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Respiration rates and its
relationship with ETS activity in
euphausiids: implications for
active flux estimations
Marı́a Couret1*, Javier Dı́az-Pérez 1,
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and Santiago Hernández-León1

1Instituto de Oceanografía y Cambio Global (IOCAG), Universidad de Las Palmas de Gran Canaria,
Unidad Asociada, Universidad de Las Palmas de Gran Canaria-Consejo Superior de Investigaciones
Científicas (ULPGC-CSIC), Telde, Spain, 2Centro Oceanográfico de A Coruña, Instituto Español de
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Euphausiids, commonly known as krill, are crucial contributors to the ocean’s

active carbon pump, impacting carbon export and sequestration through their

diel vertical migration. These organisms feed on organic matter in the epipelagic

layer at night and release inorganic carbon in the mesopelagic layer during the

day via respiration. Measuring respiration in the mesopelagic layer is challenging

due to the difficulties in obtaining direct measurements, as well as the lack of

comprehensive data, and reliance on conservative estimates. The measurement

of the electron transfer system (ETS) activity is used as a proxy to assess

respiration in the mesopelagic layer. However, accurate calibration of

respiration rates and ETS activity is imperative through experimental

measurements and empirical data. Here, we compared the respiration rates

with their respective ETS activities of different species of euphausiids captured at

night in the epipelagic layer of the Atlantic Ocean along a latitudinal (42-29°N,

25°W) and a longitudinal (25-13°W, 29°N) transect. Our results revealed a spatial

trend in respiration rates, and consequently in ETS activities, with rates

decreasing southward and increasing slightly towards the African upwelling

region. The Generalized Additive Model (GAM) demonstrated that epipelagic

oxygen concentration, chlorophyll a, and the interaction between epipelagic

temperature and mesopelagic oxygen concentration significantly influenced

euphausiids respiration rates. Furthermore, we observed a strong correlation

between respiration and specific ETS activities, with R/ETS ratios exceeding the

conservative value of 0.5, which is typically used to estimate respiratory flux.
KEYWORDS

euphausiids, respiration rates, specific ETS activity, R/ETS ratio, vertical migration, active
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1 Introduction

Zooplankton migrant organisms, such as large copepods and

euphausiids (Hernández-León et al., 2019a), play a crucial role in

the biological carbon pump by actively exporting carbon. This

process is known as the active flux or migrant pump and refers to

the active transport of organic matter by zooplankton and

micronekton to the deepest areas of the ocean (Longhurst and

Harrison, 1988). These organisms consume organic carbon at

shallower depths and transport it to the mesopelagic layer

through diel vertical migrations, where it is released through

respiration (Longhurst et al., 1990), egestion (Angel, 1989),

excretion (Steinberg et al., 2000), and mortality (Zhang and Dam,

1997). Zooplankton mortality, excretion, and feeding can be

estimated from respiration rates (Ikeda and Motoda, 1978;

Steinberg et al., 2000; Ariza et al., 2015). Therefore, respiration

rates are of importance to assess the role of these organisms in

exporting carbon to the mesopelagic layer.

Euphausiids are significant components of marine ecosystems,

conducting vertical and horizontal migrations (Ens et al., 2023) that

contribute to nutrient transfer and energy flux in the ocean. These

organisms are found throughout the world’s oceans, from coastal

seas to the bathypelagic zone, with their distribution influenced by

thermal characteristics and water masses (Letessier et al., 2011;

Sutton and Beckley, 2022). Furthermore, they are a major

contributor to global plankton community biomass (21%),

trailing only behind copepods (47%), in terms of their total

organic carbon (Longhurst, 1985). Euphausiids are pivotal in

driving the biological pump, contributing significantly to the

export and sequestration (sensu Lampitt et al., 2008) of

atmospheric CO2 into the deep ocean through fast-sinking faecal

pellets (Cavan et al., 2019), respiration at depth (Stukel et al., 2023),

and moulting (Kobari et al., 2010). Thus, they play a key role in the

biological carbon pump and the cycle of essential nutrients in

marine ecosystems.

Respiratory flux is estimated from the migrant biomass (night

minus day biomass values in the epipelagic zone) and the

respiration rates at the residence layer during daytime. These

rates are determined by measuring migrant organisms captured

during the night in the epipelagic zone and converting them to

represent respiration at depth using empirical or published Q10

values (Le Borgne and Rodier, 1997). Alternatively, values from

published equations relating respiration, body size, and temperature

(Ikeda, 2013a, for euphausiids) are also used. Enzymatic activities

related to cell respiration, such as the electron transfer system (ETS)

activity, serve as an alternative proxy for estimating respiratory flux.

This method offers advantages as samples can be frozen and stored

until they are analysed. However, it requires the calibration of

enzymatic proxies to physiological rates (Hernández-León et al.,

2019b). The respiration to ETS (R/ETS) ratio in marine

zooplankton reflects the scope of metabolic activity and typically

ranges between 0.5 and 1 mainly depending on factors such as food

availability and temperature (Hernández-León and Gómez, 1996).

While conservative ratios of 0.5 are commonly used to assess the

respiratory flux, Hernández-León et al. (2019b) observed a R/ETS
Frontiers in Marine Science 02
value of 0.96 ± 0.29 for migrant copepods. This result suggests the

need for a reassessment of this ratio to accurately evaluate

respiratory fluxes and the carbon transported to the deep ocean

by migrant organisms.

In this context, we performed respiration measurements on

euphausiids captured at night in the epipelagic layer. We then

analyzed their specific ETS activity and correlated both sets of

measurements to obtain the R/ETS ratio. The aim of the present

study was to compare the in situ respiration rates with the specific

ETS activities, aiming to derive accurate R/ETS ratios for

euphausiids in a longitudinal and latitudinal transect in the North

Atlantic Ocean.
2 Materials and methods

2.1 Sampling and on-board experiments

The euphausiids used for experiments were collected during

the “DisEntangling Seasonality of Active Flux In the Ocean”

(DESAFIO I) cruise on board the R.V. “Sarmiento de Gamboa”

during February 2023. The research vessel sailed from Vigo (Spain)

to the Canary Islands (Spain), spanning from January 31st to

March 2nd, 2023 (Figure 1), sampling eleven oceanographic

stations (thereafter ST). Vertical profiles of salinity, temperature,

oxygen, conductivity, and fluorescence were obtained using a CTD

(Seabird 911 plus) and a Seapoint fluorimeter mounted on a rosette

sampler equipped with 12 l Niskin bottles. Euphausiids were

captured at night using a Bongo plankton net fitted with a 200

mmmesh and a non-filtering cod-end deployed in horizontal hauls

between 0 and 50 m depth. From the plankton sample, euphausiids

were sorted and those undamaged with active swimming behavior

were selected for the experiments. One single euphausiid was

introduced into each experimental bottle (0.5L), which was filled

with filtered (0.2 mm Whatman ® Polycap TC encapsulated filter)

and oxygenated surface sea water. Oxygen consumption

measurements were carried out using two 4-channel FireSting-

O2 meter, using 3 channels for the experimental organisms and one

for the background respiration (without organism). Oxygen

contactless sensors (Pyroscience, OXSP5) were attached to the

experimental bottles for contactless oxygen read-out. Incubations

were conducted placing the experimental bottles inside

thermoregulated baths (15.5 ± 0.5°C) in darkness. Total

respiration rates (ml O2·ind
-1·h-1) were estimated as the

regression slopes of oxygen concentration over time, subtracting

background respiration. The first thirty minutes were discarded

due to oxygen stabilization inside the bottles and the experiment

ranged between 6.5 and 9 hours according to the oxygen

concentration in the experimental bottles, that normally

decreased from 100% to 85–90% of oxygen saturation.

After the respiration assays, euphausiids were picked and frozen

in liquid nitrogen (-196°C) for later analysis. In the laboratory,

before the ETS analysis, euphausiids were classified to species level

(or genus when further classification was not possible),

photographed and digitized using a Nikon digital camera.
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2.2 Specific ETS activity and
protein content

Electron transfer system (ETS) activity was measured following

the method of Packard (1971) modified by Owens and King (1975),

Kenner and Ahmed (1975), and Gómez et al. (1996). Frozen

samples were homogenized at the laboratory in a Teflon pestle at

0-4°C to avoid degradation of enzyme activity and proteins. Then,

the homogenates were centrifuged at 4000 rpm at 4°C for 10 min.

An aliquot was subsampled from the homogenate, incubated at 18°

C in darkness using NADH, NADPH, succinate, and a tetrazolium

salt (INT) as the artificial electron acceptor. After 20 min, the

incubation was stopped with a quench solution. The ETS activity

was estimated spectrophotometrically at 490 nm with a turbidity

baseline of 750 nm. In order to correct ETS activity for in situ

temperature, we used the Arrhenius equation and an activation

energy of 15 kcal·mol-1 (King and Packard, 1975). Protein content

was determined using the method of Lowry et al. (1951) modified

by Rutter (1967), and using bovine serum albumin (BSA) as the

standard. Finally, protein specific respiration rates (ml O2·prot
-1·h-1)

were estimated to compared with the specific ETS activities (μl

O2·mg prot-1·h-1) and to estimate the R/ETS ratios.
2.3 Estimation of respiration rates and ETS
activity in the epipelagic and
mesopelagic layer

ETS activity of organisms incubated for respiration experiments

and captured in the 0-50 m depth layer were converted to ETS

activities in the epipelagic (0-200 m) and mesopelagic (200-1000 m)
Frontiers in Marine Science 03
layers using the Arrhenius equation and the temperature of

each layer.

Respiration rates in the upper 50 m were directly measured,

while rates for the epipelagic (0-200 m) and mesopelagic (200-

1000 m) layers were estimated based on the measured rates from the

0-50 m depth using a Q10 value of 3 (Hernández-León et al., 2019b),

which represents the factor by which the respiration rate increases

for every 10°C rise in temperature, and the temperature (T) at

each layer:

Respiration rate(0−200 m depth) 

= Respiration rate(0−50 m depth) *3
T(0−200 m depth)  −T(0−50 m depth)

10

Respiration rate(200−1000 m depth) 

= Respiration rate(0−50 m depth) *3
T(200−1000 m depth)  −T(0−50 m depth)

10

Both the Q10 value and the Arrhenius equation are used to

describe the temperature dependence of biological and chemical

processes, but they are applied differently based on the nature of

the processes they describe and the assumptions behind each

model. The Q10 value is commonly used in biological sciences to

describe the temperature sensitivity of metabolic processes,

including respiration, as it provides a simple and empirical

measure of how these rates change with temperature (Mundim

et al., 2020). In contrast, the Arrhenius equation is based on the

fundamental principles of chemical kinetics and provides insight

into the energy barriers that must be overcome for electron

transfer reactions to occur, making it directly related to the

molecular and energetic properties of the enzymes and

substrates involved (Owens and King, 1975).
FIGURE 1

Locations of sampling stations during the DESAFIO 1 cruise conducted in February 2023. The background colours depict the monthly average sea
surface temperature (SST, °C). The coloured dots indicate the specific stations where experiments were carried out.
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2.4 Data analysis

The relationships between specific respiration rates and specific

ETS activities, and the relationships between protein content and

respiration rates were fitted using linear regression. Because of the

general trend that metabolism is a power function of body weight,

the values were log-transformed. Pearson’s correlation was used to

evaluate the relationship between euphausiids respiration rates, ETS

activities, and R/ETS ratios against temperature, oxygen

concentration, chlorophyll a values, and primary production.

Differences in respiration rates between stations were tested using

the analysis of the variance (one-way ANOVA). Respiration rates

were transformed using a Box-Cox transformation to adjust

normality. Normality was tested using the Shapiro-Wilk Test and

homoscedasticity using the Bartlett test. Finally, a Generalized

Additive Model (GAM) was applied to model the relationship

between the response variable (respiration rates measured from

euphausiids captured at night in the epipelagic layer) and predictors

(individual protein content and environmental conditions in the

epipelagic and mesopelagic layer). All analyses were performed in

the programming language R (R Core Team, 2024). The map of the

sampling region was created using the geographic information

system QGIS (V.3.38.2) (QGIS Development Team, 2024).
3 Results

In the latitudinal transect, temperature values (Figure 2A)

increased from ST11 to ST5 in the epipelagic layer (0-200 m

depth), while in the longitudinal transect (Figure 2B) temperature
Frontiers in Marine Science 04
was similar in all stations but slightly decreasing close to the African

coast (i.e., ST1 and ST2). Oxygen vertical profiles (Figure 2C)

showed higher oxygen concentration in the epipelagic layer of the

latitudinal transect, specially from ST11 to ST8. In the longitudinal

transect (Figure 2D), oxygen vertical profiles in the epipelagic layer

showed an increase from the open ocean to the coast. On the other

hand, mesopelagic oxygen concentration increased from the coast

to the open ocean (from ST1 to ST6), reaching the highest values

from ST11 to ST8. Vertical profiles of chlorophyll a (Chl a) in the

upper 200 m layer showed higher values at the northern stations of

the latitudinal transect (Figure 2E) and at the stations close to the

African coast (Figure 2F).

Respiration rates measured in euphausiids captured in the first

0-50 m of the water column ranged from 19.65 ± 9.91 ml O2·mg

prot-1·h-1 at ST10 to 4.64 ± 2.11 ml O2·mg prot-1·h-1 at ST3 (Table 1),

displaying higher values at those stations where higher values of

oxygen and Chl a were found (i.e. from ST10 to ST6). Respiration

rates measured in the upper 50 m depth were similar to the rates

estimated for the epipelagic layer (0-200 m depth) using the

measured ETS and applying a Q10 value of 3 (Figure 3A). In

contrast, the estimated respiration rates for the mesopelagic layer

(200-1000 m depth) were lower as expected (Figure 3A; Table 1).

Specific ETS activity, estimated using the Arrhenius equation as

mentioned above (Figure 3B), showed a similar pattern as the

respiration rates, with higher values at ST10 decreasing along the

latitudinal transect, and slightly increasing close to the African

upwelling (ST1). R/ETS ratios in the upper 0-50 m depth ranged

from 1.19 ± 0.49 at ST6 to 0.65 ± 0.12 at ST3 in the 0-50 m depth

layer (Table 1; Figure 3C), displaying similar values as the R/ETS

obtained for the epipelagic layer (ranging from 1.18 ± 0.34 to 0.64 ±
FIGURE 2

Vertical distribution of (A, B) temperature (°C), (C, D) oxygen (ml·L−¹), and (E, F) chlorophyll a (mg·m−³) along the latitudinal (left panel) and
longitudinal (right panel) transects sampled during the DESAFIO 1 cruise. Note the different y-axes for the chlorophyll a vertical profiles.
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0.12, respectively) and slightly higher than those obtained at depth

(ranging from 1.05 ± 0.3 to 0.56 ± 0.11, respectively) (Table 1).

Estimated respiration for the epipelagic layer (0-200 m depth)

showed a significant relationship with epipelagic specific ETS

values (R2 = 0.73, p<0.001, n= 66, see Figure 4) and mesopelagic

specific ETS values (R2 = 0.76, p<0.001, n= 66). Total respiration

rates (Figure 5A) showed a positive relationship with body weight as

protein content, while specific respiration rate (ml O2·mg prot-1·h-1)

significantly decreased with the increasing body weight as

expected (Figure 5B).

Pearson’s correlation showed a significant negative correlation

between the averaged epipelagic temperature and the respiration

rates estimated for the epipelagic (r=-0.7, p<0.05) and for the

mesopelagic layer (r=-0.77, p<0.05) (Figure 6A; Supplementary

Table 2). Moreover, specific ETS activity estimated for the

mesopelagic layer also showed a significant negative correlation

with the epipelagic temperature (r=-0.7, p<0.05) (Figure 6B;

Supplementary Table 2). However, no significant correlations

were found between the epipelagic temperature and the epipelagic

specific ETS activity nor the R/ETS ratios (Figures 6B, C;

Supplementary Table 2). On the other hand, a strong significant

positive correlation was found between the epipelagic oxygen

concentration (ml·L-1) (Figure 6 upper panel) and the estimated

respiration rates (ml O2·mg prot-1·h-1), both for the epipelagic

(r=0.95, p<0.001) and for the mesopelagic (r=0.96, p<0.001)

(Figure 7A; Supplementary Table 2) layers, as well as between the

epipelagic oxygen concentration and the specific ETS activity, also

for the epipelagic (r=0.94, p<0.001) and for the mesopelagic (r=0.96,

p<0.001) (Figure 7B; Supplementary Table 2) layers. Likewise,

mesopelagic oxygen concentration (Figure 7 lower panel) also

showed a strong significant positive correlation between the

estimated respiration rates, both for the epipelagic (r=0.78,

p<0.05) and for the mesopelagic (r=0.77, p<0.05) (Figure 7D;

Supplementary Table 2) layer, and with the ETS activity for the

epipelagic (r=0.71, p<0.05) and mesopelagic (r=0.72, p<0.05)

(Figure 7E; Supplementary Table 2) layers. However, no

significant correlations were found between the epipelagic and

mesopelagic oxygen concentration and the R/ETS ratios

(Figures 7C, F; Supplementary Table 2). Finally, average Chl a

(Figure 8 upper panel) and net primary production (Figure 8 lower

panel) obtained in the epipelagic layer did not show any correlation

between the respiration rates, the ETS activities, nor the R/ETS

ratios (Figures 8C, F; Supplementary Table 2).

The ANOVA results showed significant differences between

stations (F value = 6.55, p<0.001, df=7), thus we modeled the

variability of the respiration rates in the epipelagic layer between

stations according to the environmental variables in the epipelagic

and mesopelagic layers using a GAM, as mentioned above.

Estimated coefficients from the best-fitting GAM based on

different combinations of explanatory variables for the response

variables are summarized in Table 2. The best-fitting GAM was

selected using the Akaike information criterium (AIC, see Akaike

1974). The optimal model included the effect of body weight,

oxygen, and chlorophyll a in the epipelagic layer, and the

interaction of temperature in the epipelagic layer and the oxygen

concentration in the mesopelagic layer:
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g(Y) = Protein +   s(OxygenEpipelagic   Layer) + s(ChlorophyllEpipelagic   Layer)

+   s(TemperatureEpipelagic   Layer)   *   s(OxygenMesopelagic   Layer) +  

where g() stands for the function of the response variable (Box-

Cox transformed, here respiration rates) and s() denotes the

smoother functions.
4 Discussion

Euphausiid respiration rates, specific ETS activity, and R/ETS

were estimated along a latitudinal and a longitudinal transect in the

North Atlantic Ocean. To our knowledge, this is the first attempt to
Frontiers in Marine Science 06
calibrate respiration rates and ETS activity through experimental

measurements in euphausiids. We observed higher R/ETS ratios

than the conservative value of 0.5 commonly used to assess the

respiratory flux (Table 1) and found a close relationship between

respiration rates and specific ETS activity (Figure 4), with rates

highly influenced by the oxygen concentration (Figure 7).

Respiration rates in euphausiids are influenced by various

environmental factors, such as temperature, body size, feeding

rates, and the number of daylight hours (Clarke and Morris, 1983).

Significant variations were also observed among different species and

seasons (Small and Hebard, 1967; Tremblay et al., 2014; Tarling,

2020). As previously reported by Ikeda (1970), we also obtained an

increase of total respiration rates with weight (Figure 5A) and a

decrease of specific respiration rate with the increasing of body weight

(Figure 5B), as body mass is one of the major determinants of

zooplankton respiration rates (Hernández-León and Ikeda, 2005).

Our results showed significant correlations between temperature

(Figure 6) and oxygen concentration (Figure 7) with specific

respiration rates and ETS activities. However, the correlations

between chlorophyll a values and primary production with

respiration rates, specific ETS activity, or R/ETS ratios were not

statistically significant (Figure 8), although the GAM results indicated
FIGURE 3

(A) Respiration rates (ml O2·mg prot-1·h-1), (B) protein normalized ETS
activity (ml O2·mg prot-1·h-1), and (C) R/ETS ratios of migrant
euphausiids obtained from incubations conducted along the
oceanographic stations in the Atlantic transect. Measurements were
estimated at surface temperature (orange), for the epipelagic layer
(green), and for the mesopelagic temperature (blue) at each station
(see text). Vertical lines indicate the standard error.
FIGURE 4

Relationship between euphausiid respiration rates and specific (sp)
ETS activity estimated for the (A) epipelagic (0-200 m depth) and
the (B) mesopelagic layer (200-1000 m depth). See text
for explanation.
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that chlorophyll a significantly influences respiration rates (Table 2).

This disagreement suggests that chlorophyll a, while not the primary

driver, provides additional explanatory power in predicting

euphausiid respiration rates (Chen and Smith, 2018). Indeed, the

relationship between primary production and euphausiids’
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respiration rates, abundance, and species diversity is not

straightforward (Tremblay et al., 2020). The GAM approach allows

the detection of nonlinear relationships and the interactions between

multiple environmental variables, thus revealing the indirect

influence of chlorophyll a on euphausiid metabolism. In any case,

our findings indicated that chlorophyll a does not directly influence

respiration rates. Instead, other environmental factors such as

temperature and oxygen concentration appear to have a more

direct impact on respiration rates and specific ETS activity.

Temperature has different impacts on euphausiids respiration

rates depending on the oxygen concentration (Tremblay et al.,

2020). Moreover, oxygen in the mesopelagic layer also affects

zooplankton by influencing their community structure, vertical

distribution (Ekau et al., 2010), metabolic activity (Kiko and

Hauss, 2019), feeding, and excretion rates (Robinson et al.,

2010). Our findings, supported by the Generalized Additive

Model (GAM) results (Table 2) and the Pearson’s correlations

(Figures 6, 7), indicated that temperature and oxygen

concentration significantly influenced euphausiids respiration

rates. However, we observed a negative correlation between

temperature and both euphausiid respiration rates and ETS

activity, which contrasts with previous research on the effects of

temperature on euphausiids metabolism (Iguchi and Ikeda, 2005;

Ikeda, 2013b; Kiko and Hauss, 2019). This discrepancy may be

attributed to oxygen concentration having a greater impact on the

metabolism of these organisms than temperature, as we obtained

the highest respiration rates in areas with high mesopelagic

oxygen concentration, lower epipelagic temperatures, and high

chlorophyll a values (i.e., ST10 and ST8, Table 1). Similar results

were previusly reported by Kiko and Hauss (2019) in the Tropical

Pacific, where theirs results indicated that oxygen is a key

environmental variable that scales metabolic activity. However,

research has focused on scenarios involving increasing

temperatures and low oxygen concentrations, which could

negatively impact hypoxia tolerance due to increased energy

expenditures (Ekau et al., 2018). Yet, in this study, the higher

respiration rates were observed in areas characterized by low

temperature but high oxygen concentrations. Further research is
FIGURE 5

Relationship between euphausiid body weight (as protein content)
and (A) total respiration rates (ml O2·ind

-1·h-1) and (B) respiration rate
(ml O2·mg prot-1·h-1) in the epipelagic layer (0-200 m depth).
FIGURE 6

Pearson’s correlation between temperature (°C) in the epipelagic layer and average (A) respiration (ml O2·mg prot-1·h-1), (B) specific (sp) ETS activity
(ml O2·mg prot-1·h-1), and (C) the R/ETS ratio in the epipelagic and mesopelagic layers per station. Only significant correlations are indicated with a
line and standard deviation. Colours and numbers represent the stations.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1469587
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Couret et al. 10.3389/fmars.2024.1469587
FIGURE 8

Upper panel: Pearson’s correlation between chlorophyll a (mg·m-3) in the epipelagic layer and average (A) respiration (ml O2·mg prot-1·h-1),
(B) specific (sp) ETS activity (ml O2·mg prot-1·h-1), and (C) the R/ETS ratio in the epipelagic and mesopelagic layers per station. Lower panel: Pearson’s
correlation between net primary production (mg C·m-2·d-1) in the epipelagic layer and average (D) respiration (ml O2·mg prot-1·h-1), (E) specific (sp)
ETS activity (ml O2·mg prot-1·h-1), and (F) the R/ETS ratio in the epipelagic and mesopelagic layers per station. Only significant correlations are
indicated with a line and standard deviation. Colours and numbers represent the stations.
FIGURE 7

Pearson’s correlation between oxygen (ml·l-1) in the epipelagic (upper panel) and mesopelagic (lower panel) layers and average (A, D) respiration (ml
O2·mg prot-1·h-1), (B, E) specific (sp) ETS activity (ml O2·mg prot-1·h-1), and (C, F) the R/ETS ratio in the epipelagic and mesopelagic layers per station.
Only significant correlations are indicated with a line and standard deviation. Colours and numbers represent the stations.
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needed to unravel the combined effects of temperature and oxygen

concentrations on euphausiid physiological rates.

The influence of mesopelagic oxygen concentration on the

euphausiids’ respiration rates and enzymatic activity might be

attributed to the diverse responses to varying oxygen levels. Some

species exhibit a high degree of oxyconformity, decreasing their

oxygen consumption rates as oxygen levels decline. Conversely,

other species display strong oxyregulation, maintaining a consistent

oxygen uptake irrespective of ambient oxygen levels (Herrera et al.,

2019; Tremblay et al., 2020). Other individuals, at the limit of their

aerobic scope (the difference between the routine and the maximum

metabolic rate), reach a point where oxygen levels in the

body fluids begin to decline and the capacity to adjust respiration

becomes gradually limited (Pörtner, 2002). At this point, they

reverted to anaerobic mode of mitochondrial metabolism

caused by an excessive oxygen demand if reached the critical

threshold temperature (Ollier et al., 2018; Tarling, 2020). The

different adaptations of euphausiids to low dissolved oxygen

concentrations affect the respiration rates reflecting their

ecophysiological plasticity (Werner, 2013) and are linked to the

temperature they experience during the diel vertical migration

(Tremblay et al., 2020). This leads to a vertical limitation of

habitats for these diel vertical migrant organisms, shaping the

different species’ behavior, distribution and physiological

processes (Tremblay et al., 2020). Under the actual global

warming scenario of expanding and intensifying oxygen

minimum zones (Stramma et al., 2008), and considering the key

position of euphausiids in the trophic web dynamics (Lee et al.,

2022), the physiological and behavioral adaptions, and strategies of

these organisms to different levels of oxygen and temperatures

should be further addressed.

The R/ETS ratio has been subject of debate since Packard et al.

(1974). It appears that the R/ETS ratio in marine zooplankton is

influenced by a combination of factors, including zooplankton size,

temperature, metabolic activity, primary production, and the

limitations of the measurement techniques used (Hernández-León

and Gómez, 1996). However, the available database on R/ETS ratios

remains relatively limited, which hampers the comprehensive study

of the variables affecting respiration rates, thus the ETS activities

and R/ETS ratios. High R/ETS ratios were associated with fed

organisms exhibiting higher average respiration but lower ETS

activity at the end of incubation, while lower R/ETS ratios are
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associated with low primary production scenarios (Hernández-

León and Gómez, 1996). Despite these findings, the influence of

oxygen concentration on R/ETS ratios in zooplankton was not

previously studied. To explore the impact of environmental

variables on the estimated epipelagic and mesopelagic R/ETS

ratios, we applied the Generalized Additive Model (GAM)

fitted for respiration rates. This approach was chosen due to the

lack of significant correlations between temperature, oxygen

concentration, chlorophyll a, or primary production values and

the R/ETS ratios. While epipelagic oxygen and chlorophyll a

significantly influenced (p<0.05 and p<0.0001, respectively) the

epipelagic R/ETS ratios, both the epipelagic oxygen concentration

(p=0.05), chlorophyll a (p<0.001), and the interaction between

epipelagic temperature and mesopelagic oxygen concentration

(p<0.05) influenced the mesopelagic R/ETS ratios. These results

suggest a dependence between the respiration rates in the epipelagic

layer during the nighttime (expected to be higher with increasing

chloropyll a) and the mesopelagic R/ETS during the daytime (due

to increased metabolism at their residence depth), supporting the

indirect influence of chlorophyll a on euphausiid metabolism.

Most studies quantifying the carbon transported to the deep

ocean due to zooplankton and micronekton diel vertical migrations

use a conservative R/ETS ratio of 0.5 (e.g. Ariza et al., 2015;

Hernández-León et al., 2019a, 2019c; Sarmiento-Lezcano et al.,

2022). However, it is known that R/ETS values are quite variable,

usually ranging from 0.5 to 1.0, or even reaching ratios over 1

during periods of high primary production or nutrient-rich

conditions (Hernández-León and Gómez, 1996). Using a single,

fixed R/ETS ratio to estimate respiration from ETS measurements

may lead to over- or underestimation of carbon flux, given that the

ratio is not constant. In this context, we obtained a mean R/ETS

value of 0.91 ± 0.19 (n=66) in the epipelagic layer for different

species of euphausiids (Supplementary Table 1), similarly to the R/

ETS value of 0.96 ± 0.29 obtained by Hernández-León et al. (2019b)

for migrant copepods. The estimated mean R/ETS ratio for the

mesopelagic layer (Table 1) obtained in this study was 0.81 ± 0.18,

indicating that respiration rates are higher compared to the

conservative value of 0.5 commonly used. Consequently, a larger

quantity of carbon is likely to be transported to the deep ocean due

to migrant zooplankton and micronekton respiration at depth. The

respiration of the mesopelagic organisms is a key controlling factor

of carbon export to the deep ocean and plays a significant role in

active carbon flux. Understanding the processes and mechanisms of

mesopelagic respiration is crucial for accurately modeling and

predicting the carbon cycle in the ocean.

In summary, we conducted respiration rate measurements on

euphausiids captured in the epipelagic layer at night in areas with

different environmental conditions. The resulting R/ETS ratios,

both in the epipelagic and the mesopelagic layers, were higher

than the conservative value of 0.5 typically used to assess active flux.

We employed a GAMmodel to explore the relationship between the

respiration rates obtained in the epipelagic layer at night and the

environmental variables, revealing the influence of epipelagic

oxygen concentration, chlorophyll a, and the interaction of

epipelagic temperature and mesopelagic oxygen concentration on

euphausiids respiration rates. However, further research is needed
TABLE 2 Estimated coefficients for selected variables from the best-
fitting Generalized Additive Model (GAM) for the response variables.

Respiration rates
(in µl O2·mg prot-1·h-1)

F value p-value

Body weight 9.37 <0.01

s(OxygenEpipelagic Layer) 84.39 <0.001

s(ChlorophyllEpipelagic Layer) 3.59 0.05

s(TemperatureEpipelagic Layer *
OxygenMesopelagic Layer)

49.5 <0.001
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to evaluate the combined effects of the environmental variables on

the respiration rates, as well as R/ETS ratios, in both the epipelagic

and mesopelagic layer, and their influence on the biological

carbon pump.
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