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Ocean warming enhances
the competitive advantage
of Ulva prolifera over a golden
tide alga, Sargassum horneri
under eutrophication
Hailong Wu1,2*, Jiankai Zhang1,2, He Li1,2, Sufang Li1,2,
Chen Pan1,2, Lefei Yi1,2, Juntian Xu1,2 and Peimin He2,3

1Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University,
Lianyungang, China, 2Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu
Ocean University, Lianyungang, China, 3College of Marine Ecology and Environment, Shanghai Ocean
University, Shanghai, China
Recent years have seen the Ulva green tide and Sargassum golden tide become

commonplace in the coastal waters of China. However, little is known on how the

combination of ocean warming and eutrophication would affect the interaction of

green and golden tides. In this study, we cultured the green tide alga Ulva prolifera

and the golden tide alga Sargassum horneri under different temperatures (5, 10, 15,

20, 25, and 30°C) and two nutrient concentrations (Low nutrient, LN: 5 mM-nitrate

and 0.5 mM-phosphate; High nutrient, HN: 500 mM-N and 50 mM-P) in both

monoculture and coculture systems to investigate the physiological responses and

their competitive relationships. In monocultures, the growth of U. prolifera and

S. horneri, along with pigment concentrations and photosynthesis, increased with

rising temperature, reaching a plateau at 15 - 25°C. However, when the

temperature increased to 30°C, the growth of U. prolifera and S. horneri

decreased abruptly, with S. horneri even suffering death. In coculture, the

growth of both U. prolifera and S. horneri was inhibited compared to the

monoculture, with the greatest decline observed in S. horneri at 25°C under two

nutrient conditions. Our results show that U. prolifera would outcompete

S. horneri under high temperature in coculture, suggesting that ocean warming

would enhance the competitive advantage of green tide over golden tide under

eutrophication in the future.
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1 Introduction

Macroalgae, as important primary producers in the coastal

zone, contribute about 1521 Tg C yr−1 of the global net primary

production (Krause-Jensen and Duarte, 2016). Through carbon

fixation, sequestration and habitat provision, they often play

significantly structural roles in coastal ecosystems (Machado and

Oliveira, 2024). Due to continued anthropogenic pressure on

marine systems, many macroalgae species have been harmed by

environmental changes and face an uncertain future, jeopardizing

their important contributions to global productivity and ecosystem

service (Hanley et al., 2024).

It is widely recognized that human-induced greenhouse gas

emissions (CO2, methane, etc.) have been the primary driver of

global warming since the industrial revolution (IPCC, 2019). Over

90% of the anthropogenic increase in heat is absorbed by the global

ocean, leading to ocean warming (Durack et al., 2014). The average sea

surface temperature has risen by 1.1°C up to now, and is predicted to

further increase 1.9 – 5.8°C by the end of the century based on

Representative Concentration Pathway (RCP) 8.5 (Gattuso et al., 2015;

IPCC, 2019). In addition, macroalgae also experience diurnal and

seasonal temperature variations in the nature (Martin and Gattuso,

2009). It is well established that temperature directly influences

intracellular biochemical reactions and metabolic activities, thereby

affecting their survival and growth (Zou and Gao, 2014b; Chen et al.,

2018). In a suitable range, increased temperature is beneficial for the

photosynthesis and growth of macroalgae (Fan et al., 2014; Zou and

Gao, 2014a). However, temperatures below or above this range can

slow down growth or even cause cellular damage and mortality. High

temperatures could trigger the Ulva to generate more reactive oxygen

species (ROS), resulting in oxidative damage to proteins, lipids, DNA

within cells (Apel and Hirt, 2004). Macroalgae have also evolved ROS

scavenging mechanisms to cope with the potential damage from ROS,

such as superoxide dismutase (SOD), ascorbate peroxidase (APX),

glutathione peroxidase (GPX) and catalase (CAT) (Apel and Hirt,

2004). A previous report found that temperatures exceed 35°C inhibit

the photosynthetic performance of Ulva conglobate (Zou and Gao,

2014a). Moreover, tropical seaweeds such as Wurdemannia miniata

and Valonia utricularis were found to be induced to death under

extreme high temperatures (Pakker and Breeman, 1996). Moreover,

ocean warming will expand the distribution of tropical and temperate

species towards the poles (Dıéz et al., 2012), which was supported by a

model prediction (Jueterbock et al., 2013).

Under the influence of prevalently industrial and agricultural

activities, the anthropogenic input of nutrients (e. g. nitrogen and

phosphorus) into coastal waters has continuously increased, leading

to eutrophication, a trend that threatens the health of coastal

ecosystems worldwide (Paerl et al., 2014; Malone and Newton,

2020). It has been shown that elevated nutrient concentrations

reduce biodiversity, impact marine habitats, and alter ecosystem

functions (Yang et al., 2005; Liu et al., 2009; Mineur et al., 2015).

Nitrogen is a crucial component of many compounds, such as the

photosynthetic enzyme, Rubisco (Dawes and Koch, 1990); and

phosphorus is also an essential element in macroalgal cells for

genetic replication, energy supply, and growth metabolism (Zer

and Ohad, 2003). The increase in nitrogen and phosphorus
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concentrations could enhance the growth and biomass of

macroalgae (Li et al., 2016). Moreover, temperature also influences

algal growth rates by affecting nutrient uptake rates through the

nitrate reductase activity (NRA) (Granbom et al., 2004). Feng et al.

(2021) also reported that NRA of Ulva prolifera, associated with

growth, decreased with the rising temperature while exceeded 15°C.

Macroalgae have competitive advantages due to its higher

affinity with nutrients, leading to frequently outbreaks of

macroalgae blooms (Luo et al., 2012). As an opportunistically

growing macroalgal genera, Ulva is strongly adaptable to

environment which has high tolerance for variable temperature,

salinity, irradiance and nutrient concentrations (Taylor et al., 2001;

Xiao et al., 2016). At optimal temperature conditions from April to

June, detached green patches of Ulva species had grown rapidly and

accumulated to form green tides, transporting northward into the

Yellow Sea of China by monsoon winds and ocean currents (Sun

et al., 2008; Liu et al., 2010, 2021b; Xia et al., 2024). Meanwhile,

Large-scale drifting biomass of Sargassum horneri, known as golden

tides, has been reported in the Yellow Sea since 2010 (Liu et al.,

2018; Su et al., 2018; Wang et al., 2023). These drifting macroalgae

originally grew on the rocky bottom. In spring, the increased

buoyancy provided by their numerous sporophyte vesicles could

keep the plants floating after detachment, forming the drifting

biomass on the sea surface (Yoshida, 1963). Sargassum from the

coastal region of Shandong Peninsula drifted southwards in winter

months, while Sargassum along the coast of Zhejiang Province

drifted northwards in summer, eventually reaching the largest

Pyropia aquaculture area of China (Xing et al., 2017; Zhang et al.,

2019; Liu et al., 2021a). In recent years, green and golden tides have

frequently occurred simultaneously due to excessive nutrient

inputs, resulting in a severely economic and ecological disaster in

China’s coastal waters (Su et al., 2018; Xiao et al., 2020b).

Under the complex context of global climate changes coupled with

regional eutrophication, harmful algal blooms are gradually

increasing. In particular, the frequency of green and gold tides

caused by Ulva and Sargassum has increased by years, replacing red

tides as the main disasters in the coastal waters of China (Feng et al.,

2024). However, few studies have been conducted to investigate the

competition between Ulva and Sargassum under the combined effects

of local stressor of eutrophication and global stressor of ocean

warming. In this study, U. prolifera and S. horneri were selected and

treated to explore the physiological responses and their competitive

relationships of the typical harmful algae to high nutrients availability

and temperature change scenarios in the Yellow Sea of China. Our

results are expected to provide helpful insights into understanding the

adaption mechanism and competitive relationships of two macroalgae

species under ocean warming and eutrophication in the future.
2 Materials and methods

2.1 Sample collection and
experiment design

Floating samples of U. prolifera and S. horneri were collected

from Gaogong island, Lianyungang city, Jiangsu province (119.53°E;
frontiersin.org
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34.91°N) and the nearshore sea of Dongtai, Yancheng city, Jiangsu

province of China (121.33°E; 33.02°N) in early June of 2020,

respectively. The in situ nutrient levels were 10.72 mmol L−1 nitrate

and 0.42 mmol L−1 phosphate in coastal area of north Jiangsu in early

summer (Wang et al., 2022). Considering that June is the end of the

life cycle in S. horneri, the thalli should be a bit senescent. The thalli

were transferred to the laboratory under low temperature conditions

in a cool container within 2 hours. After removing the sediments and

impurities using filtered and autoclaved seawater, healthy thalli were

selected and pre-cultured in 1 L balloon flasks containing sterile

seawater enriched with von Stosch’s enrichment (VSE) Medium (Ott,

1965), which was aerated continuously and changed every 2 days.

The cultures were kept in an intelligent illumination incubator

(Jiangnan GXZ-300C, Ningbo, China) at 20°C with a 12 h: 12 h

(light/dark) photoperiod under 100 mmol photons m−2 s−1

light intensity.

After the pre-culture of one week, thalli samples with similar

length and shape were chose and divided randomly to different

treatments. Approximately 0.10 g (fresh weight, FW) thalli were

cultured in 500 mL sterile seawater enriched with VSE medium. Six

temperature treatments (5, 10, 15, 20, 25, and 30°C) were obtained

using different incubators (same brand model to avoid the influence

of light), while two levels of nutrient [Low nutrient, LN: 5 mmol L−1

N (nitrate) and 0.5 mmol L−1 P (phosphate); High nutrient, HN: 500

mmol L−1 N and 50 mmol L−1 P] were set based on VSE medium.

The LN condition represented the low nutrient levels and HN

condition was set as eutrophication (Wang et al., 2022). At the same

time, we also selected three temperatures (15, 20, and 25°C) to study

the competition between U. prolifera and S. horneri under

eutrophication conditions. The initial biomass of U. prolifera and

S. horneri were about 0.05 g (FW) in coculture, respectively. The

medium was renewed every 3 d to maintain the abundance of

nutrients. Triplicate cultures were conducted for two weeks and all

the parameters were measured at the end of culture period.
2.2 Measurement of growth

The relative growth rates (RGR) of U. prolifera and S. horneri

were estimated by changes in biomass (FW), which were performed

according to the following formula:

RGR(% d−1) = ln(Wt=W0)=t� 100% (1)

where the W0 and Wt are the initial and final fresh weight of

thalli after t days culture, respectively.
2.3 Measurement of photosynthetic
pigments and soluble protein

To determine pigments content, about 0.02 g FW per sample

were cut into pieces and extracted in absolute methanol and kept at

4°C for 24 h in darkness (Porra et al., 1989). The value of Chl a and

Car might be low due to the incomplete extraction without

grinding. After centrifugation (Centrifuge 5407, Eppondorf,
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Germany) at 5000×g for 10 min, the supernatant was scanned by

a spectrophotometer (UV-1800, Shimadzu, Japan) at 470, 652, and

665 nm, respectively. The concentrations of Chlorophyll a (Chl a)

and carotenoids (Car) were determined according to the methods of

Wellburn (1994):

Chl a (mg g FW−1) = (15:65� A665 − 7:53� A652)� V=FW (2)

Car (mg g FW−1) = (1000� A470 + 1403:57� A665 − 3473:87� A652)=221� V=FW

(3)

where the A470, A652, and A665 were the absorbance of samples

at respective wavelength, V is the volume of methanol, and FW is

the fresh weight of samples.

Soluble protein contents were measured according to the

methods of Bradford (1976). Briefly, about 0.02 g FW thalli was

homogenized in phosphate buffer (0.1 M, pH 6.8) and then

centrifuged at 5000× g for 15 min at 4°C. The supernatant was

mixed with Coomassie brilliant blue G-250 dye solution and

scanned at 595 nm by spectrophotometer to calculate the soluble

protein contents (SP, mg g FW−1) based on the standard curve of

bovine serum albumin.
2.4 Measurement of photosynthesis
and respiration

The photosynthetic oxygen evolution and respiration of these

two species were measured with a Clark-type electrode (Oxygraph,

Hansatech, UK) at the end of experiments. Samples of thalli were

cut into 0.5 cm length segments and placed in culture conditions for

about 2 h to alleviate cutting damage (Xu and Gao, 2012). During

the middle light period (10:00−16:00), about 0.02 g FW thalli were

transferred into the reaction chamber containing 5 ml fresh growth

medium. The light (100 mmol photons m−2 s−1) and temperature

condition were set at the same with every culture condition, and

seawater in the chamber was stirred during the measurement to

keep the oxygen signal steady. The decreased rate (in dark

condition) and increased rate (in light condition) of oxygen

concentrations were defined as net photosynthetic rate and dark

respiration, respectively.
2.5 Assessment of superoxide
dismutase activity

Superoxide dismutase (SOD) activity was were examined by

using nitroblue tetrazolium (NBT) method (Merzbach and

Obedeanu, 1975). Approximately 0.05 g of samples was

homogenized in 4 mL phosphate buffer (0.05 M, pH 7.8) and

then centrifuged at 5000× g for 10 min at 4°C. The supernatant of

the crude extract of SOD was mixed with the NBT solution. After

20 min incubation under 80 μmol photons m−2 s−1 at 25°C, the

absorbance at 560 nm was measured. The amount of SOD that

reduces NBT by 50% is defined as the SOD activity.
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SOD activity (U g FW−1) ¼ (Ac−As)� V=(Ac� 50%�FW� Vt) (4)

where the Ac and As represent the absorbance of mixed NBT

solution (V) with distilled water and sample enzyme, respectively.

Vt is the crude extract of fresh weight (FW) thalli samples.
2.6 Statistical analysis

All data were expressed as mean of triplicate analysis ± standard

deviations. Before performing parametric tests, data were tested for

homogeneity of variance (Levene test, see Supplementary Table S1 in

Supplementary Materials) and normality (Shapiro-Wilk test,

Supplementary Table S2). Two-way ANOVA was performed to

assess the interactive effects of temperature and nutrient levels.

Three-way ANOVA employed to determine the effects of

temperature, nutrient and coculture. One-way ANOVA was applied

to analyze the statistical differences among different temperature

treatments under LN and HN conditions. An independent-samples

t-test were used to compare the differences between LN and HNwithin

the same temperature treatment and differences between monoculture

and coculture under the same condition. Considering that temperature

treatments were achieved by different incubators (same brand model)

and one incubator per temperature, it should be noted that all ANOVA

analyses assessing temperature in this study assess the temperature plus

incubator effects. Tukey’s honest significant difference (Tukey HSD)

was used for ANOVA analysis and differences were termed significant

when p < 0.05.
3 Results

3.1 Relative growth rate of U. prolifera and
S. horneri

Two-way ANOVA analysis indicated that there were significant

individual and interactive effects of temperature (i.e. the temperature

and incubator effects) and nutrient on the relative growth rate (RGR)

of U. prolifera (Table 1, p < 0.001, p < 0.001, p = 0.009),. The growth

of thalli in both LN and HN conditions enhanced with the increased

levels of temperature, peaking at 20°C (17.2 ± 1.0% for LN, 20.1 ±

3.0% for HN), and began decline at temperature above 25°C. RGR

were significantly affected by HN at 5, 15, and 30°C (Figure 1A, p <

0.001, p = 0.009, p = 0.039). For S. horneri, temperature and the

interaction with nutrient had significant effect on RGR of thalli

(Table 1, p < 0.001, p < 0.001). In general, RGR of S. horneri

showed an increased trend with temperatures (Figure 1B).

Specially, RGR began to plunge at 30°C, and was even negative

under HN condition.

In coculture, RGR of both U. prolifera and S. horneri were

declined compared to those in monoculture (Supplementary Table

S3, Figure 1C, p = 0.002, p = 0.029). RGR of U. prolifera were

significantly enhanced by HN compared to LN at 15 and 20°C (p =

0.029, p = 0.021), and S. horneri showed the same trend (p = 0.006, p

= 0.005). Coculture with U. prolifera led to the obvious decline in
Frontiers in Marine Science 04
RGR of S. horneri, which were decreased by 61.2% and 49.7%

compared to monoculture at 25°C under LN and HN, respectively

(p < 0.001, p = 0.002). Meanwhile, even though the RGR of

U. prolifera were reduced by 18.6% and 10.4% compared to

monoculture at 25°C under LN and HN, respectively, it was still

highest in the coculture.
3.2 Pigment contents of U. prolifera and
S. horneri

The Chlorophyll a (Chl a) content of U. prolifera was

significantly influenced by temperature, nutrient, and the

interaction between them (Table 1, p < 0.001, p < 0.001, p < 0.001).

Meanwhile, the carotenoids (Car) content was only significantly

influenced by temperature (p < 0.001). The Chl a of thalli was

increased with rising temperature at the range of 5-25°C, especially

under HN condition, and reached a maximum 309.4 ± 52.8 mg g−1

under LN at 30°C and 520.8 ± 46.8 mg g−1 under HN at 25°C,

respectively (Figure 2A). HN significantly promoted the Chl a

content of U. prolifera at 15, 20, and 25°C (p = 0.005, p = 0.018,

p = 0.004). Similarly, the Car content was increased with the

temperature up to 20°C, and declined at higher temperatures (25

and 30°C), which was in line with growth (Figure 3A).
TABLE 1 Statistical analyses (two-way ANOVA) of physiological traits of
Ulva prolifera and Sargassum horneri grown under various temperature
and nutrient conditions in the monoculture.

Trait
Temperature Nutrient T × N

df F Sig. df F Sig. df F Sig.

U. prolifera

RGR 5 51.2 <0.001 1 21.2 <0.001 5 4.0 0.009

Chl a 5 29.5 <0.001 1 46.6 <0.001 5 9.3 <0.001

Car 5 15.2 <0.001 1 2.8 0.108 5 1.0 0.459

NPR 5 10.1 <0.001 1 473.6 <0.001 5 4.2 0.007

DR 5 19.8 <0.001 1 170.4 <0.001 5 18.1 <0.001

SP 5 54.3 <0.001 1 25.9 <0.001 5 3.7 0.013

SOD 5 293.7 <0.001 1 107.1 <0.001 5 13.4 <0.001

S. horneri

RGR 5 157.9 <0.001 1 4.0 0.058 5 20.4 <0.001

Chl a 5 89.3 <0.001 1 12.8 0.002 5 5.4 0.002

Car. 5 237.5 <0.001 1 0.1 0.723 5 1.5 0.214

NPR 5 124.5 <0.001 1 8.7 0.007 5 3.6 0.015

DR 5 46.0 <0.001 1 4.5 0.045 5 0.8 0.560

SP 5 44.6 <0.001 1 3.1 0.091 5 0.1 0.986

SOD 5 224.9 <0.001 1 8.5 0.008 5 0.8 0.549
frontie
The physiological parameters include the relative growth rate (RGR), the pigment content of
chlorophyll a (Chl a), carotenoid (Car), net photosynthetic rate (NPR), dark respiration (DR),
soluble protein (SP), and superoxide dismutase activity (SOD). df means degree of freedom,
F means the value of the F statistic, and Sig. indicates p-value.
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Temperature and nutrient had individual and interactive effect

on Chl a content of S. horneri (p < 0.001, p < 0.002, p = 0.002), and

only temperature had an individual effect on Car content of thalli

(Table 1, p < 0.001). The Chl a of S. horneri was enhanced with

increased temperature but declined at 30°C under LN and HN

conditions (Figure 2B). HN only increased significantly the Chl a at

10°C compared to LN (p = 0.006). Similarly, the Car of S. horneri

was promoted slightly by temperature until up to 30°C, with a

substantial decline (Figure 3B).

In coculture, both Chl a and Car contents of U. prolifera were

decreased compared to those in monoculture (Supplementary

Tables S4, S5, Figures 2C, 3C, p < 0.001, p < 0.001). Increased

temperature only enhanced the Chl a of U. prolifera under HN

condition. Meanwhile, HN promoted the Chl a of thalli at three

temperatures compared to LN (p = 0.007, p = 0.001, p < 0.001). In

addition, coculture with U. prolifera inhibited the Chl a of S. horneri

at all treatments (p = 0.006, p = 0.003, p = 0.012 for 15, 20, 25 under

LN and p = 0.003, p = 0.020, p = 0.116 for 15, 20, 25 under HN) but
Frontiers in Marine Science 05
significantly enhanced the Car content of thalli by 10.3% at 15°C

under LN (p = 0.047). HN only significantly enhanced the Chl a of

S. horneri at 20 and 25°C (p = 0.027, p = 0.023).
3.3 Photosynthesis and respiration of
U. prolifera and S. horneri

The net photosynthetic rate (NPR) and dark respiration rate

(Rd) of U. prolifera were significantly influenced by temperature,

nutrient and their interaction (Table 1, p < 0.001, p < 0.001, p =

0.007 for NPR, and p < 0.001, p < 0.001, p < 0.001 for Rd). NPR of U.

prolifera thalli showed a relative stability regardless of temperature

under LN and HN conditions (Figure 4A). However, the increased

temperature enhanced the Rd ofU. proliferawithin a range of 5 - 25°

C (Figure 5A). At the different temperatures, HN condition

promoted both the NPR and Rd of thalli significantly except for

the Rd under 5 and 10°C.
FIGURE 1

Relative growth rate (RGR) of Ulva prolifera and Sargassum horneri grown under various temperature and nutrient conditions in the monoculture
(A, B) and coculture (C). Different uppercase letters represent significant differences among different temperature treatment under LN (p < 0.05), and
different lowercase letters represent significant differences among different temperature treatment under HN (p < 0.05). Asterisk indicates whether
there was a significant difference between LN and HN under the same temperature conditions (p < 0.05).
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As for S. horneri, Temperature and nutrient had individual effects

on NPR and Rd of thalli, and only had an interactive effect on NPR

(Table 1, p < 0.001, p = 0.007, p = 0.015 for NPR, and p < 0.001, p =

0.045 for Rd). The NPR of S. horneri was enhanced with increased

temperature within a range of 5-20°C, then decreased at temperature

above 25 °C under LN and HN (Figure 4B). However, the Rd of S.

horneri showed an increasing trend with the temperatures, and

reached the highest value of 67.5 and 73.9 mmol O2 g
−1 FW h−1 at

30°C under LN and HN condition, respectively (Figure 5B).

In coculture, NPR and Rd of both U. prolifera and S. horneri

were decreased significantly compared to those in monoculture

(Supplementary Tables S6, S7, Figure 4C and 5C, p < 0.001, p <

0.001 for NPR and Rd in U. prolifera, and p < 0.001, p < 0.001 in S.

horneri). However, compared to monoculture, the highest drop of

NPR in U. prolifera was about 33.0% and 30.8% under LN and HN

at 20°C (p = 0.011, p = 0.002), while the highest drop in S. horneri

was about 79.78% and 67.0% at 25 °C (p < 0.001, p < 0.001),

respectively. Moreover, HN enhanced the NPR of thalli under all

treatments. Similarly to the trend of Rd in U. prolifera and S. horneri
Frontiers in Marine Science 06
under monoculture, temperature enhanced the Rd of U. prolifera

and S. horneri in coculture.
3.4 Soluble protein content of U. prolifera
and S. horneri

Significant individual and interactive effects of temperature and

nutrient were observed on soluble protein content (SP) of U.

prolifera (Table 1, p < 0.001, p < 0.001, p = 0.013). In general, the

SP of U. prolifera showed a rising trend with the increased

temperature except under HN at 30 °C. Compared to LN, HN

promotes SP at all temperatures, with significant differences at 20

and 25°C and a maximum value of 2.7 ± 0.2 mg g−1 at 25°C

(Figure 6A, p = 0.008, p = 0.010).

As for S. horneri, only temperature had an individual effect on SP

(Table 1, p < 0.001). The SP of thalli in both LN and HN treatments

enhanced with the increased temperatures, peaking at 15 and 20°C,

and thereafter declined at temperature above this optimal point.
FIGURE 2

Content of Chlorophyll a in Ulva prolifera and Sargassum horneri grown under various temperature and nutrient conditions in the monoculture
(A, B) and coculture (C). Different uppercase letters represent significant differences among different temperature treatment under LN (p < 0.05), and
different lowercase letters represent significant differences among different temperature treatment under HN (p < 0.05). Asterisk indicates whether
there was a significant difference between LN and HN under the same temperature conditions (p < 0.05).
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Compared to LN, HN enhanced SP, but there was no significant

difference between them under all temperatures (Figure 6B).
3.5 Superoxide dismutase activity of
U. prolifera and S. horneri

Temperature, nutrient, and the interaction between them had

significant effect on SOD of U. prolifera (Table 1, p < 0.001, p <

0.001, p < 0.001). The SOD of thalli was enhanced with the

temperature increased until 25°C, but decreased significantly at

higher temperature (30°C) (Figure 7A). HN promotes SOD activity

at all temperatures, but only was significant at 15, 20, and 25°C

compared with LN condition (p = 0.032, p = 0.005, p < 0.001).

As for S. horneri, Temperature and nutrient had significant

individual effect on SOD (Table 1, p < 0.001, p = 0.008). The SOD

activity showed a significant increase by rising temperatures under
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both LN and HN conditions, with the maximum value of 987.8 ±

71.0 and 1021.8 ± 68.1 U g−1 FW at 30 °C, respectively (Figure 7B).

HN enhanced the SOD significantly only at 15 °C compared with

LN condition (p = 0.023).
4 Discussion

As main species of green and golden tides, U. prolifera and

S. horneri both respond positively to temperature and

eutrophication. In this study, the growth of U. prolifera and S.

horneri, along with pigment concentrations and photosynthesis,

increased with rising temperature, reaching a plateau at 15 − 25°C.

However, when the temperature increased to 30°C, the growth of U.

prolifera and S. horneri decreased abruptly, and the latter even

suffered death. In cocultures, the growth of both U. prolifera and S.

horneri was inhibited compared to the monocultures, with
FIGURE 3

Content of Carotenoid in Ulva prolifera and Sargassum horneri grown under various temperature and nutrient conditions in the monoculture (A, B)
and coculture (C). Different uppercase letters represent significant differences among different temperature treatment under LN (p < 0.05), and
different lowercase letters represent significant differences among different temperature treatment under HN (p < 0.05). Asterisk indicates whether
there was a significant difference between LN and HN under the same temperature conditions (p < 0.05).
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the greatest decrease in S. horneri at 25°C under two

nutrient conditions.
4.1 Response of U. prolifera and S. horneri
to temperature

Temperature is an important factor that limits the cellular

enzymatic activities (Raven and Geider, 1988). In this study,

proper warming promoted pigments synthesis in both U. prolifera

and S. horneri in monoculture, which was reported in other

macroalgae (Figures 2, 3) (Wu et al., 2022). The enhancement of

Chl a and carotenoids in the two macroalgal genera allow the algae

to absorb more light energy and maintain higher photosynthetic

rates (Figure 4) (Jiang et al., 2016). In addition to its light-capture

role, carotenoids can also act as auxiliary antioxidant that reduces
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damage caused by high temperature (Yoshiki et al., 2009). The high

photosynthetic rate in PSII system, which provides more ATP and

NADPH for subsequent physiological processes, improved the

growth ultimately (Figure 1) (Jiang et al., 2016). Moreover, the

rising temperature increased the mitochondrial respiration (Zou

and Gao, 2014a). This similar phenomenon was observed for both

algae at temperature from 5 to 25°C in this experiment (Figure 5).

The increased consumption of carbon compound by respiration in

nighttime could provide more ATP and carbon skeletons for the

synthesis of pigment and soluble protein contents (Figures 2, 3, 6)

(Zou and Gao, 2014a). Warming would cause algal cells to produce

ROS, and algae can scavenge the increased reactive oxygen species

(ROS) by activating antioxidant systems, one of which is superoxide

dismutase (SOD), to prevent organelles from oxidative damage (Liu

et al., 2017). The SOD activity of U. prolifera and S. horneri

increased with rising temperature from 5 to 25°C (Figure 7).
FIGURE 4

Net photosynthetic rate of Ulva prolifera and Sargassum horneri grown under various temperature and nutrient conditions in the monoculture (A, B)
and coculture (C). Different uppercase letters represent significant differences among different temperature treatment under LN (p < 0.05), and
different lowercase letters represent significant differences among different temperature treatment under HN (p < 0.05). Asterisk indicates whether
there was a significant difference between LN and HN under the same temperature conditions (p < 0.05).
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However, when temperature was up to 30°C, the scavenging

efficiency of ROS by antioxidant in thalli was reduced, which led

to the inhibition of all physiological parameters in both genera in

this experiment. Although the SOD activity of U. prolifera was

reduced at 30°C, it was still able to maintain low growth due to the

highly environmental adaptability (Xiao et al., 2016). For S. horneri,

the SOD activity was still at a high level at 30°C, but the thalli still

suffered leaf shedding, which ultimately led to negative algal growth

(Liu and Pang, 2010).
4.2 Effects of eutrophication on U. prolifera
and S. horneri

In natural waters, Nitrogen and phosphorus are essential

components for cellular metabolic synthesis and critical factors

limiting algal primary productivity. Therefore, nutrient enrichment
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often enhances the physiological performance of Ulva spp (Kang

et al., 2016; Li et al., 2016; Kang and Chung, 2017). In this study,

pigment synthesis, soluble proteins were increased in both U.

prolifera and S. horneri due to higher availability of nutrients,

which ultimately improved their photosynthesis and growth

(Figures 1-5). Furthermore, the morphology of Ulva spp. could

enhance the nutrient uptake rates at elevated nutrient

concentrations, affecting the metabolism of macroalgae, which

could produce more Rubisco using nitrogen (Zer and Ohad,

2003). This is also verified by our results that nutrient enrichment

promotes pigmentation and photosynthesis of U. prolifera more

than that in S. horneri (Figures 2-4). Temperature plays a crucial

role in the nutrient uptake, nitrate reductase activity of algae (Cade-

Menun and Paytan, 2010; Gao et al., 2018). Our results also showed

inconsistent enhancement effects of nutrient enrichment on the two

macroalgal genera under various temperature conditions, indicating

different nutrient requirements of macroalgae at different

temperatures (Fan et al., 2014).
FIGURE 5

Dark respiration rate of Ulva prolifera and Sargassum horneri grown under various temperature and nutrient conditions in the monoculture (A, B)
and coculture (C). Different uppercase letters represent significant differences among different temperature treatment under LN (p < 0.05), and
different lowercase letters represent significant differences among different temperature treatment under HN (p < 0.05). Asterisk indicates whether
there was a significant difference between LN and HN under the same temperature conditions (p < 0.05).
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4.3 Competition between U. prolifera and
S. horneri

In recent years, coexisting outbreaks of green and golden tides

in coastal waters have occurred, yet have been little studied in

laboratory (Xiao et al., 2020a; Zhao et al., 2021). In the present

study, three temperature and two nutrient levels were selected to

investigate the competition between U. prolifera and S. horneri. The

results showed that the photosynthesis and growth of both U.

prolifera and S. horneri in coculture were decreased compared to

monoculture, suggesting ecological niche competition between the

two genera (Figures 1, 4). Moreover, the pigment contents of U.

prolifera did not change significantly in coculture compared to

monoculture under both LN and HN conditions. However, an

interesting finding is that the pigment contents of S. horneri were

dramatically reduced, especially under nutrient-rich conditions

(Figures 2, 3). Many factors could affect the coculture experiment,

including shading, competition of nutrients, and allelopathy. The

decline may be attributed to allelopathic effects from U. prolifera, as

the abundant nutrients under HN condition are unlikely to be

depleted given that the medium was renewed every 3 d to maintain

nutrient levels. Additionally, the initial biomass of the thalli was

consistent, with approximately 0.10 g FW for each species in

monoculture and 0.05 + 0.05 g FW for both species in coculture.
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Furthermore, photosynthesis of both genera was declined compared

to monoculture (Figure 4), suggesting that the allelopathic

compounds may initially damage the photosynthetic apparatus,

thereby inhibiting growth, as observed in other cocultures of

macroalgae and microalgae (Ye and Zhang, 2013; Gao et al.,

2019). Although the pigment contents of S. horneri was lower

than those of U. prolifera, its photosynthesis was maintained at a

higher level. Under these three temperature conditions, U. prolifera

maintained a relatively stable photosynthetic rate, showing its

stronger adaptability (Xiao et al., 2016). Meanwhile, at 15 and 20°

C, S. horneri exhibited higher photosynthetic rates and lower

respiration rates, resulted in more carbon accumulation for higher

growth compared to U. prolifera under HN condition, suggesting

that it was more competitive below 20°C (Figures 1, 4, 5). At 25°C,

photosynthesis of S. horneri decreased and respiration increased

dramatically, ultimately leading to a reduction in growth that was

much lower than in monoculture (Figures 1, 3, 4). One reason for

this phenomenon might be that temperature changes alter

allelopathic efficiency and/or sensitivity (Semmouri et al., 2024).

This suggests that coculture with U. prolifera weakened the

resistance of S. horneri to high temperatures and exacerbated its

apoptosis eventually. Further studies are required to confirm this

conclusion, as allelopathic compounds were not directly measured

in this study.
FIGURE 6

Content of soluble protein in Ulva prolifera (A) and Sargassum horneri (B) grown under various temperature and nutrient conditions in the
monoculture. Different uppercase letters represent significant differences among different temperature treatment under LN (p < 0.05), and different
lowercase letters represent significant differences among different temperature treatment under HN (p < 0.05). Asterisk indicates whether there was
a significant difference between LN and HN under the same temperature conditions (p < 0.05).
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5 Conclusion

Our study investigated the combined impacts of ocean warming

and eutrophication on the green tides and golden tides macroalgae and

the interaction between them for the first time. As mentioned above,

the temperatures in this study were achieved by different incubators,

but one per temperature; therefore, the temperature effect is a

combined temperature plus incubator effect. In conclusion, the

findings demonstrate that the appropriate or seasonal temperature

increases can promote the photosynthesis ofU. prolifera and S. horneri.

This effect is further exacerbated by eutrophication, which lead to the

rapid blooms of Ulva and Sargassum and subsequently result in

frequent outbreaks of green and golden tides. When green and gold

tides occur simultaneously, the high environmental adaptivity of Ulva

enables it to exacerbate the decline of Sargassum during periods of high

temperatures. This suggests that green tides would outcompete golden

tides in coastal waters under seasonal transition from spring to

summer and even in future scenarios of ocean warming.
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