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Lag-WALS approach
incorporating ENSO-related
quantities for altimetric
interannual SLA forecasts in the
South China Sea
Pengfei Yang1 and Hok Sum Fok1,2*

1MOE Key Laboratory of Geospace Environment and Geodesy, School of Geodesy and Geomatics,
Wuhan University, Wuhan, China, 2Hubei Luojia Laboratory, Wuhan, China
A novel approach using lag weighted-average least squares (Lag-WALS) is

proposed to forecast the interannual sea level anomaly (SLA) in the South

China Sea (SCS) using lagged equatorial Pacific El Niño–Southern Oscillation

(ENSO)-related quantities. Through empirical orthogonal function (EOF) and

wavelet coherence method, we first investigated the relationships between sea

surface temperature (SST) and SLA (both steric sea level (SSL) and non-steric sea

level (NSSL)) in the equatorial Pacific, and then explored their cross-correlations

with the interannual SCS SLA. A robust alignment was found between the first

spatiotemporal mode of EOF (i.e. EOF1 and first principal component (PC1)) from

SLA/SSL and SST across the equatorial Pacific, both of which exhibited a typical

ENSO horseshoe spatial pattern in EOF1. Good consistency between the SCS SLA

and the SST/SLA/SSL PC1 was revealed, with the SCS SLA lagging behind the SST,

SLA, and SSL by several months at most grid locations. In contrast, the NSSL

exhibited large disparities with the SST PC1 or the interannual SCS SLA. The lag-

WALS model performed better at the SCS boundaries than in the central region,

with an average STD/MAE/Bias (RMSE/MAE/Bias) for internal (external) accuracies

of 1.01/0.80/–0.002 cm (1.39/1.13/–0.08 cm), respectively. The altimetric-

observed SLA seasonal patterns agreed with the Lag-WALS model-forecasted

SLA. A similar situation applies to regionally-averaged SLA time series. These

results underscore the ability of the Lag-WALS model to accurately forecast the

SCS SLA at the interannual scale, which is crucial for early warning of abnormal

sea level changes in the SCS.
KEYWORDS

sea level anomaly, lag-WALS model, South China Sea, ENSO-related quantities,
autocorrelation
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1 Introduction

Global climate change is inextricably linked to sea level

variability (Han et al., 2016; Suursaar and Kall, 2018; Hamlington

et al., 2020), which impacts socioeconomics and human well-being

(Su et al., 2024). The Working Group I report of the IPCC Sixth

Assessment indicates that sea level rise accelerated from 2006 to

2018. The irreversible upward global mean sea level trend is

anticipated to rise by 0.15–0.23 m by 2050 (Zhang et al., 2022).

The resulting changes in coastal conditions put coastal residents’

lives and property at risk, as well as resulting in soil salinization,

reduced agricultural production, and worsening ecological

conditions (Cheng et al., 2015; Griggs and Reguero, 2021). China,

a major maritime country, has over 70% of its large and medium-

sized cities along the coast, supporting 42% of its population and

over 60% of its gross domestic product (Fang et al., 2017; Li C. et al.,

2023). The South China Sea (SCS), the largest marginal sea in

China, hosts numerous coastal cities and dense populations, making

it a typically vulnerable region susceptible to rising sea levels

(Hallegatte et al., 2013; Li et al., 2018). Therefore, predicting and

monitoring sea level variations in the SCS are paramount

scientifically and practically for reducing disaster risk in

coastal cities.

After correcting for inverted barometric, ionospheric,

tropospheric, and tidal effects, the sea level anomaly (SLA) is the

difference between the instantaneous and mean sea levels observed

by altimetric satellites (Xi et al., 2019a; Sorkhabi et al., 2021). Since

the 1990s, satellite altimetry has been employed to obtain SLAs with

accuracies of less than 2 cm for monitoring global sea level changes

(Chen et al., 2017; Cazenave et al., 2018) and, hence, forecasting

them (Kurniawan et al., 2014). In general, there are two kinds of

approaches for SLA prediction: single and hybrid. The single

approach involves one processing technique for SLA prediction,

such as autoregressive integrated moving average (ARIMA) (Zheng

et al., 2022), artificial neural networks (ANNs) (Makarynskyy et al.,

2004; Imani et al., 2014a), evolutionary support vector regressions

and gene expression programming (Imani et al., 2014b), and the

copula approach (Yavuzdoğan and Tanır Kayıkçı, 2021).

The hybrid approach involves two or more processing

techniques for improving SLA prediction. For example,

Niedzielski and Kosek (2009) proposed a polynomial harmonic

hybrid model for forecasting the global mean SLA, whereas

Srivastava et al. (2016) combined exponential smoothing state‒

space models and ARIMA to predict sea level rise in the Arabian

Sea. Fu et al. (2019) integrated empirical mode decomposition,

singular spectrum analysis, and least squares analysis into SLA

prediction. Sun et al. (2020) proposed a seasonal ARIMA and long-

and short-term memory (LSTM) combination model to predict sea

level changes in the China Sea. Similarly, Zhao et al. (2021)

employed singular spectrum analysis and an LSTM combination

model to predict sea level trends in the Yellow Sea. Altunkaynak

and Kartal (2021) investigated the prediction performance of the

discrete wavelet transform combined with a support vector

machine, k-nearest neighbor, and decision tree to predict sea level

in the Bosphorus Strait. Song et al. (2021, 2022) employed signal
Frontiers in Marine Science
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decomposition and machine learning methods to predict daily and

minute sea levels, respectively. Notably, many of these models rely

solely on the SLA or its decomposed signals to establish the model.

However, no auxiliary (or a-priori) influencing quantities are

considered or eventually incorporated into the model.

Located in the East Asian monsoon region, the SCS SLA is

significantly affected by tropical ocean‒atmosphere interactions

under El Niño‒Southern Oscillation (ENSO) variability (Rong

et al., 2007; Soumya et al., 2015; Cheng et al., 2016; Xiong et al.,

2023). In particular, the variability in the interannual SLA in the

SCS was shown to be driven and modulated by ENSO (Soumya

et al., 2015), with a negative correlation between the two (Han and

Huang, 2009; Peng et al., 2013). Notably, the impact of ENSO on

SLA is manifested primarily through atmospheric circulation

changes and the intrusion of the Kuroshio current (Rong et al.,

2007, 2009; Xi et al., 2019b; Xiong et al., 2023; Yang et al., 2024),

resulting in a lagged response of the SCS SLA to ENSO. For

example, Rong et al. (2007) and Soumya et al. (2015) reported

maximum cross-correlations of 0.78 and 0.75 between the

interannual SLA and Southern Oscillation Index (SOI) (i.e., an

ENSO index), with the SOI leading the SLA by 4 and 2 months,

respectively. Similarly, Peng et al. (2013) determined a maximum

cross-correlation of 0.89 between the altimetry interannual SLA and

the Niño 4 index, with the Niño 4 index leading the SLA by 6

months. Cheng et al. (2016) reported a significant correlation

between interannual SLA and the Niño 3.4 index, with the Niño

3.4 index leading SLA the by 6 months during El Niño decaying

summers. Xiong et al. (2023) reported that prolonged El Niño (La

Niña) events result in a significant increase (decline) in the SLA in

the SCS, with a lagged response of SLA changes to ENSO. In

general, interannual variations in SLA in the SCS are closely linked

to ENSO, with SLA displaying a lagged response. Thus, utilizing

ENSO-related quantities and their time lag with the SCS SLA to

predict the interannual SLA in the SCS might offer a novel approach

to early warning of abnormal sea level changes in the SCS.

This study introduces a novel weighted average least squares

model incorporating auxiliary information that considers time lag,

called Lag-WALS, to predict the interannual SLA in the SCS. First,

using the empirical orthogonal function (EOF), the spatiotemporal

pattern of ENSO-related oceanic quantities is obtained for the

lagged properties against the interannual SCS SLA to determine

the focus regressors of the Lag-WALS model. Autoregressions of

the interannual SCS SLAs are added to serve as auxiliary regressors

for the Lag-WALS model construction. Finally, the model’s

performance is evaluated both internally and externally by

comparing it with the altimetric-observed SLA, offering an

alternative for early monitoring of sea level changes in the SCS.

The manuscript is structured as follows: Section 2 provides an

overview of the datasets used in the study. Section 3 presents the

study’s flowchart and details the data analysis methodology

employed. Section 4 analyzes equatorial Pacific oceanic quantities,

their associations with the SCS SLA, and the autocorrelation of time-

varying interannual SCS SLA to determine modeling parameters.

Section 5 outlines the model construction and evaluates its accuracy.

Finally, Section 6 summarizes the key outcomes.
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2 Study area and data description

2.1 Study area

The SCS is a semi-enclosed maritime area in the western Pacific

marginal sea that runs from northeast to southwest. This region has

abundant natural resources, making it one of the three largest

marginal seas in Asia. Resembling an irregular rhombus in shape, a

stepped deepening trend emanates from the peripheral coasts

toward the center, with the maximum depth reaching 5559 m

and an average depth of approximately 1212 m (Zhu et al., 2019;

Chen et al., 2021). The northern boundaries of the SCS begin at the

line linking Nanao Island in Guangdong Province and E-luanbi on

Taiwan Island. They extend southward to Sumatra Island and

Kalimantan Island. Its western boundary is defined by the

Indochina Peninsula and the Malay Peninsula, whereas its eastern

boundary extends to the Philippine archipelago. The northeast SCS

is connected to the East China Sea through the Taiwan Strait, its

eastern part connects with the Pacific Ocean through the Bashi

Strait and the Bahrain Strait, and its southern portion is adjacent to

the Indian Ocean through the Malacca Strait (Jenner and Thuy,

2016; Sun, 2016). All inland areas adjacent to the SCS are

economically developed regions in China. Coastal cities are
Frontiers in Marine Science 03
significantly affected by any abnormal changes in sea level.

Therefore, the SCS was selected as the study area. The location

and topographic characteristics of the SCS are illustrated

in Figure 1.
2.2 Data description

From the Archiving, Validation, and Interpretation of Satellite

Oceanographic (AVISO) data center, we obtained monthly SLA

data gridded at 0.25°for 1993–2022, which were compiled from

various satellite altimetric observations (e.g., T/P, Jason-1/2, ERS-1/

2, and Envisat). To comprehensively analyze each component of

SLA, monthly and 1°-gridded data products of the steric sea level

(SSL) at 0–300 m depths from 1993 to 2022 were also employed.

The SSL data products were calculated by integrating temperature

and salinity data by Cheng et al. (2017). The datasets are publicly

accessible at http://www.ocean.iap.ac.cn. Another component of

SLA is the non-steric sea level (NSSL), which is calculated by

subtracting the inverted barometer correction from gravity

recovery and climate experiment (GRACE)-derived ocean bottom

pressure data (Willis et al., 2008). For the calculation of ocean

bottom pressure, the GRACE Level-2 Release 06 (RL06) Stokes’
FIGURE 1

Geographical location of the SCS and gridded points of altimetry SLAs distributed over the SCS (A) and the topography of the SCS (B, C) in
this study.
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coefficients from the Center for Space Research (CSR), the

GeoForschungsZentrum Potsdam (GFZ), and the Jet Propulsion

Laboratory (JPL) from 2003 to 2015 were employed. After the low-

degree coefficients were corrected via satellite laser ranging data [cf.

Swenson et al. (2008)] for detailed procedures), the ocean bottom

pressure was destriped and Gaussian spatially-smoothed at 500 km

to minimize uncertainties (Swenson and Wahr, 2006). The three

datasets were then averaged to minimize noise further and

resampled into 1°×1° gridded solutions for calculating the NSSL.

The sea surface temperature (SST) dataset provided by the Met

Office Hadley Centre, known as HadISST, which has a 1°×1° spatial

resolution from 1993 to 2022, was also utilized. These datasets

underwent reconstruction via a two-stage reduced-space optimal
Frontiers in Marine Science 04
interpolation procedure, followed by the superposition of quality-

improved gridded observations onto the reconstructions to restore

local detail (see Rayner et al. (2003) for details). The data can be

accessed at https://www.metoffice.gov.uk/hadobs/hadisst/.

In this study, the satellite-altimetric SLA was resampled to 1°×1°

to unify the spatial resolution with other datasets, with grid points

within the SCS shown in Figure 1.
3 Methods

To elaborate on the framework of our study, a flowchart

depicting the experimental steps is summarized in Figure 2. The
FIGURE 2

Flowchart for SLA forecast via the Lag-WALS approach.
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steps consisted of three main parts: (1) data analysis; (2) model

establishment; and (3) accuracy evaluation. As part of the data

analysis, the empirical orthogonal function (EOF) was employed to

decompose the ENSO-related oceanic quantities (i.e., NSSL, SSL,

SLA, and SST) in the equatorial Pacific (Section 3.1). Wavelet

coherence (WCO) was utilized to highlight the relationship of the

first EOF temporal model (PC1) time series between NSSL/SSL/SLA

and SST (Section 3.2). Cross-correlation revealed the lagged

relationship between NSSL/SSL/SLA/SST PC1 and the SCS

interannual SLA (Section 3.3). On the basis of the above results,

the PC1 time series of SSL/SLA/SST and interannual the SCS SLA at

the adjacent 1–3 months were identified as focus and auxiliary

regressors for training the model in this study. Additionally, the

Lindeman, Merenda and Gold (LMG) method for relative

importance analysis was used to calculate the weights of SSL/

SLA/SST to the SCS interannual SLA for the weighted average

time lag (Dt). Finally, the Lag-WALS model parameters were

estimated through the weighted-average least squares (WALS)

procedure, thereby predicting the interannual SLA in the SCS.

Details of the WALS and Lag-WALS model calculation steps are

provided in Section 3.4 and Section 5.1, respectively. Due to

limitations in the GRACE-derived NSSL data time span, the

period for the data analysis part was uniformly set to 2003–2015.

For model establishment, the data period was unified during 1993–

2022 because the interannual variation of the GRACE-derived

NSSL was negligible.
3.1 Empirical orthogonal function

EOF, or principal component analysis (PCA), is a common

method for extracting dominant spatiotemporal modes in gridded

meteorological and climate datasets (Zou et al., 2021). To prevent

the reordering of EOF modes caused by trends and seasonal

variability, the trend and seasonal signals for each equatorial

Pacific variable (SST, SLA, SSL, and NSSL) were removed

beforehand via least squares (LS) fitting. As a result, the PC1 time

series for SST, SLA, SSL, and NSSL in the equatorial Pacific were

obtained, reflecting their ENSO representative characteristics

(Ashok et al., 2007). The process of EOF decomposition involves

two steps (Hannachi et al., 2007):

First, the spatiotemporal gridded data are represented in matrix

form as follows:

W =

w11 w12 …

w21 w22 …

⋮ ⋮ ⋱

w1n

w2n

⋮

wm1 wm1 … wmn

2
66664

3
77775 (1)

Where wmn represents the observed values of the SST, SLA, SSL,

and NSSL at the corresponding position m and time n. Then, the

anomaly field, Wx , can be defined as:

Wx = W − PT 1
N
PWT

� �� �T

(2)
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where P is the identity matrix composed of N ones in

the diagonals.

The covariance matrix D is then calculated as:

D = Wx �WT
x (3)

Finally, the spatial modes and time coefficients are obtained

from the eigenvalues and eigenvectors of covariance matrix D.
3.2 Wavelet coherence

WCO is the covariance strength of two time series in the time‒

frequency domain calculated by wavelet coefficients. It provides a

clear and intuitive representation of the linear or nonlinear

correlation between two time series over time and frequency

(Grinsted et al., 2004). In this study, we applied WCO to explore

the relationship between SLA/SSL/NSSL PC1 (x) and SST PC1 (y).

The wavelet coherence between two time series x and y is

represented as:

R2
n(s) =

S(s−1Wxy
n (s))

�� ��2
S s−1 Wx

n(s)j j2� � � S s−1 Wy
n(s)

�� ��2� � (4)

where s is the scale; S is the smoothing operator; Wx
n(s) and

Wy
n(s) are the continuous wavelet transforms of time series x and y,

respectively.Wxy
n (s) is a cross-spectrum of the x and y time series. A

more detailed description can be found in Grinsted et al. (2004).
3.3 Cross-correlation

To reveal the lagged effect and strength between the SCS SLA

and equatorial Pacific oceanic variables (i.e., SST, SLA, SSL, and

NSSL), the cross-correlation coefficient (Yang et al., 2024), R(t),
between the SCS SLA (X) and equatorial Pacific oceanic variables

(Y) is formulated as:

R(t) =
d12(t)ffiffiffiffiffiffiffiffiffiffiffiffi
d11d22

p (5)

where d12 is the cross-covariance of X and Y; d11 and d22 are the
variances of X and Y; and t is the time lag between X and Y, ranging

from –12 to 12 months in our study.
3.4 Weighted-average least squares

WALS is a relatively novel model averaging method that is

designed to address the model uncertainty resulting from model

selection introduced in 2010 (Magnus and De Luca, 2016).

Compared with the Akaike information criterion (AIC), the

Bayesian information criterion (BIC), the combined criterion

(ABIC) (Fok and Liu, 2019; Liu et al., 2019) or frequency theory

alternatives, employing semiorthogonal transformations of

regression equations (Magnus et al., 2010; Rahman et al., 2020)
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substantially reduces the computational burden. The estimation

process of WALS includes the following steps (detailed in Magnus

et al. (2010) and Magnus and De Luca (2016)):

1. Set up a linear regression model with the target data, y

(n� 1), expressed as:

y = X1b1 + X2b2 + e (6)

where X1 is the n� p focus regressor matrix, X2 is the n� q

auxiliary regressor, e ∼N(0,  s 2In) is the n� 1 random error

vector, s 2 represents the error variance, In is an n� n identity

matrix, and b1(p� 1) and b2(q� 1) are unknown parameter

vectors to be estimated in the following steps.

2. Calculate a projection matrix M as follows:

M = In − X1(X
0
1X1)

−1X0
1 (7)

whereM is a symmetric matrix. Thus, we can defineMX2 whose

columns are orthogonal to the columns of X1. The columns ofMX2

can be orthogonalized through (MX2)
0(MX2) = X 0

2MX2, followed by

diagonalizing X0
2MX2 through

P0X0
2MX2P = L (8)

where P is an orthogonal q� q matrix, and L is a diagonal

matrix whose diagonal elements are the corresponding eigenvalues.

Through P and L, we can define a new orthogonalized auxiliary

regressor X*2 and a new regression parameter vector b*2 as in

Equation 9.

X*2 = X2PL−1=2

b*2 = L1=2P0b2
(9)

where X*2 b*2 = X2b2 and X*2
0MX*2 = Iq. Thus, Equation 6 can

also be expressed as y = X1b1 + X*2 b*2 + e, in which b1 and b*2 are to

be estimated.

3. Select the k-th model selection for the auxiliary variables such

that mk is expressed as

mk = X1b1 + X*2 kb*2 k + e
n o

(10)

where X*2 k = X*2Vk and k = 1,⋯ 2q. Vk = diag(vk1,⋯, vkj)

is an q� q diagonal matrix with diagonal elements vkj ∈
0, 1f g,   j = 1,⋯, q. Then, the least squares estimators of b1 and

b*2 under model mk are given by Equation 11.

b̂ 1k = (X 0
1X1)

−1X 0
1y − Q*Vkb̂ *2

b̂ *2k = VkX*2
0My

(11)

where Q* = (X0
1X1)

−1X
0
1X*2 . Because e ∼N(0,  s 2In), the joint

distribution of b̂ 1k and b̂ *2k is expressed as follows:

b̂ 1k

b̂ *2k

 !
∼N

b1 + Q*(Iq − Vk)b̂ *2k

Vkb̂ *2k

0
@

1
A,s 2 (X

0
1X1)

−1 + Q*VkQ*
0
−Q*Vk

−VkQ*
0

Vk

 !0
@

1
A (12)

4. Define the WALS estimator of b1k as

b1 = o
K

k=1

lkb̂ 1k (13)
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where the weight function lk ≥ 0 is assumed to be satisfied with

the following conditions:

o
k

lk = 1  lk = lk b̂ *2 ,  s
2

� �
(14)

where s2 is the estimator of s2 in the unrestricted model (all

auxiliary variables are used). b̂ *2 = X*2
0My. Under this assumption,

the WALS estimator of b1k can then be written as

b1 = (X0
1X1)

−1X0
1y − Q*V b̂ *2

V =o
k

lkVk
(15)

5. Let ĥ = b̂ *2=s , which implicitly implies that ĥ j ∼N(hj, 1),    

j = 1,⋯, q. The Laplace estimator �hj is subsequently calculated via

Equation 16 to determine how hj must be estimated.

�hj = E(hjjĥ j) =
1 + h(ĥ j)

2
(ĥ j − c) +

1 − h(ĥ j)

2
(ĥ j + c) (16)

wh e r e h(ĥ j) =
e−cĥ j f(ĥ j−c)−e

cĥ j f(−ĥ j−c)

e−cĥ j f(ĥ j−c)+e
cĥ j f(−ĥ j−c)

a n d f d eno t e t h e

cumulative distribution functions of the standard normal

distribution. c = log 2 (Seya et al., 2014). Define �N = (�h1,⋯, �hq)
0.

6. According to the above processing, the WALS estimators of

b2 and b1 are presented as follows:

b2 = sPL−1=2 �N  b1 = (X 0
1X1)

−1X 0
1(y − X2b2) (17)

In this study, the focus and auxiliary variables are chosen to be

the lagged equatorial Pacific ENSO-related quantities and the SCS

interannual SLA in three adjacent months, forming a Lag-WALS

model for the parameter estimation (c.f., Section 5.1).
4 Analysis of equatorial Pacific ENSO-
related quantities and their
associations with SCS SLA

4.1 Comparing time series between SST
and SLA/SSL/NSSL in the equatorial Pacific

Following previous studies, we performed an EOF analysis of SST

in the equatorial Pacific, revealing that the first EOF mode represents

the conventional ENSO phenomenon (Ashok et al., 2007; Li et al.,

2019). The same procedure is applied to the SLA, SSL, and NSSL

(Figures 3A–E). The first spatial model (EOF1) of SLA and SSL

exhibits strong similarities with SST, and a typical ENSO horseshoe

spatial pattern in SST can be revealed in EOF1 of SLA and SSL

(Figures 3A–C). Furthermore, the changes in the first EOF temporal

mode (i.e., PC1) also confirm the consistent variability of SLA/SSL

with SST, with a high correlation coefficient of 0.93 (Figure 3E). In

contrast to SLA and SSL, NSSL PC1 displays large disparities, yielding

a low correlation coefficient of 0.39 with SST in addition to the spatial

pattern manifested from NSSL EOF1 (Figures 3D, E). This suggests

weak or even no ENSO-related signals in NSSL.

To confirm the above speculation, WCO spectra between the

PC1 time series of SST and SLA (SSL or NSSL) were computed
frontiersin.org
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(Figures 4A–C). Strong (weak) coherences between SST and SLA/

SSL (NSSL) are exhibited in the WCO spectra with statistical

significance higher than 95% at timescales between 1 and 4 years.

This can be explained by the consistent phase (i.e., direction)

between the SST and SLA/SSL vectors, which has common

interannual variability (Figures 4A, B). The NSSL and SST,

however, differ by approximately –90° in phase, implying that

both are orthogonal to (i.e., independent of) each other

(Figure 4C). This confirms that weak or even no ENSO-related

signals are present in NSSL.
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4.2 Analysis of the cross-correlation
between the SST/SLA/SSL/NSSL PC1 and
SCS SLA

The mechanism of the influence of ENSO on the SCS SLA is

believed to involve atmospheric circulation and the intrusion of the

Kuroshio Current (Rong et al., 2007, 2009; Xi et al., 2019b; Xiong

et al., 2023; Yang et al., 2024). Given the above coherence between

the PC1 time series of the equatorial Pacific SLA/SSL/NSSL and

SST, we further tested the consistency via cross-correlation analysis
FIGURE 3

Spatiotemporal pattern of the first mode of SST, SLA, SSL, and NSSL in the equatorial Pacific based on the EOF method. (A–D) are the first modes of
the spatial distributions of SST, SLA, SSL, and NSSL (i.e., EOF1), respectively. (E) Is the first mode of the time series of the time coefficients of SST,
SLA, SSL, and NSSL (i.e., PC1).
FIGURE 4

WCO analysis between SST PC1 and SLA PC1 (A), SSL PC1 (B), and NSSL PC1 (C). The arrow in an up direction (i.e., p/2) means that the SST leads the
SLA/SSL/NSSL time series by 3 months.
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between the equatorial Pacific SLA/SSL/NSSL/SST and the

interannual SLA in the SCS. We found that the spatial pattern of

the maximum cross-correlation between the SCS SLA and SLA/SSL

PC1 (NSSL PC1) was similar (different) to (from) that between SST

PC1 (Figure 5). This finding indicates that the time series of the

equatorial Pacific SLA and SSL PC1 can affect the interannual SCS

SLA, as can the SST PC1. The resulting spatial distribution of the

maximum cross-correlation between the SST/SLA/SSL PC1 and the

SCS SLA indicates a significant impact of ENSO on the southeastern

coastal boundaries of the SCS, which is consistent with the findings

of Soumya et al. (2015). This characteristic may be attributed to the

geographical setting in which the eastern boundary of the SCS is

adjacent to the western Pacific, where ENSO-related coastal Kelvin

waves can propagate to the southeastern SCS through the Mindoro

Strait, inducing negative (positive) SLA variations during El Niño

(La Niña) events (Liu et al., 2011). A relatively weak correlation was

found between the SST/SLA/SSL PC1 and the SCS SLA in the

interior SCS, which may be related to the wind-stress curl anomalies

associated with ENSO and local wind patterns that can dampen the

SLA variability in the central SCS (Cheng et al., 2016). During the
Frontiers in Marine Science 08
mature phase of El Niño in winter, an anomalous anticyclone

dominates the SCS (Wu et al., 2003), leading to downwelling in

the central basin where the SLA is expected to increase. The

opposite situation occurs during La Niña events (Wang et al.,

2018). Additionally, the topography of the SCS, characterized by

an abyssal plain with a mean depth of 4300m, may also influence

the spatial distribution of this correlation (Wang et al., 2018).

Figure 6 also shows the spatial patterns of the time lag

corresponding to the maximum cross-correlation. Again, we find

that the time lag pattern between SLA/SSL PC1 (NSSL PC1) and the

SCS SLA is consistent (inconsistent) with that of SST PC1. This

further demonstrates that the PC1 time series of the SLA and SSL

almost synchronized with the SST response before affecting the SCS

SLA. This is consistent with the wavelet coherence analysis results

illustrated in Figure 4. This suggests that the SLA and SSL could be

indices equivalent to SST in revealing the time lag between ENSO-

related signals and the interannual SCS SLA.

In summary, a significant correlation between the SCS SLA and

SST/SLA/SSL PC1 is found, with most grid points showing the

maximum cross-correlation when the SCS SLA lags the SST, SLA,
FIGURE 5

Spatial distributions of the maximum cross-correlations between SCS SLA interannual variations and SST PC1 (A), SLA PC1 (B), SSL PC1 (C), and NSSL
PC1 (D).
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and SSL by several months. It is anticipated that interannual sea

level variations in the SCS can be predicted in advance on the basis

of ENSO-related SST/SLA/SSL variations. Therefore, the SST, SLA,

and SSL PC1 time series were used to establish the SCS interannual

SLA prediction model in Section 5.1.
4.3 Analysis of the temporal
autocorrelation of the interannual SCS SLA

The interannual SCS SLA also affects itself by the previous months

(Fu et al., 2019; Zhao et al., 2021). In other words, an autoregressive

time lag pattern exists for the interannual SLA in the SCS. To illustrate

this, the cosine (latitude) weighting scheme was employed to calculate

the spatially averaged interannual SCS SLA time series followed by

calculating its time autocorrelation. Figure 7 depicts the correlation

matrix of the average interannual SCS SLA in the adjacent months. We

found that the interannual SCS SLA yields high time autocorrelation

coefficients for the adjacent three months (i.e., > 0.8), indicating a

moderately strong relationship between the current interannual SLA

and the previous three months. The shorter the time interval, the
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greater the autocorrelation. This implies the potential use of the

interannual SLA from the previous month for forecasting the future

interannual SLA. Therefore, the interannual SLA for the past three

months was used as an auxiliary variable to constrain the forecasted

interannual SCS SLA in the Lag-WALS model.
5 Establishing the Lag-WALS model
and evaluating its accuracy

5.1 Lag-WALS model

In this study, we incorporated the autoregressive property of the

SCS SLA and the time lag between each equatorial Pacific ENSO-

related SST/SLA/SSL PC1 and SCS SLA into a Lag-WALS model

based on theWALSmethod to forecast the interannual SCS SLA. The

specific steps of establishing the Lag-WALS model are as follows:
1. Deseasonalize the SLA time series per grid to calculate the

interannual SLA (SLAinter) in the SCS via least-squares.
FIGURE 6

Spatial distributions of lags times between SCS SLA interannual variations and SST PC1 (A), SLA PC1 (B), SSL PC1 (C), and NSSL PC1 (D). The positive
(negative) value represents the SCS SLA lag (lead).
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Fron
2. Determine the weighted-average time lag (Dt) by first

calculating the relative weight between each equatorial

Pacific SST/SLA/SSL PC1 and the SCS SLA via the LMG

relative importance algorithm (find Grömping (2007) for

details), followed by simple weighted averaging.

3. Establish the Lag-WALS model through ENSO-related

quantities in the equatorial Pacific (i.e., SST, SLA, SSL PC1;

as focus regressors) and SCS SLAinter at the adjacent 1–3

months (i.e., auxiliary regressors). Data from 1993–2019

(2020–2022) were selected as training (testing) data for

model establishment and normalized before establishing

the model to eliminate the influence of data magnitude and

unit differences. The Lag-WALS model framework is

as follows:
SLAint er(t) = ( SSTPC1(t + Dt) SLAPC1(t + Dt) SSLPC1(t + Dt))

b1,1
b1,2
b1,3

0
BB@

1
CCA+

( SLAint er(t − 1) SLAint er(t − 2) SLAint er(t − 3) )

b2,1
b2,2
b2,3

0
BB@

1
CCA + e

(18)

where b1,1,   b1,2,   b1,3 and b2,1,   b2,2,   b2,3 are the coefficients of
the Lag-WALS model; SSTPC1, SLAPC1, and SSLPC1 are the PC1 time

series of the SST, SLA, and SSL in the equatorial Pacific; SLAinter is

the interannual SLA in the SCS; t is the t-th epoch; Dt is the

weighted average time lag; and e is a random vector of

unobservable disturbances.
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Then, the forecast SLAinter in the epoch, t, can be obtained via

the Lag-WALS model coefficient, b , solved via Equation 18. Note

that the SLAinter prediction values must be denormalized to restore

their data magnitude.
5.2 Internal and external accuracy of the
Lag-WALS model

To evaluate the performance of the Lag-WALS model, both

internal and external accuracies are assessed in terms of the

standard deviation (STD), root-mean-square error (RMSE), mean

absolute error (MAE), and Bias (Fok et al., 2011; He et al., 2018; Ma

et al., 2022). The STD, MAE, and Bias for the internal accuracy of

the Lag-WALS model from 1993 to 2019 in the SCS are relatively

small (Figure 8). The resulting performance of the SCS boundaries

is more accurate (i.e., a lower STD and MAE) than that of the

central region. Their spatial patterns are largely similar to the

maximum cross-correlation spatial pattern, as displayed in

Figure 5. Figure 9 shows the RMSE, MAE, and Bias for the

model’s external accuracy from 2020 to 2022. Similar conclusions

are drawn, except for the outliers at particular locations. This

finding indicates that the impact of ENSO might be a potential

reason for the higher accuracy in coastal areas, as the maximum

cross-correlation between the interannual SLA and ENSO is greater

in coastal areas than in the central SCS (Figure 5). This finding is

consistent with the previous literature discussed in Section 4.2.
FIGURE 7

Correlation matrix with a heatmap of the SCS SLA interannual signals among adjacent months.
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Another reason for the higher accuracy in coastal areas is that

SSL significantly alters the SLA over deep water (Dangendorf et al.,

2021), whereas NSSL substantially impacts the coastal SLA within

the SCS (Cheng and Qi, 2010). Note that SSL and NSSL are two

major SLA components. In this study, SSL data products, which

were calculated on the basis of the integration of temperature and

salinity data by Cheng et al. (2017), were downloaded at http://

www.ocean.iap.ac.cn. The temperature and salinity data used to

calculate the SSL are mostly reanalysis data. Different results are

present among different SSL data products owing to different

datasets and processing strategies (Camargo et al., 2020), thus

resulting in unreliable SSL estimates over deep water. Coastal

regions are shallower than SSL-dominated regions, such that

fewer vertical depth structures are present. This makes the impact

of NSSL dominate the coastal SLA.

Two notable regions with apparent error features are found.

One is the abnormally high positive values in Box A of Figure 9,

which is attributable to significant bottom topography changes

within the region (c.f., Figure 1). This observation is consistent

with that of Xu et al. (2012), who highlighted that significant

changes in the mean dynamic topography have significant

impacts on the SLA in the central SCS. Additionally, tidally
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induced energy dissipation amplified over the rough slope

topography with complex seamounts and canyons in the northern

SCS (Chang et al., 2006) significantly contributes to extreme sea

level variability in the SCS (Menéndez and Woodworth, 2010;

Zhang and Sheng, 2015). The spatial distribution of sea level

maxima in the SCS is also influenced by tropical cyclones (Feng

and Tsimplis, 2014; Zhang and Sheng, 2015).

Box B should be attributed to our interannual SLA prediction

model, which merely considers ENSO-related oceanic signals. In

essence, ENSO contributes 30% to the SLA, whereas the Indian

Ocean Dipole (IOD) contributes 40% to the SLA in the southwestern

SCS (Soumya et al., 2015; Li J. et al., 2023). Additionally, decadal

processes, such as the Pacific Decadal Oscillation (PDO) and North

Pacific Gyre Oscillation (NPGO), can indirectly modulate the

interannual SLA in the SCS via subsurface temperature and

salinity (Zhou et al., 2012; Deng et al., 2013; Wang et al., 2021; Li

J. et al., 2023). In the southeastern SCS and the northern Gulf of

Thailand, the PDO accounts for ~30% of the interannual SLA

(Soumya et al., 2015). Specifically, the SCS, located between the

western Pacific and the Indian Oceans, is significantly affected by

interannual and decadal sea level fluctuations linked to ENSO and

the PDO in the Pacific Ocean, as well as the IOD in the Indian Ocean
FIGURE 8

(A) STD, (B) MAE, and (C) Bias for the internal accuracy of the Lag-WALS model from 1993 to 2019.
FIGURE 9

(A) RMSE, (B) MAE, and (C) Bias for the external accuracy of the Lag-WALS model from 2020 to 2022.
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(Mohan and Vethamony, 2018). The PDO is the predominant

source of interdecadal climate variability in the Northwest Pacific,

defined via monthly SST anomalies in the Pacific poleward of 20°N

(Mantua et al., 1997). The decadal variability in the SLA is governed

primarily by the PDO, particularly in the northwestern region of the

SCS (Cheng et al., 2016; Mohan and Vethamony, 2018). In contrast,

the IOD and ENSO are more influential in explaining the

interannual sea level variability in the eastern Indian Ocean and

SCS. While the IOD predominantly drives interannual SLA

variations in the eastern Indian Ocean, the ENSO is the primary

influence on the SCS (Mohan and Vethamony, 2018). Nonetheless,

the interannual SLA variability in certain areas of the SCS is also

affected by the IOD and PDO. Therefore, the interannual SLA

prediction accuracy in the SCS should be substantially improved

when the combined effects of ENSO, the IOD, and the PDO are

incorporated into Equation 18, albeit with potential overfitting. This

represents the major limitation of this study. Another possibility is

that the correction of glacial isostatic adjustment to satellite altimetry

has been ignored potentially affecting the long-term trend, although
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its impact is relatively small (Huang et al., 2013), at approximately –

0.3 mm/yr over the SCS (Feng et al., 2012).

Overall, the prediction accuracy (RMSE) of the Lag-WALS

model in the SCS ranges from 0.49 to 5.93 cm, with average STD/

MAE/Bias (RMSE/MAE/Bias) values of the model’s internal

(external) accuracy in the SCS of 1.01/0.80/–0.002 cm (1.39/1.13/

–0.08 cm), respectively (Table 1). Table 2 displays the prediction

accuracy of all existing SLA prediction methods. The results

obtained by the Lag-WALS method are comparable to those of

the other methods. In particular, our resulting accuracy closely

agrees with the best result of the hybrid prediction model proposed

by Fu et al. (2019) over the SCS (i.e., RMSE: 1.32 cm; MAE: 1.03

cm). This finding indicates that our proposed model yields good

reliability for interannual SLA estimates, whereas the calculation

steps are simpler and computationally more efficient than those of

Fu et al. (2019). Note that Fu et al. (2019) is a millimeter

more accurate than our prediction, which is attributed to the

greater number of involved steps and time-consuming data

processing procedures.
TABLE 2 Accuracy (RMSE) statistics of existing SLA prediction methods.

Study area Method Prediction length RMSE (cm) References

East Equatorial Pacific
LS

1 months
3.52

Niedzielski and Kosek, 2009
LS+AR 2.64

Caspian
HWES

3 years
7.00

Imani et al., 2013
ANN 6.00

Caspian PCA+ARIMA 3 years 5.10 Imani et al., 2014c

South China Sea EMD+SSA+LS 3 years 1.32 Fu et al., 2019

South China Sea MEOF+CEEMD+MLP 4 years 3.00 Shao et al., 2020

105°E~135°E
0°~45°N

SARIMA+LSTM 2 years 1.16 Sun et al., 2020

Yellow Sea SSA+LSTM

1 years 1.97

Zhao et al., 2021
2 years 3.05

3 years 4.35

4 years 4.07

105°E~135°E
0°~45°N

DMSLAP

3 years

2.47

Sun et al., 2023
STL 2.53

VMD 2.89

TVF-EMD 2.48

South China Sea Lag-WALS 3 years 1.39 This study
TABLE 1 Statistical results of the internal and external accuracies of the Lag-WALS model.

Index
Internal accuracy (during 1993–2019) External accuracy (during 2020–2022)

STD (cm) MAE (cm) Bias (cm) RMSE (cm) MAE (cm) Bias (cm)

Max 1.98 1.50 0.15 5.93 5.36 5.09

Min 0.46 0.36 –0.05 0.49 0.36 –2.62

Average 1.01 0.80 –0.002 1.39 1.13 –0.08
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To assess the performance of our proposed model seasonally, the

forecasted interannual SLAs were compared with the altimetric

observations from 2020 to 2022 across four seasons: spring (March

toMay), summer (June to August), autumn (September to November),

and winter (December to February). The spatial patterns of the

altimetric-observed mean interannual SCS SLA and the model-

forecasted SLA for different seasons are shown in Figures 10A, B.

Both patterns basically agree for each individual season. Notably, the
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model’s estimates in the central region of the SCS during summer

exhibit a more diverse spatial pattern than those in the other three

seasons. The residuals, which are the difference between the observed

andmodel values (Figure 10C), are relatively small regardless of season.

The regions with significant outliers are largely consistent with the

findings shown in Figure 9, as the potential reasons discussed above.

Overall, the statistics of the residuals for the four seasons are –0.14,

0.17, –0.06, and –0.28 cm, respectively (Table 3).
FIGURE 10

Mean interannual SCS SLA images derived from the altimetry (A) and Lag-WALS (B) models in different seasons and their differences (C) from 2020
to 2022. The numbers 1-4 represent spring, summer, autumn, and winter, respectively.
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In addition to the comparison with the observed values in different

seasons, changes in regionally averaged time series were also analyzed.

Figure 11 shows the changes in the regionally averaged time series of

the observed and model values, along with their differences from 1993

to 2022. The comparison reveals a strong consistency between the

observed and modeled time series changes, with differences mostly

within ±1 cm. The RMSE andMAE of the training (testing) set for the

difference between the observed and model values are 0.36 cm and

0.28 cm (0.49 cm and 0.39 cm), indicating that the relevant parameters

obtained from the training set have good performance in the testing

set (i.e., 2020–2022) and that the model did not exhibit overfitting

issues in this study. Furthermore, we set the significance level at 0.05

during model training stage. This study focuses only on the

interannual variation in the SLA, eliminating the influence of other

signals, followed by normalizing the data during the model

construction stage to avoid the impact of differences in data
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magnitude. These strategies effectively prevented the occurrence of

overfitting issues in this study. The Lag-WALS model generally yields

good reliability and higher accuracy in predicting the SCS SLA at the

interannual scale.
6 Conclusions

A novel Lag-WALS approach for forecasting interannual SLA

variations in the SCS on the basis of lagged equatorial Pacific

ENSO-related quantities was proposed in this study. We

examined the relationships between the SST and SLA, along with

its two primary components (SSL and NSSL) in the equatorial

Pacific, and then investigated their cross-correlations with the

interannual SCS SLA to identify regressors for the Lag-WALS

model. Additionally, the interannual SCS SLAs for the adjacent

three months served as auxiliary regressors to constrain the Lag-

WALS model-predicted results.

Our analysis revealed a robust alignment between the first

spatiotemporal mode of EOF (EOF1 and PC1) from SLA/SSL and

SST across the equatorial Pacific, revealing a typical ENSO

horseshoe spatial pattern in EOF1. In contrast, the NSSL showed

significant disparities, indicating weak or even no ENSO-related

signals. This finding was also confirmed via wavelet coherence

analysis. The similar (different) spatial pattern of the maximum

cross-correlation between the SCS SLA and SLA/SSL PC1 (NSSL

PC1) to (from) that between SST PC1 further supported this

inference. Furthermore, a high-time autocorrelation coefficient
FIGURE 11

Regionally averaged time series of altimetric-observed and Lag-WALS model-predicted SLAs (A) and their differences (B) from 1993 to 2022. The
pink matrix box represents the test set data (i.e., 2020–2022).
TABLE 3 Mean values of the interannual SCS SLAs derived from
altimetric observations and the Lag-WALS model and their differences
across the four seasons.

Season Altimetry (cm)
Lag-WALS

(cm)
differences (cm)

Spring –0.83 –0.69 –0.14

Summer 0.21 0.04 0.17

Autumn 1.39 1.45 –0.06

Winter 0.20 0.48 –0.28
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demonstrated that the interannual SCS SLA was also influenced by

its previous months, suggesting the potential use of the interannual

SLA in the previous months for forecasting the interannual SLA.

After the Lag-WALS model was established, its construction

and prediction performances were internally and externally

assessed. The model demonstrated greater accuracy at the SCS

boundaries than in the central region, with average STD/MAE/Bias

(RMSE/MAE/Bias) values of the model’s internal (external)

accuracy in the SCS of 1.01/0.80/–0.002 cm (1.39/1.13/–0.08 cm).

Both the altimetric and Lag-WALS model patterns basically for

each individual season. The consistency of the regionally averaged

time series changes between the observed and model values was also

noted, with differences mostly within ±1 cm. The RMSE and MAE

of the training (testing) set for the difference in the regional mean

time series between the observed and model values were 0.36 cm

and 0.28 cm (0.49 cm and 0.39 cm), respectively. These results

underscore the ability of the Lag-WALS model to accurately

forecast the SCS SLA at the interannual scale, which is vital for

early detection of abnormal sea level changes.

The limitation of this study is that the model takes into account

only the ENSO-related quantities and the previous month’s

interannual SLA while ignoring potential influencing factors of

the interannual SCS SLA, such as the IOD and PDO. Thus,

incorporating multiple influencing factors should further improve

the model’s performance. Furthermore, the solution method used in

the Lag-WALS model is the least squares method, and employing a

total least squares solution may further improve the model’s

theoretical accuracy.
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