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A neural network algorithm for
quantifying seawater pH using
Biogeochemical-Argo floats in
the open Gulf of Mexico
Emily Osborne1*†, Yuan-Yuan Xu1,2†, Madison Soden1,2,
Jennifer McWhorter1, Leticia Barbero1,2 and Rik Wanninkhof1

1Atlantic Oceanographic and Meteorological Laboratory, Ocean and Atmospheric Research, National
Oceanic and Atmospheric Administration, Miami, FL, United States, 2Cooperative Institute for Marine
and Atmospheric Studies, Rosenstiel School for Marine, Atmospheric, & Earth Science, University of
Miami, Miami, FL, United States
Within the Gulf of Mexico (GOM), measurements of ocean pH are limited across

space and time. This has hindered our ability to robustly monitor and study regional

carbon dynamics, inclusive of ocean acidification, over this biogeochemically

variable sea. The 2021 launch of Biogeochemical-Argo (BGC-Argo) ocean

profiling floats that carry five sensors represented the entry of this particular ocean

observing technology into this region. The GOM BGC-Argo floats have vastly

increased the number of oxygen, nitrate, pH, chlorophyll-a fluorescence, and

particulate backscattering profile observations within the “open GOM” region

(>1,000 m water column depth). To circumvent a set of uncertainties associated

with the collected sensor pH data, regionally trained neural network algorithmswere

developed to skillfully predict GOMpH (total scale, in situ temperature and pressure),

which served as a secondary QC and sensor performance assessment tool. The

GOM neural network pH (GOM-NNpH) algorithms were trained using a selection of

climate quality CTD and bottle data (temperature, salinity, oxygen, nitrate, pressure,

and location) collected as a part of NOAA’s Gulf of Mexico Ecosystems and Carbon

Cruises (GOMECC). Neural network pH estimates were generated using the newly

developed GOMNNpH algorithm and two widely used, globally trained neural

network algorithms (Empirical Seawater Property Estimation Routines (ESPER) and

CArbonate system and Nutrients concentration from hYdrological properties and

Oxygen using a Neural-network (CANYON-B)) to compare algorithm performance

against validation data. The results demonstrate the advanced skill of theGOM-NNpH

in capturing water column variability and robustly reconstructing GOM pH profiles.

Using a combination of concurrent float-measured seawater values of pressure,

temperature, salinity, and oxygen, a GOM-NNpH algorithm was applied to two years

of BGC-Argo float data. Resulting data were used to diagnose the performance of

float pH sensors and to generate a time series of neural network estimated pH based

on the collected float profiles. These algorithms emphasize the value of regionally-

trained neural networks and their utility by the BGC-Argo community. Further, the

GOM-NNpH algorithms can also be applied by a variety of users to estimate pH

values in the open GOM in the absence of direct pH observations.
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1 Introduction

Sustained ocean observations of pH and other ocean carbon

system variables are central to monitoring the anthropogenic

carbon impacts on our oceans (Weller et al., 2019). As a range of

climate-related stressors emerge, inclusive of acidification,

warming, and deoxygenation, they will have cascading

implications for marine organisms, ecosystems, and services they

provide (Doney et al., 2012; Henson et al., 2017). The United

Nations (UN), though the World Meteorological Organization and

the Intergovernmental Oceanographic Commission, governs the

Global Ocean Observing System (GOOS), which is designed to

monitor climate impacts through a blend of numerous ocean

observing approaches and technologies (ships, fixed moorings,

autonomous vehicles and profiling floats) that have varied

capabilities (measurement type, sampling resolution, quality)

(Chai et al., 2020; Roemmich et al., 2021). GOOS recognizes

ocean pH as an Essential Ocean Variable that can be used to

characterize the invasion of anthropogenic carbon and climate

related ocean changes (GOOS, 2019). While the global coverage

of ocean observations has vastly increased over the last several

decades, major gaps in ocean biogeochemical observing, and

particularly for pH, still exist across the globe (Claustre et al.,

2020). The OneArgo vision for launching 1,000 globally distributed

Biogeochemical-Argo (BGC-Argo) floats, capable of returning near

real-time observations of water column pH, will revolutionize our

global-scale understanding of ocean acidification (Roemmich et al.,

2021), allowing major advances towards UN and GOOS goals.

Gaps in ocean pH observations can be particularly prevalent in

marginal seas, such as the Gulf of Mexico (GOM), which are often

not included in large-scale observational campaigns such as GO-

SHIP or have observational data that are not publicly available. The

absence of open GOM (which we define here as >1,000 m water

depth regions) observations was acutely demonstrated following the

Deepwater Horizon oil spill where the lack of pre-event

environmental data hindered a basic assessment of the oil and

dispersant effects ocean biogeochemistry (Passow and Overton,

2021). Intensive efforts to characterize the GOM following this

environmental disaster revealed that the GOM is home to one of the

most diverse mesopelagic (200-1000 m) ecosystems in the world

ocean (Sutton et al., 2017, 2022). Of note, the GOM mid-water

ecosystem is regarded as one of the most “hyper-diverse” regions of

the global ocean, with tight connections to the epipelagic (0-200 m)

and the bathypelagic (>1,000 m) through diel vertical migration and

various life stages (Sutton et al., 2020). The general lack of a

sustained open GOM time series for variables such as oxygen,

nutrients, and inorganic carbon diminishes our capability to

establish baselines of biologically-relevant essential ocean

variables as well as monitoring climate impacts (Pasqueron de

Fommervault et al., 2017; Osborne et al., 2022).

In the GOM, four BGC-Argo floats were deployed in late 2021,

representing the first in situ observations of their kind within the

region. The suite of sensor packages mounted on the GOM

BGC-Argo floats simultaneously measure temperature, salinity,

pressure, oxygen, nitrate, pH, chlorophyll-a, and optical

backscatter over the upper 2,000 meters of the water column on
Frontiers in Marine Science 02
10-day cycles. These observations, if sustained, offer the potential to

detect in situ long-term change and variability by spatiotemporally

characterizing the GOM. The advancement of BGC-Argo sensor

technology to observe water column pH now complement ship

data, and have the potential to vastly increasing the frequency and

spatial coverage of observations not only in the GOM but across the

globe. However, ship-based profiles remain the highest quality data

source for monitoring ocean carbonate chemistry and serve critical

role in float data validation and quality control procedures for the

growing global array of BGC-Argo floats.

Publicly available and high-quality observations of carbonate

chemistry variables within the GOM, particularly pH in the open

GOM, have been highly limited (Osborne et al., 2022). Based on the

Global Ocean Data Analysis Project (GLODAP v2.2023) dataset, 19

unique pH profiles collected between July 2007 and August 2017 are

available in the >2,000 m domain of the GOM (Lauvset et al., 2023).

The World Ocean Atlas database, used to generate the widely used

World Ocean Atlas climatologies, contains 35 ship-based pH

profiles collected between 1933 and 1974 (Boyer et al., 2016).

Collectively, 58 pH shipboard profiles (with potentially some

overlap in data) are available in these widely used ocean

databases. The majority of these profiles belong to the NOAA’s

Gulf of Mexico Ecosystems and Carbon Cruises (GOMECC)

program that has been conducted on roughly four-year intervals

(July-August 2012, July-August 2017, and September-October

2021). These cruises make up an unparalleled basin-wide “climate

quality” carbonate chemistry bottle dataset for the GOM

(Wanninkhof et al., 2013; Wanninkhof and Baringer, 2014;

Barbero et al., 2019, 2024);. Climate quality refers to analytical

uncertainty of approximately 0.003 in pH (Newton et al., 2015), a

precision that is only currently achievable by a very limited number

of laboratories such as NOAA’s Atlantic Oceanographic and

Meteorological Laboratory (AOML), which analyzed samples

collected during GOMECC. While not considered climate quality,

BGC-Argo float pH profiles vastly build out the historical GOM pH

dataset and, at the time of writing, just two years of BGC float

operations in the GOM had already yielded 103 pH profiles.

While innovative, cutting edge, and the first of its kind, pH float

sensors and handling of sensor data continue to be in development.

Measurement of pH via sensor technology is especially challenging

in part due to the very low concentrations of hydrogen ions in

seawater. A census of the global BGC-Argo array showed that

sensor challenges have slowed the growth of the pH dataset

produced by the array, though major advancements in sensor

lifetime and data quality are underway (Stoer et al., 2023). A

recent study in the North Atlantic, showed cases where

considerable differences between float data and validation data

exist, raising important questions and driving active research on

how to best quality control and adjust problematic float pH profiles

(Wimart-Rousseau et al., 2024). Moreover, biases in the quality

correction of concurrent oxygen profiles, which are used to

determine BGC float pH correction factors, can cause significant

biases to be propagated into float pH data, particularly at depth

(Bushinsky et al., 2024). pH quality control assessments have been

challenged by the “pH-pump offset” phenomenon that is observed

in some but not all pH-equipped floats and results from the small
frontiersin.org
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changes in the flow of water over the sensor, impacting the quality

of pH measurements (Johnson et al., 2023). While agreed upon

quality control and correction procedures can address many of

these challenges, inconsistencies in sensor behavior can at times

make correction procedures difficult to implement.

Identifying solutions to these challenges will permit the

maximal use of the revolutionary BGC-Argo time series and its

ability to answer long-standing ocean carbon questions. pH sensor

challenges faced by the particular floats operating in the GOM

BGC-Argo array provided an opportunity to develop a series of

regionally trained machine learning neural network algorithms to

1) assess float pH sensor performance and 2) as an alternate way to

approximate pH using float observations. Due to the strong

relationships that exist between ocean physical (i.e., temperature,

salinity) and biogeochemical (i.e., oxygen, pH, nitrate) parameters

of seawater (e.g., Juranek et al., 2011; Williams et al., 2016; Carter

et al., 2018), unobserved ocean variables can often be accurately

extrapolated from combinations of measured variables (e.g., Bittig

et al., 2018; Carter et al., 2021).

Neural network algorithms have the ability to model complex

non-linear relationships between predictors and estimated

quantities (Hornik et al., 1989; Tu, 1996) that are often observed

in ocean biogeochemistry, particularly carbonate chemistry. Two

recently developed, globally trained, and widely used neural

networks, Empirical Seawater Property Estimation Routines

(ESPER); Carter et al., 2021) and the CArbonate system and

Nutrients concentration from hYdrological properties and

Oxygen using a Neural-network (CANYON-B; Bittig et al., 2018)

are widely used within the BGC-Argo community. ESPER routines

published by Carter et al. (2021) include both locally interpolated

regressions (ESPER_LIR) and neural network algorithms

(ESPER_NN). We chose to assess the performance specifically of

neural network routines, therefore for the remainder of this

manuscript ESPER refers to ESPER_NN algorithms published by

Carter et al. (2021). The 2021 update to the ESPER routines

represent the most recently published advances in ocean-based

neural network algorithms and are based on quality-controlled

observations in the Global Ocean Data Analysis Project

(GLODAP) version 2 (GLODAPv2.2020; Olsen et al., 2020).

GLODAP v2.2020 includes quality-controlled data from 946

cruises, covering the global ocean from 1972 to 2019. ESPER are

a series of feed-forward neural network algorithms that have been

trained using combinations of climate-quality observations of ocean

physics and biogeochemistry across the global ocean (Carter et al.,

2021). CANYON-B (Bittig et al., 2018) is a Bayesian, rather than a

plain feed-forward, neural network approach that incorporates

uncertainty in its training data. Specifically, local (rather than

globally constant) uncertainty values associated with the input

data were to train CANYON-B, permitting a more representative

output uncertainty, which is likely underestimated by plain feed-

forward neural networks (Bittig et al., 2018). Relative to the ESPER

routines, the CANYON-B neural network is trained using older and

therefore smaller version of GLODAPv2 (Key et al., 2015; Olsen

et al., 2016). To date, these estimation algorithms have proven

central to the creation of global data products (Carter et al., 2021;

Sharp et al., 2022; Ito et al., 2024), to filling observational holes in
Frontiers in Marine Science 03
datasets (Carter et al., 2019; Jiang et al., 2019, 2024), and to

adjusting sensor data collected by autonomous sensor platforms

(Maurer et al., 2021).

While globally-trained algorithms can be applied to marginal

seas, the value of a regionally-trained Mediterranean Sea neural

network algorithm demonstrated its enhanced ability to represent

peculiar conditions of this region relative to globally trained neural

networks (Fourrier et al., 2020). While Carter et al. (2021)

intentionally incorporated datasets outside of GLODAPv2.2020 to

include marginal seas (such as the GOM), these data were used in

ESPER validation rather than training procedures and CANYON-B

lacks GOM training and validation data entirely. We assert that it is

possible that larger errors would result when applying global

algorithms to marginal sea regions due to distinct region-specific

physical and biogeochemical dynamics not represented in the

training dataset. For the GOM, these dynamics include items

such as the Loop Current and mesoscale eddies (McWhorter

et al., 2024) and major riverine outflows that reach beyond the

continental margins (Gomez et al., 2024). Using the GOMECC

cruise dataset, we developed a set of Gulf of Mexico Neural Network

pH (GOM-NNpH) algorithms, which are feed-forward algorithms

trained using climate quality GOM-collected shipboard bottle data.

These algorithms skillfully estimate pH, which use four

combinations of predictor variables (latitude, longitude, pressure,

temperature, salinity, oxygen, and nitrate). We compare the

performance of the GOM-trained neural network to ESPER and

CANYON-B to determine the importance of employing a

regionally trained neural network. We then apply our GOM-

NNpH to assess performance and diagnose pH sensor behavior

for the GOM BGC float array.
2 Data and methods

2.1 Biogeochemical-Argo floats

BGC-Argo floats are equipped with five to six sensors including

1) a CTD (conductivity, temperature, and depth), chemical sensors

capable of measuring 2) dissolved oxygen, 3) nitrate, 4) pH on the

total scale (henceforth pH, measured at in situ temperature and

pressure) (Marion et al., 2011; Waters and Millero, 2013), 5) a bio-

optical sensor capable of measuring chlorophyll fluorescence, and

particulate backscatter (Riser et al., 2018; Bittig et al., 2019; Chai

et al., 2020) and 6) a downwelling irradiance sensor capable of

measuring light penetration (Organelli et al., 2017). Four GOM

BGC-Argo floats were deployed in September-October 2021 and in

June of 2023 (see float model and sensor details in Table 1).

Generally, on 10-day intervals, the GOM floats collected a vertical

profile from 2,000 m during its ascent to the sea surface. Between

profiles, the GOM floats have been programmed to park at 1,500 m

(rather than 1,000 m standard park depth) where they passively

drift between cycles. A total of 205 float profiles have been collected

by the GOM array during the first two years of operation (Figure 1).

Sensor failures for two floats (Table 1), diagnosed using the

transmitted sensor engineering files, resulted in abrupt and

dramaticaly drifting pH profiles with clearly unreasonable values
frontiersin.org
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(e.g. values of <5). Excluding these profiles, a subset of 103 pH

profiles (inclusive of pH profiles effected by pH pump offset) out of

the 205 total collected BGC-float profiles have pH data that are

included in this analysis.

Following the delayed mode quality control (DMQC)

methodology of Wong et al. (2024), for float CTD and trajectory

data, we confirmed that no adjustments for our float CTD data

were required. This is unsurprising as typically only 15% of the

“core Argo’’ parameters (i.e. temperature and salinity) require

adjustment. Conversely, DMQC adjustments are always required

for float oxygen, nitrate, and pH sensor data. We determined and
Frontiers in Marine Science 04
applied corrections for float oxygen, nitrate, and pH profiles using

the methodology and Sage-O2 and Sage software developed by

Maurer et al. (2021). For pH and nitrate corrections, we applied a

reference depth of 1480-1520 m and ESPER-NN to estimate local

deep reference values. A series of up to 16 ESPER neural network

equations were applied within the Sage software and the output

with the lowest associated uncertainty is returned and used to

calculate and then apply a reference depth offset. Equation 7 used

in our study (see Table 2 for inputs), is also used by Sage to in part

determine float pH corrections. Following DMQC corrections,

reported float sensor accuracy for in-air corrected or World Ocean
FIGURE 1

GOMECC stations used to develop the GOM-NNpH algorithms. The neural network training dataset includes the GOMECC bottle profiles shown in
navy blue (used for training 70%, validation 15%, and testing 15% of data) and “Tampa Line” GOMECC stations were manually held back and used to
independently validate the performance of the neural network in orange. The number of bottle observations used for training and validation of each
algorithms are summarized in Table 2. The float profile locations (n = 205) collected between September 2021-October 2023 are shown in gray
with the subset of floats with available sensor pH measurements shown in dark gray (n = 103). The black line indicates the 1,000 m isobath, the
“open Gulf” water column depth threshold in this study.
TABLE 1 Summary of the GOM BGC-Argo float history and sensor status.

WMO
ID

Float Model
pH Sensor Model

Deployment Month/
Year

Recovery Month/Year

pH Sensor Status n pH profiles
(included in this study)

4903622 Apex-BGC (UW)
MBARI Durafet

10/2021 Failed reference sensor
Disabled 10/2021

0

4903624 Apex-BGC (UW)
MBARI Durafet

09/2021
12/2023

pH pump offset
Sensor internal short
Disabled 07/2023

62

4903625 Apex-BGC (UW)
MBARI Durafet

09/2021
6/2022

pH pump offset 30

7901009 SeaBird Navis-BGC
SBE Seafet

06/2023 Enabled 11
Number of profiles is based on the DMQC dataset used in this study that spans from September 2021-September 2023.
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Atlas climatology corrected oxygen are 1% (Maurer et al., 2021)

and 3% (Takeshita et al., 2013) of surface oxygen values,

respectively. Oxygen sensor data uncertainty propagate, adding

an additional source of uncertainty, when float oxygen data are

used as input parameters to derive a deep reference value for

nitrate and pH DMQC or algorithm estimated values. Reported

BGC float nitrate and pH sensor accuracies are within 0.5 mmol

kg-1 190 and 0.007 pH units, respectively (Johnson et al., 2017;

Maurer et al., 2021).

Several GOM floats demonstrated pH offset, resulting in profile

shifts at 1,000 m between >0.01 pH units. The offset manifests at

1,000 m due to the pH sensor being plumbed into the CTD pump

line and at this depth the CTD enters into a continuous pumping

mode as it increases sampling resolution for the upper half of the

profile. The proposed DMQC protocol for adjusting pump offset

float profiles (visible offset in pH > 0.01) is to use a shallower

reference depth to a value that is above the pump on depth

(typically 1,000 m), and to flag the deeper portion of the profile

as bad (Johnson et al., 2023). While a correction approach has been

proposed for dealing with pump offset profiles, the root cause of the

sensor behavior has not been fully characterized (Johnson et al.,

2023). Due to magnitude of the offsets observed and the lack of
Frontiers in Marine Science 05
confidence we felt in deriving and applying this correction factor,

we chose to not apply a pump offset correction. Rather, these data

were included to demonstrate the utility of using neural network

approaches to diagnose sensor behavior.
2.2 Neural network algorithm design
and equations

The GOM-NNpH algorithm was developed using MATLAB’s

deep learning toolbox. The architecture was designed to optimally

estimate pH by using inputs of BGC-Argo float data. A neural

network, which is a supervised machine learning model, was

selected to be trained and applied with GOMECC data as it

achieved superior performance over random forest and multiple

linear regression models during algorithm development testing. The

GOM-NNpH is a feed-forward neural network that contains two

hidden layers (Figure 2). A total of four GOM-NNpH algorithms

were trained with various combinations of predictors. The number

of neurons in each hidden layer corresponds to the number of input

parameters utilized in a given algorithm. The predictor variables

within the input layer were given varying weights for each neuron in
FIGURE 2

Schematic of one the GOM-NNpH algorithms (Equation 2) design, which differs from the other algorithms only in the number of input variables in
the input layer (Table 2). The GOM-NNpH algorithm structures include two hidden layers and one output layer that were run in 1,000 iterations.
TABLE 2 The combinations of predictors used to estimate the pH for each of the 4 GOM-NNpH equations.

Predictor 1 Predictor 2 Predictor
3

Predictor
4

Predictor
5

Predictor
6

Predictor
7

n Training/
Validation

R2

Training/
Validation

RMSE
Training/
Validation

GOM-NNpH

Equation 1
Latitude
(Dec Deg)

Longitude
(Dec Deg)

Pressure
(dbar)

Temp
(°C)

Salinity
(PSS)

Oxygen
(mmol/kg)

Nitrate
(mmol/kg)

983 (87%)/
144 (13%)

0.99/0.99 0.006/
0.010

GOM-NNpH

Equation 2
Latitude
(Dec Deg)

Longitude
(Dec Deg)

Pressure
(dbar)

Temp
(°C)

Salinity
(PSS)

Oxygen
(mmol/kg)

NA 1001 (82%)/
222 (18%)

0.99/0.99 0.009/
0.009

GOM-NNpH

Equation 3
Latitude
(Dec Deg)

Longitude
(Dec Deg)

Pressure
(dbar)

Temp
(°C)

Salinity
(PSS)

Nitrate
(mmol/kg)

NA 1022 (85%)/
176 (15%)

0.98/0.98 0.009/
0.009

GOM-NNpH

Equation 4
Latitude
(Dec Deg)

Longitude
(Dec Deg)

Pressure
(dbar)

Temp
(°C)

Salinity
(PSS)

NA NA 1041 (80%)/
257 (20%)

0.98/0.98 0.011/
0.012

ESPER
Equation 7

Latitude
(Dec Deg)

Longitude
(Dec Deg)

Pressure
(dbar)

Temp
(°C)

Salinity
(PSS)

Oxygen
(mmol/kg)

NA 1001 (82%)/
222 (18%)

0.98/0.99 0.012/
0.010

CANYON-B Latitude
(Dec Deg)

Longitude
(Dec Deg)

Pressure
(dbar)

Temp
(°C)

Salinity
(PSS)

Oxygen
(mmol/kg)

NA 1001 (82%)/
222 (18%)

0.98/0.98 0.012/
0.012
fro
The GOMECC dataset was used to train and validate the algorithms. The number of GOMECC data points utilized in the training and validation datasets, and percentage of the total dataset, are
shown for each equation. Validation here refers to the external, independent validation data held back from the neural network training process (which also includes its own randomly selected
validation (15% of data) and testing (15% of data) data during the iterative training process). The goodness of fit (R2) and root mean square error (RMSE) is reported for each training dataset.
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the algorithm design. When training the two-layer networks, data

were randomly divided into three subsets: 70% for training, 15% for

validation, and 15% for testing that were used during the neural

network training process. The Levenberg-Marquardt optimization

algorithm (Hagan and Menhaj, 1994), was used in the training

process with a performance metric of mean squared error. Each

algorithm was trained using 1,000 iterations using the algorithm

specific GOMECC dataset.
2.3 Data source for neural network training
and validation

The GOMECC bottle dataset represents the largest source of

GOM carbonate chemistry data (Wanninkhof et al., 2013;

Wanninkhof and Baringer, 2014; Barbero et al., 2019, 2024), that

have equal data quality to the GO-SHIP Program (Sloyan et al.,

2019). GOMECC has routinely reoccupied a series of cross shelf

transects that terminate in the deep GOM basin, with a growing

number of transect locations having been added to the GOMECC

program in the GOM since its inception. A subset of the GOMECC

data were mined for training and validation of the GOM-NNpH

algorithms based on several criteria (Figure 1). First, only

GOMECC cruises that included spectrophotometric pH

measurements at 25˚C were utilized. This resulted in the

exclusion of GOMECC-1 data (2007) where carbonate system

variables were measured (Dissolved Inorganic Carbon (DIC),

Total Alkalinity (TA), and CO2 fugacity (fCO2) but did not

include direct measurements of pH. Second, we incorporated only

open GOM stations (minimum of 1,000 m water column) to

coincide with the open GOM water masses where BGC-Argo

floats are operating. The exclusion of shallower stations

eliminates complex carbonate system dynamics that exist along

GOM continental margins, particularly the effects of large riverine

outflows (e.g., Huang et al., 2015; Osborne et al., 2022), which

would likely not be well parameterized by the GOMECC dataset.

We chose to hold back the GOMECC Tampa Line stations (n =

4 profiles), which are located off of the West Florida Shelf (Figure 1,

orange symbols). These stations were reoccupied during

GOMECC-2 (July-2012), GOMECC-3 (July-2017), and

GOMECC-4 (September-2021) and were used as an external,

independent validation dataset. Our motive in holding back the

Tampa Line bottle data was to test the performance of the GOM-

NNpH with a region of the GOM where no training data was used in

the algorithm development.

GOMECC data utilized in the GOM-NNpH algorithms include

CTD measured temperature, salinity, and pressure, Winkler

titration oxygen, colorimetric measurements of nitrate made

onboard using an autoanalyzer, and spectrophotometric pH

(measured onboard at 25˚C). Following best practices (Hood

et al., 2010), calibrants and reference material determined

accuracies based on replicates indicated O2 <2 µmol kg-1; Nitrate

< 0.1 µmol kg-1; and pH < 0.002. GOMECC calibrated CTD

temperature and salinity profile uncertainties are within WOCE

standards, 0.002°C and 0.002 PSU, respectively. Shoreside

secondary quality control was executed and WOCE quality
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control flags were applied and only data flagged as ‘good’ or

‘replicate’ were used.

A direct comparison between bottle and float data requires a

conversion of bottle spectrophotometric pH, measured onboard at

25°C and ambient atmospheric pressure, to in situ temperature and

pressure pH. This conversion was completed using CO2Sys

MATLAB with inputs of in situ temperature, salinity, pressure,

phosphate, silicate, dissolved inorganic carbon, and pH (Van

Heuven et al., 2009). Following the recommendations from

Dickson et al. (2007), the constants for carbonic acid K1 and K2

from Lueker et al. (2000), the borate-to-salinity relationship from

Lee et al. (2010), the constant for hydrogen fluoride KF from Perez

and Fraga (1987), and the constant for hydrogen sulfate KS from

Dickson (1990) were used. For the purpose of our study, bottle pH

data that has been converted to in situ temperature and pressure are

exclusively utilized in our study to permit a direct comparison with

sensor pH results.
3 Results

3.1 GOM-NNpH algorithm assessment

The quality of predictions generated by each of the GOM-NNpH

algorithms are reported in terms of goodness of fit (R2) and Root

Mean Square Error (RMSE) between the measured and neural

network predicted values (Table 2; Figure 3). The RMSE is

especially useful, as it is in the same units as the original data and

therefore can be compared directly to measurement uncertainties.

Generally, algorithms with more input predictors tend to perform

better when the predictor measurements are high quality (Carter

et al., 2021). While Equation 3 and Equation 4 show skill when

compared to the training data (Table 2; Figure 3), their performance

is relatively weaker than Equations 1 and 2. This result highlights

the importance of biogeochemical variables as a predictor of pH.

Equation 4, trained using only physical predictors, demonstrates a

negative bias in the upper pH range (>8) in the independent Tampa

Line validation test. Equations 1 and 2 perform comparably and

yielded with the same R2 value (0.99). Equation 1 yields a lower

RMSE (0.006 pH units) relative to Equation 2 (0.009 pH units)

based on the training dataset (Table 2). Validation results based on

the application of Equations 1 and 2 to the GOMECC Tampa Line

validation data yields marginally better results for Equation 2

relative to Equation 1 (RMSE 0.001 pH unit difference, Table 2).

A paired t-test preformed on the neural network pH variances from

the bottle validation (for the available overlapping data n = 144)

indicate that the difference between the two model results is

significant (p<0.001). Performance of Equation 2 based on the

RMSE (Equation 2 = 0.007 pH units versus Equation 1 = 0.010

pH units) and mean absolute error (MAE) (Equation 2 = 0.005 pH

units versus Equation 1 = 0.006 pH units) but suggests that

Equation 2 performs marginally better when applied to the

independent Tampa Line validation dataset. The training of

Equation 2 benefited from a larger training and validation

dataset, due to greater availability of oxygen relative to nitrate

data in the GOMECC data selection. Equation 1 includes validation
frontiersin.org

https://doi.org/10.3389/fmars.2024.1468909
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Osborne et al. 10.3389/fmars.2024.1468909
only from 2017 and 2021 due to no usable nitrate data available

along the Tampa line in 2012. For these reasons, combined with the

lowest BGC-Argo sensor uncertainties being associated with CTD

and oxygen optode data, we chose to apply Equation 2 for to our

GOM BGC-Argo dataset for the remained of the detailed

assessment performed in our study.
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3.2 Comparison GOM-NNpH with globally
trained neural networks

We assessed the performance of the GOM-NNpH relative to two

globally trained algorithms that include a vastly larger training and

validation dataset (10,000’s to 100,000’s data points) (Bittig et al., 2018;

Carter et al., 2021). We compare our GOM-NNpH Equation 2 to

ESPER Equation 7 and CANYON-B (which has parallel input

predictors) using the GOMECC Tampa Line data (Figure 1) that

was held back from the GOM-NNpH training process. Our statistical

results suggest a similar robustness in performance across the

algorithms, with a slightly better RMSE reported for the GOM-

NNpH algorithm (0.009 pH units) relative to ESPER (0.010 pH

units) and CANYON-B (0.012 pH units) (Figure 4). The MAE for

the GOM-NNpH is also marginally lower (0.007 pH units) relative to

ESPER (0.008 pH units) and CANYON-B (0.009 pH units) (Figure 4).

Visualizing the algorithm variations from the observed validation

data for the two algorithms in depth space, shows that there are

notable differences among the GOM-NNpH, ESPER, and CANYON-

B outputs (Figure 5).While the RSME is similar, the pattered biases in

ESPER- and CANYON-B-generated estimates are considerable

compared GOM-NNpH. In the deep portion of the water column

>1500 m, ESPER and CANYON-B both produce a notable positive

bias, that result in pH values that are as much as 0.01 and 0.03 pH

units higher than the GOM observations (Figure 5). ESPER and

CANYON-B demonstrate spurious behavior within the pH minima

(typically ~600 m within the GOM) that also results in a distinctive

positive bias. Differences between GOM-NNpH algorithm outputs

and observations are greatest at the surface, ranging from -0.025 to

0.01 (excluding outliers), which is on par with the variations observed

for ESPER and CAYON-B at the surface (Figure 5).
3.3 Test application of algorithms to
Biogeochemical-Argo float data

Shipboard bottle data provides an independent, high quality

validation data source that can be used to quantify the differences

between sensor and neural network algorithm pH estimates. A

direct comparison of these datasets is possible for the first float

profile when a CTD cast is collected at the time of deployment. For

the neural network assessment, outputs generated by GOM-NNpH

Equation 2, ESPER Equation 7, CANYON-B, which each utilize

latitude, longitude, pressure, temperature, salinity, and oxygen,

were employed. Comparisons using depth-equivalent float and

discrete bottle data, referred to as “matchups”, are reported

following the approach described by Johnson et al. (2017).

There are important sensor-bottle matchup caveats to recognize.

Float sensors can undergo significant drift due to sensor conditioning

during the ~1-5 profile collections, with the greatest offsets often

associated with the first collected profile. Johnson et al. (2017)

attempted to overcome this limitation by matching bottle data

collected at the time of deployment with the second profile

collected by the float ~10 days later. Further, it is possible that

depth-derived matchups that have temporal offsets that may be
FIGURE 3

Visualization of the four GOM-NNpH algorithm performances.
Performance is assessed by comparing the algorithm estimated pH
to; (left) observed GOMECC bottle pH data associated with the 15%
of bottle data held back in the neural network training framework
and; (right) the observed bottle pH associated with the independent
validation dataset (GOMECC Tampa Line, Figure 1 orange circles) that
were excluded from the neural network training process entirely.
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influenced by internal waves that would produce offsets between the

bottle validation data that are the result of natural variability. It is

possible to overcome the influence of internal waves by producing

matchups based on density rather than depth, however we have

chosen to report depth-based matchups in order to compare directly

to previously published results (Johnson et al., 2017; Maurer et al.,

2021). With these caveats in mind, the matchup comparison is the

only means of comparing equivalent sensor, neural network, with

bottle validation data.

CTD validation casts collected at the approximate site and time

of float deployment for BGC-Argo floats 4903624, 4903625, and

7901009 are compared to the first and second profiles collected by

each float (Figure 6; Table 3). Note that BGC-Argo float 7901009

(Navis float) only reached 1,150 m during its first profile, as Navis

BGC-Argo floats undergo an auto-ballasting process that enables

the float to reach its full profiling depth of 2,000 m over the first few

cycles of operation (Figure 6). Less than 24 hours elapses between

the start time of the matchup CTD and the transmission time of the

first float profile at the end of the profile collection, which takes on
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average ~6 hours to collect. The second float profile was collected

approximately 10 days following the first profile. Figure 6

demonstrates the significant differences between the first and

second float sensor pH profiles collected 10 days apart by float

4903625 that are a result of natural variability. Based on a satellite-

based assessment (see method described in McWhorter et al., 2024),

the first profile and validation cast for float 4903625 are collected in

GOM Common Water and over the next 10 days, this float drifted

into the Loop Current where profile two was collected. This

demonstrates that major biogeochemical variability can exists

over small spatial scales in the GOM, necessitating that matchups

compare contemporaneous data collections when possible.

The matchup results show that the neural network pH results

match the validation more closely than sensor pH. The largest

matchup differences are associated with the float sensor data in the

upper 1000 meters of the water column, which appear to increase

with decreasing pressure (Figure 6). Across the full depth range for

all GOM float sensor matchups, a median offset of -0.022 pH units

is observed (Table 3). This is significantly higher than the 0.002
FIGURE 5

Comparison of ESPER Equation 7 (left), GOM-NNpH Equation 2 (center), and CANYON-B (right) algorithm-estimated pH minus bottle validation pH.
This bottle comparison is applied only to the GOMECC Tampa Line bottle data (Figure 1, orange circles) that were excluded from the GOM-NNpH

training process.
FIGURE 4

(Left) ESPER Equation 7, (center) GOM-NNpH Equation 2, and (right)CANYON-B neural network performance based on the GOMECC Tampa Line
observations that were held back (Figure 1 orange symbols) from the GOM-NNpH training process (n observations = 222). Colors correspond to the
measurement depth (m).
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median offset determined in a bottle matchup analysis of globally

distributed BGC-Argo floats (Maurer et al., 2021). Recall the caveat

that sensor conditioning that can occur during the first several float

profile collections may be exacerbating these bottle-sensor offsets.

The convergence of all datasets at depth with the validation data

suggest that sensor conditioning is not the only potential influence

on surface value offsets observed in the sensor dataset. An

additional comparison of the sensor pH differences from the

three neural network pH estimates for the bottle validation

dataset further illustrates a positively correlated pressure-

dependent offset in the sensor pH dataset (Figure 7).

Two of the GOMApex floats, 4903622 and 4903625, demonstrated

pH-pump offset, evidenced by abrupt shifts in pH values between the

~950 and ~1000 dbar (Figure 8). Based on a visual assessment and

comparison with bottle matchup and GOM-NNpH estimates, we

approximate that the pH pump offset causes offsets in the first float
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profiles of -0.014 pH units for 4903624 and 0.021 pH units for 4903625.

Application of these corrections across the upper half of the profile

vastly improves the matchup RMSE for float 4903625 (RMSE 0.009 pH

units), however it only moderately improves the RMSE for 4903624

(RMSE 0.020 pH units). For both floats, but especially for 4903624,

corrected profiles continue to show considerable offsets from the

validation data and neural network results (Figure 8). And float

7901009, which is unaffected by pH pump-offset, also appears to

show inversely related pressure-dependent differences (Figure 6).

The visual inspection approach using profile 1 relies on the

availability of the bottle data, which are limited by the potential for

sensor conditioning-related variations. Therefore, exclusive use of

bottle validation data to identify a float pump-offset correction

factors is an imperfect approach. Further, applying a blanket

correction across the full collection of float profiles is unreliable, as

the pump-offset may not be stable over time. Ideally, profile specific
TABLE 3 Statistical results of the float sensor and GOM-NNpH depth matchup with bottle validation data.

Float
WMO

Profile 1
Lat
Lon

Profile 1
Date
Time

Matchup
Cast
Lat
Lon

Matchup
Cast
Date
Time

Float Sensor-Bottle GOM-NNpH-Bottle

Median SD RMSE MAE Median SD RMSE MAE

4903624 27.368
-89.794

Sep-26-2021
8:46 UTC

27.021
-89.988

Sep-25-2021
7:03 UTC

-0.023 0.021 0.031 0.025 0.006 0.007 0.008 0.007

4903625 26.565
-86.881

Sep-23-2021
9:37 UTC

26.995
-86.998

Sep-22-2021
8:08 UTC

-0.017 0.009 0.019 0.017 -0.001 0.008 0.008 0.006

7901009 25.939
-88.663

Jun-06-2023
16:53 UTC

25.75
88.5

Jun-5-2023
19:30 UTC

-0.045 0.014 0.042 0.039 0.004 0.007 0.007 0.006

All -0.022 0.018 0.030 0.025 0.001 0.008 0.008 0.006
frontie
Mean of the offsets from bottle data, one standard deviation (SD), root mean square error (RMSE) and the mean absolute error (MAE) of the matchups between sensor or neural network output
minus the shipboard bottle validation data. pH data (total scale) are reported per float and collectively for the entire dataset. Note, float 7901009 collected an incomplete depth profile (0-1150
dbar), which biases full profile statistics to the upper water column.
FIGURE 6

Comparison of bottle validation data collected at the time and location of the BGC-Argo float’s first and second profile for floats 4903624 (left),
4903625 (center), and 7901009 (right). Bottle matchup GOM-NNpH (Equation 2), ESPER (Equation 7), and CANYON-B algorithm estimated pH are
also shown. Right panels within each figure show algorithm or sensor pH data minus the bottle data.
rsin.org

https://doi.org/10.3389/fmars.2024.1468909
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Osborne et al. 10.3389/fmars.2024.1468909
pH-pump offsets are determined, which can be generated, for example,

using neural network simulations of pH. Sensor and neural network

profiles can be directly compared in an attempt to diagnose sensor

behavior and potentially quantify an appropriate offset. However,

quantifying the propagation of uncertainty and a general assessment

of various correction approaches is still needed. The current standard

for correcting pH pump-offset, which suggests the shoaling of the

reference depth to <1000m (above the pump on depth) (Johnson et al.,

2023), can introduce other uncertainties during the DMQC process.

Specifically in the GOM, biogeochemical variability related to the Loop

Current can be induced at 1000 m, therefore this cannot be assumed to

be a stable reference depth. For this reason, we choose to not publish a

pH pump-corrected dataset associated with our floats as to not publish

data we are not confident in.

The non-pH pump-offset corrected BGC-Argo sensor data-bottle

validation matchups, collected in association with the first float

profile, are summarized in Table 3. A total n = 43 bottle matchups

are available across our dataset. GOM-NNpH pH estimates were

generated to directly compare NN-bottle to the float-bottle matchup
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results. Based on the mean, there are highly significant differences (t-

test p <0.005) between the algorithmmatchup compared to the BGC-

Argo float pH sensor matchup. Matchup offsets are consistently

greater in the BGC-Argo pH sensor dataset, which are visualized in

Figure 9, demonstrating the considerable float negative pH bias in the

upper 1,000 m of the water column observed for all three floats,

which becomes larger with decreasing pressure.

Based on the bottle matchup assessment for the full GOM BGG

float array, we report a MAE of 0.025 and RMSE of 0.030 pH units

(Table 3). Previously, the pH sensor uncertainty across the large BGC-

Argo arrays has been reported as half of one standard deviation based

on bottle-float matchups (Maurer et al., 2021). This hinges on the

assumption that half of the variability between a bottle validation cast

and the first float profile is the result of natural ocean variability

(Johnson et al., 2017). Based on the error approach reported in Maurer

et al. (2021), the GOM array yields a 0.009 pH unit uncertainty, which

is on par with the reported uncertainty of 0.007 from ameta-analysis of

globally distributed BGC-Argo floats (Johnson et al., 2017; Maurer

et al., 2021). Overall, the GOM-NNpH algorithm yields the most robust
FIGURE 7

Comparison of sensor pH differences from GOM-NNpH (Equation 2), ESPER (Equation 7), and CANYON-B algorithm estimated pH. This comparison
is done using the compiled bottle validation matchup data associated with the first collected float profiles for floats 4903624, 4903625, 7901009.
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FIGURE 9

(Left) Matchup of float sensor pH (orange) and GOM-NNpH (black) with depth equivalent shipboard bottle validation pH (n=43 per matchup). The
dashed red line represents the 1:1 and the solid orange and black lines are the simple linear fit of the float and GOM-NNpH data, respectively.
Statistics for matchups are reported across the full matchup dataset here, and broken out per float in Table 3. (Right) Matchup differences, shown as
float sensor pH (orange) or GOM-NNpH (black) minus bottle matchup pH, plotted in depth space. Note that pH pump-offsets are not corrected in
the float sensor dataset, therefore 2 out of 3 floats have a bias in the upper 1000 of the water column.
FIGURE 8

Based on a visual comparison with the bottle validation and GOM-NNpH results, a pH pump-offset correction factor was estimated for float 4903624
(-0.014) and float 4903625 (-0.021). The uncorrected and corrected profile 1 for each float are shown here in comparison to the bottle validation
and GOM-NNpH.
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matchups, with an RMSE of 0.008 pH units and an adjusted

uncertainty (half of one standard deviation) of 0.004 (Table 3).

We further assess performance of the GOMBGC-Argo pH sensors

by calculating mean pH profiles for all sensor pH profiles and GOM-

NNpH profile estimates per float (Figure 10). Mean pH profiles

represent averaged values across a series of binned depths for all

cycles collected over the lifetime of a given float. This assessment

ingests a much larger dataset (n profiles = 103, n data points = 11870

per data type) relative to the currently available matchup validation

dataset (n profiles = 3, n data points = 43 per data type) and overcomes

the caveat that validation matchups with the first float profiles can be

hindered by sensor conditioning that can yield magnified sensor biases

during the first few float cycles of float operation.

Consistent with the validation matchups, the mean profile

comparisons between sensor pH and GOM-NNpH estimated pH

demonstrate the highest differences between datasets over the upper

1,000 m. For floats 4903624 and 4903625 this is in part due to an

uncorrected pH pump-offset. While application of a tentative pH

pump-offset correction for float 4903625 improves the

sensor-GOM-NNpH alignment, a considerable pressure dependent

difference remains for float 4903624 and is also present for float

7901009. Figure 10 illustrates the particularly prominent pH

pump-offset for float 4903625 and observable but smaller for float

4903624. The results of the mean profile comparison qualitatively

confirm the observations made based on the significantly smaller

validation dataset used in the matchup assessment.
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4 Discussion and
concluding statements

Neural network approaches for estimating non-linear

relationships between various ocean biogeochemical parameters

are capable of skillfully producing ocean datasets, specifically

demonstrated here for the carbonate chemistry parameter, pH.

The GOM is a biogeochemically variable region due to influences

including, but likely not limited to, riverine inputs and the Loop

Current and associated eddies (Gomez et al., 2024; Le Hénaff et al.,

2012; Le Hénaff et al., 2023). Because of these regional influences,

GOM biogeochemistry cannot be optimally parameterized by

neural networks trained exclusively with open-ocean datasets. The

development of a series of GOM-trained neural network algorithms

capable of estimating pH within the open GOM basin, represents an

advancement in machine learning approaches used to study

biogeochemistry in this large marginal sea. Here we offer four

new neural network routines (Table 2; Figure 3), trained with the

largest, high-quality shipboard carbonate chemistry dataset that is

publicly available for the region. These algorithms can be applied to

GOM datasets using various combinations of temperature, salinity,

oxygen, and nitrate observations to estimate open GOM pH (>1,000

m water depths).

A comparison of the newly developed GOM-NNpH algorithms

to two widely used, globally trained neural network algorithms,

ESPER and CANYON-B, demonstrate the increased skill of the
FIGURE 10

Comparison of the mean profiles per float generated for measured float pH sensor and GOM-NNpH estimated pH. Circle symbols indicate sample
depths, which vary between Apex-BGC and Navis float models. Data shown are mean profiles per data type over the lifetime of a float (n indicates
the number of profiles that were averaged to generate a mean profile per float). Mean profiles are generated only for floats and cycles where
reasonable float sensor pH measurements were available, The standard deviation of the mean is shown as shaded area for each data type based on
the statistical results of the GOM array-wide validation matchup generated in this study.
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GOM-trained algorithm for capturing carbonate system variable

within the region. We conclude that the globally trained neural

networks, designed to fit global-scale variability, lack neurons

associated with regionally-specific relationships due to them being

sacrificed in the training process. While ESPER and CANYON-B

produce reasonable values for the GOM, particularly based on

statistical results, these algorithms show patterned biases across

the water column (Figure 5). Our results for the GOM, similar to

Fourrier et al.’s (2020) findings for the Mediterranean Sea, suggest

considerable value of regional neural network routines.

For our application to the GOM BGC-Argo array, we employed

GOM-NNpH Equation 2 (inputs: latitude, longitude, pressure,

temperature, salinity, and oxygen), based on this algorithm being

trained and validated with the largest available biogeochemical

dataset and its utilization of float temperature, salinity, and oxygen

data. Argo mounted CTDs and oxygen optodes have the longest

history of field deployments to date, and by extension the greatest

sensor and QC protocol development, and are associated with the

lowest measurement uncertainties. Compared to a meta-analysis of

globally deployed BGC-Argo floats that reported a pH sensor

uncertainty of 0.007 pH units, we report an uncertainty of 0.009

(RMSE 0.030 pH units) for the GOMBGC-Argo float array (Table 3).

Visualization of the float pH with validation data demonstrates

considerable, differences for the GOM array floats that we connect

to pH pump-offset and apparent pressure-dependent effects. Despite

the presence of pH pump-offsets in two out of three of our floats, we

visually approximate a correction based on a comparison to bottle

and GOM-NNpH outputs, but choose to not apply this correction to

our full float dataset due to our lack of methodological confidence we

have in doing so. While preliminary protocols for corrections exist,

the mechanism driving pH-pump offset is currently not well

understood and proposed correction protocols present challenges

for the GOM. Further, despite the tentative pH pump-offsets

corrections applied to our dataset, considerable differences between

float pH and bottle pH remained.

A comparison of GOM-NNpH (Equation 2) to the GOM

validation dataset demonstrates robust performance, resulting in

uncertainty of 0.004 pH units (RMSE 0.008 pH units) (Table 3).

Prompted by the application to a new and growing dataset of BGC-

Argo float observations within the region, the GOM-NNpH

algorithms serve two functions: 1) to skillfully estimate pH

profiles using combinations of (non-pH) float sensor data in the

event of a failed sensor and 2) as a secondary QC method to

compare the pH values from floats with working pH sensors.
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