organism taxonomy is based on the World Register

of Marine Species database. The observed deep-sea environment in the

dataset ranges from sedimentary plains to hard substrate areas, and

from desolate areas with few visible organisms to diversity hot spots

like sponge grounds. Most of the detected classes are mainly associated

with hard substrate. Some organisms, like sea stars, brittle stars, and sea

anemones are observed both on hard and soft substrates. In sediment
Frontiers in Marine Science 04
dominated areas single rocks or rocky outcrops are frequently observed

with sponges, crinoids and/or soft corals.

Phylum: Arthropoda
• Caridea: Several different morphospecies of shrimps. The

deep-sea shrimp Bythocaris is the most abundant one in the

training dataset. Only the body is annotated. Legs and

antennas are not included in the bounding box as these

features are usually not visible in the data.
Phylum: Chordata
• Chordata are divided into three different classes based on

morphology: Fish, Fish – deep sea, and Batoidea.

• Fish: Based on the downloaded images from Open Images

and covers a large variety of fish, mostly tropical fish.
FIGURE 1

Map of the Northeast Atlantic showing the locations of ROV footage used in the DeepSee dataset. The marine landscape layer is produced by the
Geological Survey of Norway (https://www.ngu.no/en/geologiske-kart/datasett).
frontiersin.org

https://www.ngu.no/en/geologiske-kart/datasett
https://doi.org/10.3389/fmars.2024.1470424
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Iyer et al. 10.3389/fmars.2024.1470424
FIGURE 3

Distribution of instances and images per class in the DeepSee training/validation dataset.
FIGURE 2

Example instances of the different classes in the DeepSee dataset. The image of the Fish class is from the Open Image Dataset V6/7.
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Fron
• Fish – deep sea: Fish associated with the deep-sea seafloor in

the ROV video material. Some relevant morphospecies in

this class are Glacial eelpout (Lycodes frigidus), Arctic

rockling (Gaidropsarus argentatus), Threadfin seasnail

(Rhodichthys regina) and Black seasnail (Paraliparis

bathybius) (Brodnicke et al., 2023). Shortened to Fish-

deep for annotation.

• Batoidea: Skates and rays. These can be morphologically

distinguished from the other fish and are annotated as a

separate class. Arctic skate (Amblyraja hyperborea) is an

example of an observed morphospecies from this class.
Phylum: Cnidaria
• Actiniaria: Instances of sea anemones. Actiniarians are

observed both on hard substrates and in soft sediment

areas. They are only annotated when the central disc and

tentacles are visible. Individuals with withdrawn tentacles

are not annotated since the morphology is not unique.

• Gersemia: Soft corals with morphology resembling that of

genus Gersemia. An indicator of cauliflower coral gardens

(Albrecht et al., 2020; Ramirez-Llodra et al., 2024).
Phylum: Echinodermata
• Asteroidea: Instances of sea stars. All observations of sea

stars, including individuals with more than 5 arms. Sea stars

are observed on both hard and soft substrates, and

on sponges.

• Ophiuroidea: Instances of brittle stars. Compared to sea

stars, brittle stars have a rounder central disc and thinner

arms that are more clearly separated from each other on the

central disc. Brittle stars are observed in high abundances

and densities in some areas, mainly soft sediment areas.

• Antedonidae: Instances of unstalked crinoids. They are

usually observed on hard substrates and on other sponges,

sometimes in high abundance. There are two relevant

species that have a morphology too similar to be

differentiated with ML currently: Poliometra prolixa and

Heliometra glacialis (Ramirez-Llodra et al., 2020; Pedersen

et al., 2022). They are collectively annotated under the

family Antedonidae. The instances are annotated when

their characteristic morphology is visible either from the

side or from above.
Phylum: Porifera
• Lissodendoryx (Lissodendoryx) complicata: A relatively

small, bush-shaped white demosponge that often can be

identified based on its morphology (Marmen et al., 2019). L.

(L.) complicata is a common sponge in arctic sponge
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grounds (Mayer and Piepenburg, 1996; Meyer et al.,

2019). Shortened to Lissodendoryx for annotation.

• Asconema foliatum: Bush-shaped glass sponge like L. (L.)

complicata but greyer and less dendritic. An indicator

species for arctic sponge grounds (Albrecht et al., 2020;

Ramirez-Llodra et al., 2024). Shortened to Asconema-fol

for annotation.

• Asconema megaatrialia: Brownish, vase-shaped glass

sponge. Shortened to Asconema-meg for annotation.

• Caulophacus (Caulophacus) arcticus: A common glass

sponge in the Norwegian Sea and an indicator species for

arctic sponge grounds (Buhl-Mortensen et al., 2019;

Albrecht et al., 2020). C. (C.) arcticus is only annotated

when the top and stalk are visible, as the top part alone can

look like other sponges. Shortened to Caulophacus

for annotation.

• Axinella/Phakellia: White fan-shaped sponges most likely

belonging to the Phakellia and Axinella genera (Buhl-

Mortensen et al., 2019; Pedersen et al., 2022). Indicators

for hard-bottom sponge grounds (Albrecht et al., 2020).

• Rossellidae: Three species of white, vase-shaped glass

sponges in the family Rosselidae grouped together due to

similar morphology (Meyer et al., 2023): Schaudinnia rosea,

Trichasterina borealis and Scyphidium septentrionale. These

are structure-forming sponges and indicators for arctic

sponge grounds (Albrecht et al., 2020; Meyer et al., 2023;

Ramirez-Llodra et al., 2024).
Organisms are only annotated if it was possible to classify them

into one of the classes without context (i.e., not by association with

another individual from the same class present in the image). For

some classes that tend to occur in clusters, like L. (L.) complicata

and Rossellidae, it is challenging to distinguish individuals from

each other. These are annotated as separate individuals where there

is a clear spatial separation visible between the specimens in the

image. L. (L.) complicata is only labelled if it is represented as at least

a small “bush”. Small dendritic fractions are not annotated as they

cannot be uniquely identified as such.
2.3 Training and validation

Training is carried out on the DeepSee dataset using a 75/25

split for training and validation over 400 epochs. The number of

epochs is chosen based on multiple iterations of model training

where a flattening of the performance metrics is observed after ca.

250-350 epochs (Figure 4). The image size is set to 1280 pixels and

batch size to 8 during training. We tested multiple batch sizes and

found that increasing batch size results in a slight hit in model

accuracy for our setup. Training is carried out on 4 Nvidia T4

GPUs. Object inference on a single image including post-processing

takes ca. 35-60 milliseconds on a single Nvidia 4070 GPU,

depending on the image complexity. The Yolov8 model uses the

precision metric to identify the best model. See Table 1 for the
frontiersin.org
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TABLE 1 Performance metrics of the trained model for all detected classes in the validation data.

Class
Instances

(GT)
Instances
(Detected)

Precision Recall mAP50 mAP50-95 F1

All 3960 3873 0.85 0.78 0.84 0.66 0.81

Fish 900 779 0.89 0.75 0.85 0.69 0.81

Fish-deep 17 9 0.89 0.47 0.70 0.63 0.62

Batoidea 16 12 0.67 0.50 0.58 0.51 0.57

Caridea 128 113 0.89 0.77 0.87 0.56 0.82

Asteroidea 106 106 0.88 0.86 0.91 0.82 0.87

Ophiuroidea 248 222 0.92 0.82 0.87 0.61 0.86

Actiniaria 277 297 0.83 0.87 0.90 0.61 0.85

Antedonidae 734 754 0.85 0.86 0.90 0.59 0.86

Gersemia 55 52 0.87 0.82 0.84 0.53 0.84

Axinella/Phakellia 291 263 0.85 0.74 0.83 0.68 0.79

Lissodendoryx 946 1025 0.77 0.81 0.83 0.57 0.79

Asconema-fol 29 32 0.75 0.83 0.85 0.7 0.79

Caulophacus 24 23 0.87 0.83 0.89 0.75 0.85

Asconema-meg 37 32 1.00 0.86 0.93 0.83 0.92

Rossellidae 152 154 0.86 0.86 0.88 0.8 0.86
F
rontiers in Marine S
cience
 07
GT, Ground Truth.
FIGURE 4

Training performance metrics.
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performance metrics. Precision is the fraction of relevant instances

or true positives among all retrieved instances. Recall is the fraction

of relevant instances (true positives) that were retrieved to the total

number of ground truth instances. The F1 Score is the harmonic

mean of precision and recall, providing a balanced assessment of a

model’s performance while considering both false positives and

false negatives (Supplementary Figure S1). mAP50 is the mean

average precision calculated at an intersection over union (IoU)

threshold of 0.50 and is a measure of the model’s accuracy. The

trained model has a high mAP50 score of 0.84 over all classes. The

high precision and mAP scores also show that false positives are

kept to a minimum for most classes. This is also reflected in the

confusion matrix where the detections are largely confined to the

diagonal (Figure 5). A confusion matrix is a table layout that allows

visualization of model performance by quantifying the detection

errors or how the model confuses different classes during detection.

For example, reading Figure 5 vertically for the ‘Fish’ class, the

model correctly predicts the ‘Fish’ class in 76 out of 100 cases and

predicts it as ‘Background’ in 23 out of 100 cases (false negative).
Frontiers in Marine Science 08
When read horizontally, the model correctly predicts the ‘Fish’ class

in 76 out of 100 cases and incorrectly predicts instances of

‘Batoidea’ as ‘Fish’ in 19 out of 100 cases (false positive). The

only classes with mAP50 scores lower than 0.8 are Fish-deep and

Batoidea. The confusion matrix shows that these classes are often

predicted as background, i.e. not detected, explaining the relatively

low mAP50 scores. This is also reflected in low recall scores for

these classes. This is most likely due to the low number of images

and instances of these classes in the training dataset. The mAP50-95

score, or mean Average Precision over IoU thresholds from 0.5 to

0.95, measures model performance at multiple higher levels of

localization precision, making it a more rigorous metric than

mAP50. mAP50-95 scores are generally lower than mAP50 scores

as it assesses not only detection accuracy but also the tightness of

bounding boxes.

The dataset is also utilized to train other models from the YOLO

family for comparative analysis and to verify the stability of dataset

performance (Supplementary Table S2). The tests indicate that the

performance of the DeepSee dataset remains consistent across
FIGURE 5

Confusion matrix for the trained model on DeepSee validation data.
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different generations of YOLO models and model sizes. Inference

time for a 1280x1280 pixel image ranges from ca. 20 to 35

milliseconds per frame. Testing with smaller models resulted in

only a minor decrease in performance metrics from 0.84 to 0.81

mAP. This is promising, as these smaller models can be deployed on

systems with limited computational power, such as remotely

operated vehicles (ROVs), and where near real-time decision-

making may be key.
3 Results and discussion

The trained DeepSee model achieves a high mAP50 score of

0.84 on validation data, indicating strong accuracy and minimal

false positives across most classes. Inference times for images sized

at 1280 pixels range from approximately 20 to 35 milliseconds per

frame, demonstrating the model’s efficiency. The DeepSee model is

further benchmarked against 48 images selected from the Meyer

(Meyer et al., 2022; Meyer et al., 2023) dataset covering the range of

habitat types and organisms present in the DeepSee dataset. Note

that these images are not used for DeepSee model training and

validation. The Meyer dataset catalogues benthic organisms on the

Schulz Bank, a seamount of the Artic Mid-Ocean Ridge, using ROV

video footage from 580 to 2700m depth. The Meyer study also

provides instance counts of the identified organisms for each image

in the dataset. However, these counts include not only clearly visible

organisms but also obscured or fragmented organisms that do not

display the characteristic features of their class as required for ML

classification. These additional counts were identified by tentative

association with other organisms in the image or by physical

sampling (Heidi Kristina Meyer, pers. comm.). For example, in

Supplementary Figure S2, where all clearly visible organisms in the

DeepSee dataset are annotated, 3 instances of Lissodendoryx are

identifiable. In contrast, the Meyer study counts 7 Lissodendoryx

instances here (Meyer et al., 2022). Therefore, for benchmarking
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and comparative purposes in this study, the dataset has been

manually re-annotated to align with the classification and

methodology used for the DeepSee model as outlined in Section 2

to provide the ground truth instance count, rather than using the

instance counts provided by the Meyer study. Inference is carried

out using the DeepSee model and the results are compared to the

annotations. The resulting validation metrics are shown in Table 2

and the confusion matrix in Figure 6. The validation metrics and

confusion matrix show that the model does an excellent job in

detecting most organisms in the dataset with mAP50 scores higher

than 0.7. The only exception to this is the Ophiuroidea class where

the metrics are relatively low. False positives, with respect to other

classes in the dataset, are minimized except for the Fish-deep class

(Figure 6). Figure 7 is an example that shows a comparison between

the manually annotated (Figure 7A) and DeepSee detected

(Figure 7B) images. The Caridea, Antedonidae and Lissodendoryx

classes with high mAP50 scores are annotated/detected in the

example figure. The example figure has only 1 instance of Caridea

annotated but the model returns two detected instances. As it

stands, the precision and recall of this class would be 0.5 and 1,

respectively. However, the ‘false positive’ detection is indeed a

missed manual ground truth annotation of the Caridea class.

Accounting for this (Supplementary Figure S3), the precision and

recall of this class reaches a perfect score of 1 for this class in the

example (Table 3). This effect is also observed in the other classes

present in the figure. There are 15 Antedonidae instances detected

by the model of which 4 are ‘false positive’. In reality, there are no

false positives when the manual annotations are corrected. The

precision and recall for this class increase from 0.73 and 0.79,

respectively, to 1 and 0.83. Similarly, 15 instances of Lissodendoryx

are detected with 1 ‘false-positive’ which is a misannotated instance.

When the annotations are corrected, the precision and recall of this

class are both 1.

The Fish-deep class has a perfect precision value of 1 but a

relatively low recall value of 0.67 (Table 2) which tells us that
TABLE 2 Performance metrics of the trained model for all detected classes in the Meyer dataset.

Class Instances (GT)
Instances
(Detected)

Precision Recall mAP50 F1

All 906 881 0.82 0.69 0.78 0.75

Fish-deep 6 4 1.00 0.67 0.83 0.80

Caridea 6 7 0.76 0.83 0.89 0.80

Asteroidea 21 17 0.94 0.73 0.87 0.82

Ophiuroidea 11 12 0.34 0.27 0.32 0.30

Actiniaria 326 335 0.88 0.79 0.88 0.83

Antedonidae 31 34 0.84 0.84 0.82 0.84

Gersemia 46 36 0.78 0.57 0.70 0.65

Lissodendoryx 328 294 0.85 0.67 0.79 0.75

Asconema-fol 4 3 1.00 0.75 0.88 0.86

Rossellidae 127 139 0.77 0.78 0.80 0.78
GT, Ground Truth.
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although there are no false positives for this class, the class is either

not detected or has been mislabeled as Batoidea or Rossellidae

(Figure 6). The mislabeling of the Fish-deep class can be attributed

to the features of the labelled classes in the image (Figure 8). In

Figure 8A, the upper part of the organism is perceived as an angular

wedge due to the proximity of the fins to the upper body. This feature

is also present in the Batoidea class and is possibly the cause of the

mislabel. In Figure 8B, the Fish-deep instance in the top center of the

image is cut off at the image edge. Consequently, the instance looks

somewhat like class Rossellidae (see other Rossellidae instances in

Figure 8) and is mislabeled as such, albeit with a low confidence value.

The Gersemia class also has a relatively low recall value of 0.57

(Table 2). The low recall value is because several Gersemia instances

are simply not detected (background) (Figure 9) and is most likely

due to the limited number of instances in the training dataset. This is

also true for other detected classes but occurs less frequently due to

better training data with respect to these classes, e.g. Lissodendoryx

and Rossellidae (Figures 9, 10).

The Ophiuroidea show very low scores for all metrics

throughout the dataset (Table 2). The cause for these low scores

is shown exemplarily in Figure 10. There are 3 instances of the class
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annotated in the image while there are only 2 instances detected by

model. Moreover, the detections do not correspond to the

annotations, i.e. the model failed to detect the annotated

Ophiuroidea and instead found additional, valid instances that

were not annotated. The reason for this is twofold. Firstly,

Ophiuroidea instances in all images in the dataset are relatively

small and the model architecture has problems detecting very small

objects. Secondly, in the dataset, these instances are always present

on spicule mats that contain a lot of white detritus with sizes and

shapes similar to the Ophiuroidea which makes model detection

problematic. Many instances are so obscured and blurry that they

can only be manually identified with context, i.e. they look only

somewhat similar but can be identified as such due to the presence

of other brittlestars in the image. The precision and recall of the

model for this image without annotation corrections are both 0.

When corrected, the precision and recall values increase to 1 and

0.4, respectively.

The validation dataset can then be corrected to account for the

instances that are detected by the DeepSee model but were not

annotated in the dataset, i.e. manual labelling was conservative, or the

organism was simply missed during manual annotation. Note that
FIGURE 6

Confusion matrix for the trained model on the Meyer dataset.
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FIGURE 7

Figure showing the comparison between the manually annotated (A) and detected labels (B) in an example image. Instances that are labelled in the ground
truth image and not found by the DeepSee model, and vice-versa, are encircled in black. The average precision and recall of the model detections for the
image are 0.72 and 0.83, respectively. However, it is evident that the ‘false positives’ detected by the model are indeed valid detections that were missed in
the annotated dataset. When corrected, the average precision and recall increase to 1 and 0.91, respectively. Images are from the Meyer dataset.
TABLE 3 Performance metrics of the trained model for all detected classes in the revised Meyer dataset.

Class Instances (GT)
Instances
(Detected)

Precision Recall mAP50 F1

All 1012 881 0.93 0.74 0.84 0.82

Fish-deep 7 4 1.00 0.57 0.79 0.73

Caridea 8 7 1.00 0.88 0.94 0.93

Asteroidea 22 17 1.00 0.77 0.89 0.87

Ophiuroidea 18 12 0.75 0.50 0.61 0.60

(Continued)
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TABLE 3 Continued

Class Instances (GT)
Instances
(Detected)

Precision Recall mAP50 F1

Actiniaria 373 335 0.95 0.86 0.92 0.90

Antedonidae 38 34 0.97 0.87 0.92 0.92

Gersemia 50 36 0.86 0.62 0.77 0.72

Lissodendoryx 346 294 0.86 0.73 0.82 0.79

Asconema-fol 4 3 1.00 0.75 0.88 0.86

Rossellidae 146 139 0.88 0.84 0.88 0.86
F
rontiers in Marine Scie
nce
 12
GT, Ground Truth.
FIGURE 8

(A) and (B) show the instances where the class Fish-deep has been mislabeled as Batoidea and Rossellidae, respectively. (C) shows the unlabeled
image in (B) to emphasize the mislabeled Rossellidae instance (black ellipses). Images are from the Meyer dataset.
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the instances for which the model does not detect the organism are

not corrected. This increases the metrics (Table 3, Figure 11) of the

Caridea and Ophiuroidea classes where the model correctly identified

the previously unlabeled organism in the images. The high precision

values across the board show that the DeepSee model is very robust

when it comes to correctly identifying benthic life while keeping false

positives to a minimum. In most cases, the recall scores are also

relatively high with some exceptions due to factors such as inadequate

training data and feature similarity between classes.
Frontiers in Marine Science 13
4 Comparison to other models

Recently, other models have also been developed to detect

benthic life, achieving varying degrees of success in terms of

accuracy and reliability. These studies (Fu et al., 2022; Zhang

et al., 2022; Lyu et al., 2023; Xu et al., 2023; Cai et al., 2024) focus

on refining model architecture to improve detection in complex

marine environments with highly variable scenes and increase

model efficiency. The models achieve high mAP scores (between
FIGURE 9

Example showing manually annotated (A) and model detected (B) labels for a selected image illustrating the low recall value of the Gersemia class
(soft corals). Instances that are labelled in the ground truth image and not found by the DeepSee model, and vice-versa, are encircled in black.
Images are from the Meyer dataset.
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0.7 and 0.85) that are largely in the same range as the DeepSee

model. Interestingly, a recent model (Cuvelier et al., 2024) trained

on a dataset from the Clarion-Clipperton Zone (CCZ) in the NE

Pacific demonstrates high recall values (~0.90) but very low

precision (~0.13) despite using relatively well-lit images captured

by a camera consistently positioned approximately 1.5 meters above

the seafloor and facing orthogonal to the seafloor. Although this

model could be potentially used as a general object detector, the

high rate of false positives (~86%) would necessitate substantial

manual correction efforts to ensure accuracy.

Direct comparison of the DeepSee model with other such object

detection models is challenging due to several factors. Firstly, the
Frontiers in Marine Science 14
training dataset used in these studies is different, which directly

influences performance metrics and applicability. More importantly,

many of the models and/or their trained weights are not publicly

available, limiting the ability to replicate results or conduct thorough

evaluations. We compare DeepSee to the MBARI/FathomNet model

that has been also developed to detect marine benthos and where the

weights and models are publicly available (https://huggingface.co/

FathomNet/MBARI-315k-yolov8). It should be noted that the

released weights are almost a year old and may be outdated. To

be fair, DeepSee classes that are not comparable to the ones found in

the MBARI model, and vice-versa, are ignored when computing

performance metrics.
FIGURE 10

Example showing manually annotated (A) and model detected (B) labels for a selected image illustrating the low metric scores of the Ophiuroidea
class. Instances that are labelled in the ground truth image and not found by the DeepSee model, and vice-versa, are encircled in black. Images are
from the Meyer dataset.
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FathomNet is an impressive, open-source image database that has

been specifically built to train AI models to help detect marine life. Like

DeepSee, theMBARI model also uses YOLOv8x (model size is inferred

frommodel parameter count) as the base object detection model and is

trained on a FathomNet dataset containing 499 classes. Currently, the

FathomNet dataset contains more than 110,000 images and 303,000

localizations. However, the number of images and instances in the

dataset used for training the model has not been provided. Inference is

performed on the revised Meyer dataset using the available model

weights. Detections using the MBARI model classes have been

relabeled to the appropriate DeepSee class for comparison

(Supplementary Figure S4, Supplementary Table S3). In some cases,

theMBARImodel identifies the same DeepSee class as different classes.

All such classes are relabeled. For example, the DeepSee class

‘Rossellidae’ is detected as ‘Porifera’ and ‘Hexactinellida’ by the

MBARI model and are all relabeled to ‘Rossellidae’. The

‘Lissodendoryx’ and ‘Asconema-fol’ DeepSee classes which are

present in the revised Meyer dataset are not detected by the MBARI

model and are not used when computing performance metrics.

Validation of the MBARI model on the revised Meyer dataset results
Frontiers in Marine Science 15
in precision, recall and mAP scores of 0.73, 0.15 and 0.25, respectively.

While the MBARI model demonstrates reasonable performance in

correctly identifying organisms, as indicated by its fair precision score,

it struggles to detect all organisms that are clearly visible in the images,

resulting in very poor recall scores. The DeepSee model and dataset

significantly outperform the MBARI model (Figure 12).

The DeepSee model metrics show that ML methods can

successfully automate benthic lifeform detection with relatively high

accuracy thereby reducing the manual annotation load significantly.

Manual annotation of an hour long ROV video where 1 frame is

annotated per second would take ca. 50 hours to annotate, assuming

each frame contains 10 instances with each instance requiring 5

seconds. The DeepSee model would, for the same video, require only

126-180 seconds, which is more than a thousand-fold increase in speed.

It should be noted that to do this, the imaged lifeforms need to have

clearly visible and defined morphologies or feature sets that can be

usefully extracted, learned and subsequently detected by the model.

The model cannot contextually label lifeforms as an experienced

biologist would be able to do. This kind of reasoning and association

is currently beyond the capabilities of models such as presented here
FIGURE 11

Confusion matrix for the trained model on the revised Meyer dataset.
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and would require a trained professional to correctly identify these

instances. The methodology presented here can help create high-

resolution maps of benthic life in the deep sea by combining location

metadata from the ROV with model object detections. This approach

has the potential to overcome the typical data sparseness associated

with deep-sea lifeform mapping. Traditionally, due to limited data

availability, such maps are produced with granularity ranging from

hundreds to tens of thousands of square kilometers (Legrand et al.,

2024; Ramirez-Llodra et al., 2024), which can lead to an incomplete or

inaccurate assessment of target regions. With the techniques presented

in this study, map resolutions down to the square meter scale or even

lower (Hartz et al., 2024) can be achieved, offering a much more

detailed understanding of species and biomass distribution. Such

precision could transform current perceptions of deep-sea

biodiversity and community composition, and profoundly impact
Frontiers in Marine Science 16
decision-making processes related to resource management and

conservation in deep-sea environments.
5 Conclusions

This study demonstrates that the state-of-the-art DeepSee object

detection model, trained on a carefully curated dataset that focuses on

the Arctic Ocean Ridge, the Norwegian Sea and the Greenland Sea,

can effectively detect benthic lifeforms in challenging deep-sea

environments characterized by variation in lighting, perspective,

object occlusion and imaging equipment. We show that the model

can successfully localize organisms with high precision and achieve

high mAP scores when sufficient training data is available. Lower

recall scores are obtained in only a few cases and can be directly
FIGURE 12

Comparison of detections between the DeepSee (A) and MBARI (B) models.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1470424
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Iyer et al. 10.3389/fmars.2024.1470424
attributed to a lack of training data and/or the presence of highly

obscured, small instances in the validation data, such as ophiuroids in

spicule mats. The model metrics also inspire confidence in detection

certainty with minimal false-positive detections.

Thus, DeepSee forms a strong foundation for future annotation

tasks, integral to the workflow of marine scientists and surveyors in the

North Atlantic. Although a valuable tool, the model cannot replace the

expertise of scientists and in-situ sampling. The model annotations

should be subject to expert verification and additional annotations will

be required for cases where the model misses instances due to

contextual or environmental challenges. Nevertheless, model

deployment serves as a valuable foundation and will significantly

reduce the time and workload needed to annotate such images by

many orders of magnitude. This, in turn, will accelerate the creation of

high-resolution maps of the seafloor, enhancing our understanding of

the distribution of life in these regions and aiding in making

quantitative, informed resource allocation decisions.

Future work will focus on expanding the DeepSee dataset by

incorporating new detection classes to enhance its versatility and

applicability. Additionally, efforts will be made to explore the

identification of benthic organisms in regions beyond the North

Atlantic, thereby broadening the dataset’s geographical scope. This

expansion will not only improve the model’s robustness but also

contribute to a more comprehensive understanding of benthic

ecosystems globally. Furthermore, modifications to model

architecture to enhance performance while maintaining

computational efficiency is also worth investigating. Potential

adjustments may include refining convolutional layers, integrating

attention mechanisms, and experimenting with alternative loss

functions. These improvements could yield valuable advancements in

detection capabilities, particularly in the complex environments of

deep-sea imagery, representing a promising direction for

ongoing research.
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