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Sea ice thickness (SIT) is a critical and sensitive parameter in the climate system,

with its dynamic changes profoundly influencing global climate models,

navigational routes, and the potential for Arctic resource development. Given

the widespread application of current satellite remote sensing technology in

monitoring SIT, significant uncertainties remain. This study first underscores the

importance of in-situ observations as a direct measurement method for SIT.

However, the limitations of in-situ data in terms of acquisition cost,

spatiotemporal coverage continuity, and distribution uniformity significantly

hinder the effective evaluation of multi-source SIT products. To address this,

the study innovatively introduces the Triple Collocation (TC) method, which

effectively mitigates the impact of errors from individual data sources on the

overall evaluation results through a mutual validation mechanism among

multiple satellite data sources. This allows for a scientific assessment of multi-

source SIT products even in the context of scarce in-situ observations. The

findings indicate that the TC method not only successfully resolves the

challenges of multi-source data evaluation but also facilitates data integration

among these products, significantly enhancing the overall accuracy and

spatiotemporal consistency of SIT data.
KEYWORDS

sea ice thickness, limited in-situ observations, triple collocation, multi-source data
evaluation, multi-source data fusion
1 Introduction

Sea ice is one of the most sensitive environmental factors in the climate system. Acting

as an insulator for heat, moisture, and material exchange between the ocean and the

atmosphere, it tightly links global atmospheric circulation, oceanic water cycles, and the

balance of temperature, salinity, and heat through complex physical feedback processes
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(Walsh, 1983; Johannessen et al., 2020; Spreen et al., 2020).The

study of sea ice and its variations is therefore of significant relevance

to current global climate research.

Beyond its climatic impact, the melting of Arctic sea ice has

profound implications for human society, such as the opening of

navigational routes, the development of natural resources, and the

enhancement of strategic positioning. The rapid melting of Arctic

sea ice allows for seasonal navigation in much of the Arctic Ocean,

presenting opportunities for new shipping routes (Stroeve and

Notz, 2015; Theocharis et al., 2019; Wang et al., 2021).

Additionally, the melting sea ice exposes rich natural resources

previously covered by extensive ice sheets, making resource

extraction feasible. This, coupled with the opening of new

shipping lanes, introduces new dynamics in economic trade

among energy-demanding nations (Wang et al., 2023). The

central location of the Arctic shipping routes will further

underscore its strategic importance, enhancing its allure and

significantly elevating its strategic position in international politics.

Accurately grasping the variability of sea ice is crucial for

studying global climate change and ensuring the regular operation

of Arctic shipping routes and resource development (Kim et al., 2020;

Chen et al., 2021b). Sea ice concentration and sea ice thickness (SIT)

are two critical parameters representing the horizontal and vertical

characteristics of sea ice variation, respectively. Since 1979, satellite

remote sensing technology has been widely used to estimate sea ice

concentration and thickness. However, compared to sea ice

concentration retrievals, satellite remote sensing products for SIT

still exhibit significant retrieval errors (Zheng et al., 2021). Errors in

altimetric satellite products, such as those from CryoSat-2 (CS2),

originate from measurement inaccuracies in sea ice freeboard height

and the conversion bias between freeboard height and thickness

(Alexandrov et al., 2010; Laxon et al., 2013). Microwave satellite

products, like those from the Soil Moisture and Ocean Salinity

(SMOS) mission, face limitations due to the penetration depth of

microwaves, leading to uncertainties in SIT retrieval (Ricker et al.,

2017). Optical satellite products, such as those from the Advanced

Very High Resolution Radiometer (AVHRR) Polar Pathfinder (APP-

x), are constrained by observational errors related to weather

conditions and the accuracy of input auxiliary variables. Numerical

model products, like the Pan-Arctic Ice Ocean Modeling

Assimilation System (PIOMAS), encounter spatial errors during

the data assimilation process (Gregory et al., 2021). Due to the

distinct sources of error in different SIT products, these errors vary

across different spatial and temporal scales, leading to a degradation

in the quality of outcomes based on these SIT products.

Currently, most researchers rely on in-situ data to evaluate and

validate existing satellite remote sensing data for SIT. Kwok and

Cunningham (2015) utilized in-situ datasets from Upward-Looking

Sonar (ULS), submarine draft measurements, electromagnetic

induction sounding systems, and Operation IceBridge (OIB) SIT

data to assess CS2 data in terms of mean values, standard deviations,

and correlations, finding more significant discrepancies between CS2

and OIB data (Kwok and Cunningham, 2015). Kaleschke et al. (2015)

analyzed the differences between SMOS and CS2 due to their

fundamental differences in radiometric and altimetric measurement

principles, highlighting the higher uncertainty of SMOS in thick ice
Frontiers in Marine Science 02
and CS2’s higher uncertainty in thin ice due to its reliance on accurate

freeboard measurements (Kaleschke et al., 2015). Feng et al. (2021)

validated CS2 SIT data using OIB and ULS data, revealing an average

difference of approximately 0.165 m between CS2 and OIB data in

March 2015, and differences ranging from 0.11 to 0.12 m between

CS2 and ULS data from November 2010 to March 2018 (Feng et al.,

2021). Traditional evaluation methods rely on comparing satellite

retrievals with in-situ observations, commonly using metrics such as

mean values, root mean square error, and correlation to assess

temporal and spatial variations in sea ice data.

In-situ observations are the most direct method for measuring

SIT, providing highly accurate results and reliable evaluations of

SIT products. However, obtaining in-situ observations in the Arctic

region faces three primary challenges: 1) high costs; 2) difficulty in

acquiring continuous temporal and spatial data, hindering the

evaluation of spatiotemporal variations in different sea ice data

products; and 3) highly uneven distribution of existing in-situ data,

leading to insufficient representativeness and challenges in

comprehensively evaluating the performance of wide-area polar

SIT data products. Consequently, current research primarily focuses

on comparing the characteristics of different SIT data, with in-situ

data serving mainly as a reference and not directly used for SIT

evaluation and integration.

To fully utilize SIT remote sensing data and improve its

accuracy and spatiotemporal resolution, researchers have explored

various multi-source data fusion methods, achieving some success.

Ricker et al. (2017) employed weighted mean (WM) and optimal

interpolation (OI) methods to integrate weekly SMOS and CS2 SIT

data, forming weekly CS2SMOS data. In the Barents Sea, the OI

method reduced the root mean square error of CS2SMOS thickness

data by approximately 0.7 m compared to CS2 data, but the fusion

effect of CS2SMOS was inferior to the original data in the mixed ice

of the Beaufort Sea (Ricker et al., 2017). Wang et al. (2020) extended

Ricker et al. (2017)’s work by developing an optimal multi-sensor

data fusion method, combining daily SMOS and weekly CS2SMOS

data to generate new daily CS2SMOS SIT data, reducing

observational uncertainties, providing better spatial coverage for

coastal regions, and improving the accuracy of thin ice observations

at the edges (Wang et al., 2020). However, significant errors

persisted in areas such as the Davis Strait, Baffin Bay, and the

southern coast of Greenland.

The Triple Collocation (TC) method has proven effective in

estimating random errors in satellite products in the absence of

reliable in-situ observation data (Stoffelen, 1998; McColl et al.,

2014). TC estimates the error values and correlation coefficients

of SIT time series using three independent datasets linearly related

to the true value, without requiring extensive, high-density in-situ

data. This method is particularly important for validating SIT in

regions lacking observational data and has been widely used to

validate satellite products, such as sea surface wind (Stoffelen, 1998),

soil moisture (Yilmaz and Crow, 2014) and terrestrial snow depth

(Qiao et al., 2022). However, there are few studies on validating SIT

using TC, and more importantly, TC demonstrates the potential to

integrate multiple datasets from different sources, thereby

improving accuracy and reducing uncertainty (Yilmaz et al., 2012;

Gruber et al., 2017).
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The objective of this study is to explore the effectiveness of the

TC method in evaluating SIT data, enabling evaluation in regions

without observational data. Furthermore, based on the evaluation

results, this study aims to design a multi-source SIT data fusion

method to enhance the accuracy and spatiotemporal resolution of

sea ice data. The structure of this paper is as follows: Section 2

introduces the data sources used in this study; Section 3 describes

the evaluation and fusion methods for product data with limited in-

situ observations; Section 4 analyzes the evaluation and fusion

results; Section 5 discusses the effective spatial resolution of the

fused products; and Section 6 summarizes the findings of this study.
2 Data presentation

2.1 Product data

2.1.1 APP-x
The APP-x extended product, developed by the National

Oceanic and Atmospheric Administration (NOAA), provides

estimates of SIT alongside 18 other geophysical variables in

climate data records (Key et al., 2016). These estimates have been

available for the Arctic and Antarctic Oceans since 1982, with data

provided twice daily.

SIT estimates are derived from AVHRR satellite radiometer

measurements using a one-dimensional thermodynamic model

based on the surface energy balance equation (Key et al., 2016).

Ice thickness is calculated using solar radiation, surface heat flux,

surface albedo, and transmittance, with surface fluxes determined

by variables such as surface skin and air temperature, surface

pressure, relative humidity, ice temperature, wind speed, cloud

cover, and snow depth. Therefore, the Optimal Thermodynamic

Ice Model (OTIM) relies on inputs such as cloud cover, surface skin

temperature, surface broadband radiation flux, and surface

shortwave radiation flux, the latter two obtained during daytime

retrievals. APP-x product sea ice concentration data are sourced

from Nimbus-7 Defense Meteorological Satellite Program (DMSP)

special sensor microwave imager (SSM/I) data, processed using the

National Aeronautics and Space Administration (NASA) team

algorithm (Key et al., 2016). Sea ice type is derived from AVHRR

direct reflectance measurements.
2.1.2 PIOMAS
The PIOMAS couples the Parallel Ocean Program (POP) with

the Thickness and Enthalpy Distribution (TED) sea ice model,

using Generalized Orthogonal Curvilinear Coordinates (GOCC).

PIOMAS incorporates reanalysis data from National Centers for

Environmental Prediction/National Center for Atmospheric

Research (NCEP/NCAR), including 2 m surface temperature, 10

m near-surface wind fields, precipitation, evaporation, specific

humidity, and longwave/shortwave radiation. It employs physical

processes such as surface heat, salinity (or freshwater), and

dynamics as boundary conditions at the sea surface. The model

also integrates satellite data based on the principles of viscous-

plastic rheology and variations in ice thickness. PIOMAS has
Frontiers in Marine Science 03
simulated numerous sea ice and ocean parameters, including SIT,

since January 1979.

2.1.3 CS2SMOS
The CS2 product is from the Alfred Wegener Institute (AWI),

version 1.2 (Ricker et al., 2014; Hendricks et al., 2016), and SMOS

thickness data are from Hamburg University, version 3.1 (Tian-

Kunze et al., 2014).

CryoSat-2, equipped with a Ku-band synthetic aperture radar

interferometric radar altimeter (SIRAL), measures the height

difference between the snow/ice surface and the sea surface. Using

the hydrostatic equilibrium assumption, this height difference is

used to derive SIT. The CS2L1b radar waveform data, retracked

using the Threshold First Maximum Retracker Algorithm

(TFMRA) waveform retracking method with a 50% threshold, are

used to estimate the surface elevation of sea ice and leads. Unlike

Centre for Polar Observation and Modelling (CPOM), CS2 uses the

DTU15 global mean sea surface height model to calculate sea

surface height anomalies. Sea ice concentration and type are

derived from Ocean and Sea Ice Satellite Application Facility

(OSI-SAF) products, with areas having sea ice concentration

greater than 70% identified as sea ice regions. Snow thickness and

density data are obtained from MW99 data (Warren et al., 1999).

SMOS, equipped with the Microwave Imaging Radiometer

using Aperture Synthesis (MIRAS), uses L-band (1.4 GHz)

information to estimate SIT. The thickness retrieval is based on

the thermodynamic equilibrium equation, where the heat flux

entering the snow-ice system equals the atmospheric heat flux,

including sensible heat flux, latent heat flux, longwave radiation,

shortwave radiation, and conductive heat flux. The conductive heat

flux-thickness relationship is used to estimate thickness.

The CS2SMOS product, developed by the Alfred Wegener

Institute (AWI) and Hamburg University, merges CS2 and SMOS

thickness estimates, providing weekly SIT data on the EASE2.0 grid

with a resolution of 25 km (https://smos-diss.eo.esa.int), from

November 2010 to the present. This study uses data from

November 2010 to April 2021.

2.1.4 CPOM
The CPOM is an independent organization dedicated to

providing polar observation and simulation data. It was the first

to publicly offer Arctic SIT products based on CS2 radar altimeter

data, providing near-real-time (NRT) thickness products with

observation cycles of 28 days, 14 days, and 2 days.

CPOM uses CS2L1b data to retrieve Arctic SIT. The stack

standard deviation (SSD) and pulse peakiness are used to

differentiate radar waveforms from leads and sea ice. The surface

height of sea ice is determined by setting the retracking point at 70%

of the leading edge of the ice radar waveform, using the Gaussian-

fitting waveform retracking algorithm proposed by Giles et al.

(2007). The retrieval of Arctic SIT also requires auxiliary data,

such as mean sea surface height, sea ice concentration, sea ice type,

and snow thickness. The global mean sea surface height is derived

from the University College London 2013(UCL13) model to

calculate sea surface height anomalies and ice freeboard height.
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Daily polar grid sea ice concentration products from the National

Snow and Ice Data Center (NSIDC) are used to identify areas with

sea ice concentration greater than 75%, and sea ice type data are

obtained from OSI-SAF products. Snow thickness and density over

sea ice are based on climatological data provided by Warren et al.

(1999), and modified according to the method described by Laxon

et al. (2013) (MW99). In MW99, the snow thickness on first-year

ice is set to 50% of the climatological data, and snow density is a

monthly constant based on each ice type.

Based on the above, a summary of the characteristics of the four

SIT products is shown in Table 1.
2.2 In-situ data

2.2.1 OIB
The OIB was initiated in 2009 to bridge the observational gap

between the conclusion of the ICESat mission in 2009 and the

commencement of the ICESat-2 mission in 2018. OIB collects

elevation measurements of sea ice and land ice. Compared to

ULS, IceBridge provides a broader spatial measurement range of

SIT, although the observation period is shorter, primarily

concentrated in a few days during March and April from 2010 to

2019. This study utilizes eight years of publicly available IceBridge

data from 2012 to 2019, sourced from the National Snow and Ice

Data Center (https://nsidc.org/data/nsidc-0708/versions/1).

2.2.2 ULS
The ULS devices are deployed as part of the Beaufort Gyre

Exploration Project (BGEP) in the Beaufort Sea (https://

www2.whoi.edu/site/beaufortgyre/). ULS data are obtained using

devices that emit sonar signals from the seabed upward, measuring

the distance to the ice bottom to determine sea ice draft, which is

then converted to overall SIT using empirical models. The

instruments are typically positioned at depths of 50 m and 85 m,

providing distance measurements to the ice bottom every 2 seconds,

with a footprint diameter of approximately 2 meters (Krishfield and

Proshutinsky, 2006). Ice draft is calculated by subtracting the

corrected distance (accounting for instrument tilt, sound speed,
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pressure sensors (Melling et al., 1995). The accuracy of sonar-

determined draft measurements is controlled within 0.05 to 0.10 m

(Kwok and Cunningham, 2015), and the draft is converted to

thickness by multiplying by a coefficient of 1.1, based on the

average density ratio of seawater to sea ice (Nguyen et al., 2011).

Four buoys have been deployed, with buoys A, B, and D providing

continuous observations since 2010. This study uses ULS data from

these three buoys for the winter half-years from 2011 to 2021. ULS

provides long-term continuous observations but only covers a few

fixed points.

The spatial resolution of ULS and OIB sampling points is also

illustrated in Figure 1.
3 Research methodology and design

This study presents a novel framework tailored for the

evaluation and integration of SIT data with limited in-situ

observations. The methodology is divided into two main phases:

First, we analyze the uncertainty of SIT data. By utilizing

limited in-situ observations and pseudo-truth methods, we establish

that the assumptions of the TC method (a non-truth-based data

evaluation approach) are satisfied. Subsequently, we identify suitable

triplets for the evaluation of SIT data without requiring in-situ

observations. Secondly, we propose a multi-source SIT data

integration scheme with in-situ observations. This scheme is based

on the fusion weights determined from the SIT anomaly datasets,

aiming to enhance the accuracy and spatiotemporal resolution of

SIT products.

The detailed experimental design process is illustrated

in Figure 2.
3.1 Prerequisite testing for the
TC algorithm

The application of the TC algorithm necessitates the fulfillment

of three foundational assumptions: 1) all three datasets in the triplet
TABLE 1 Characteristics of different SIT products.

Product APP-x CS2SMOS CPOM PIOMAS

Data
Source

Satellite Radiometer Synthetic Aperture Radar
Synthetic Aperture Radar/Interferometric

Radar Altimeter
Coupled Ocean and Sea Ice Model

Time
period

1982-present
2010.11-present
October-April

2010.11-present
October-April

1979-present

Spatial
resolution

25km 25km 5km 25km

Time
resolution

Daily Weekly Monthly Daily

Quality
assessment

Uncertainty high for
ice thicker than 3m
(Wang et al., 2023)

High sensitivity to thin ice below 1m,
underestimation of FY and MY ice
(Ricker et al., 2017; Mu et al., 2018)

The monthly/seasonal average values of SIT
exhibit high accuracy and are frequently

utilized as reference data (Sallila et al., 2019)

Numerical Model Simulations
Deviation around 9%, overestimation
of thin ice, underestimation of thick
ice (Zhang and Rothrock, 2003)
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are linearly related to an unknown reference dataset; 2) the errors in

each dataset are mutually uncorrelated; and 3) the errors in each

dataset are uncorrelated with the unknown reference dataset.

Among these, violation of assumption 2) is regarded as the

primary source impacting the effectiveness of TC estimation

methods. However, many newly developed global gridded

products often involve the overlapping use of common inputs

and/or processing methods, which inevitably increases the

possibility of correlated errors among different products

(Chen et al., 2021b). For instance, both the CS2SMOS and

CPOM SIT products include data from the CS2 radar altimeter

and use the same mean sea level height standard, DTU15 MSS.

Therefore, the application of the TC algorithm only requires low

error correlation among each dataset. Since the quality of TC-based

fusion results also depends on the composition of TC triplet

members (Koster et al., 2021), careful consideration should be

given to the selection of triplet members to minimize violations

of the fundamental assumptions when error correlations exist

between parent datasets (Chen et al., 2021b).
FIGURE 1

The spatial resolution of ULS and OIB.
FIGURE 2

Experimental design workflow diagram.
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To validate assumption 2), this study assumes a linear

relationship between the true SIT value and the product datasets

of SIT, which can be expressed as:

SITi = ai + biSITtrue + ei(i ∈ 1,   2,   3f g) (1)

where SITtrue represents the unknown true SIT value; SITi

represents the product datasets of SIT; ei represents random

errors, bi represents the bias coefficient of the product data

relative to the true value, and ai represents the bias intercept

relative to the true value.

The Mann-Whitney U test method is employed to assess the

significance of the linear relationship between the SITtrue and the

SITi, with a significance level of a = 0:05. The p value from the test

results determines whether the linear relationship is significant. If

significance is observed, assumption 1) is also validated.

By performing linear fits of SIT datasets with the true data from

ULS and OIB, the random errors ei can be extracted, and covariance
calculations can be used to test the correlation of product errors.

Given the limited spatial coverage of the OIB and ULS in-situ data,

which are mostly distributed in the Western Hemisphere of the

Arctic, a pseudo-truth validation method is also used. This involves

using each of the four product datasets as reference data to test the

error correlations between products, thereby addressing the

limitations of the spatial and temporal resolution of in-situ

observation data and overcoming the representativeness issue of

in-situ observation data. Suitable triplet data for product data fusion

are filtered based on the correlation test results.

For assumption 3), if the unknown reference dataset is the true

value, the mutual uncorrelation between product errors and the true

value holds. When the unknown reference dataset is a certain

product dataset, assumption 3) can be decomposed into the

mutual uncorrelation between product errors and the true value,

and the mutual uncorrelation between the errors of different

product datasets. The former holds, and the latter reverts to the

test for assumption 2). In conclusion, if assumption 2) holds, all

three prerequisites for the TC algorithm are satisfied.
3.2 Evaluation of sea ice thickness data
with limited in-situ observations using
the TC algorithm

The insufficient spatiotemporal resolution of in-situ datasets

impacts the accuracy of TC algorithm assumptions and the

evaluation based on these in-situ datasets. This study leverages

the TC algorithm to assess product data quality with limited in-situ

observations. The covariance Ci,j between any two of the three SIT

products is expressed as follows, according to the covariance

calculation formula and (Equation 1):

Ci,j = Cov(SITi, SITj) =

bibjs 2
T + biCov(SITtrue, ej) + bjCov(SITtrue,   ei) + Cov(ei, ej)

(2)

where Cov( · ) represents the covariance, and s 2
T denotes the

variance of the true SIT.
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The TC method assumes that the errors in SIT products are

independent of the true SIT errors, i.e., Cov(SITtrue, ei) = 0, and that

the random errors of the three products are uncorrelated, i.e., Cov

(ei, ej) = 0 when i ≠ j. Under these assumptions, (Equation 2)

simplifies to:

Ci, j = Cov(SITi, SITj) =
bibjs2

T , f or   i ≠ j

b2
i s 2

T + s 2
ei , f or   i = j

(
(3)

Where s 2
ei is the variance of the random error in the SI

Ti dataset.

The root mean square error RMSE(sei ) of each SIT product can

be estimated as follows:

se1 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C11 −

C12C13
C23

q
(4)

se2 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C22 −

C12C23
C13

q
(5)

se3 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C33 −

C13C23
C12

q
(6)

The correlation coefficients (R) between the different datasets

and the true values are calculated using the following formulas:

RT ,1 =
ffiffiffiffiffiffiffiffiffiffi
C12C13
C11C23

q
(7)

RT ,2 =
ffiffiffiffiffiffiffiffiffiffi
C12C23
C22C13

q
(8)

RT ,3 =
ffiffiffiffiffiffiffiffiffiffi
C13C23
C33C12

q
(9)

where RT ,i represents the correlation coefficient between the

dataset and the true values.

Thus, the TC algorithm enables the evaluation of SIT product

data quality with limited in-situ observations.
3.3 Data fusion method

Influenced by the TC algorithm, this section performs fusion

processing on the SIT anomaly datasets, superimposing

climatological mean data to achieve the integration of SIT

product data.

3.3.1 Construction of outlier time series
SIT products derived from various methods may exhibit

systematic differences, i.e., different dynamic ranges and

climatologies. These differences are influenced by the

characteristics of varying spatial and temporal scales and different

forcing datasets during processing. It is noteworthy that the TC

algorithm is most robust for anomalous error representation

because the climatology of geophysical products comprises

limited degrees of freedom, and the climatological errors of

different products may be interrelated, potentially violating the

TC assumption (Draper et al., 2013). Therefore, before applying
frontiersin.org
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the TC method, this study converts the selected four SIT products

into zero-mean anomaly datasets (Chen et al., 2017). Here we

choose the anomaly calculation against the long-term seasonality

(also often termed as the climatology) following common practice

of previous (Dorigo et al., 2010; Peng et al., 2021), which is

calculated as the average of the same day of the year (DOY) for

their overlapping period (Liu et al., 2012). The mean values of the

same day during the overlapping period of the products from 2011

to 2021 winter halves are calculated, as shown in (Equation 10).

ANOYR
DOY = ORIYRDOY − o2021

YR=2003
ORIYRDOY

N
(10)

Where ANO refers to SIT anomalies; YR refers to the years

2011-2021; DOY refers to a specific day of the year; ORI refers to the

original time series data of SIT; N represents the number of valid

years for SIT values.
3.3.2 TC fusion algorithm
The TC method assumes three error-independent datasets, all

linearly related to the unknown true value in the error model

(McColl et al., 2014; Chen et al., 2017, 2021a). The error model of

TC can be expressed as follows:

ANOi = ai + biANOt + ei (11)

where ANOi i ∈ X,Y ,Zf gð Þ represents SIT anomaly dataset, A

NOt denotes the unknown reference SIT anomaly dataset, ei
represents the random error of the SIT anomaly dataset, and ai

and bi represent the least squares intercept and slope of the SIT

anomaly dataset, respectively. For convenience, in the following, X,

Y ,Z will directly represent the anomaly datasets of the SIT products

in the triplet.

To eliminate systematic differences in multiple SIT anomaly

datasets (Draper et al., 2013), this section uses recalibrated error

variance to estimate the merging weights of SIT anomalies. For

recalibration, an arbitrary anomaly dataset is selected as the

reference dataset. Here, anomaly dataset X is chosen, and the

other two datasets are recalibrated to this reference product

(Gruber et al., 2016), as calculated by:

X� = X (12)

Y� = b�
YY ,     b�

Y = sXZ
sYZ

(13)

Z� = b�
ZZ,     b�

Z = sXY
sYZ

(14)

where X�, Y�, Z� refer to the recalibrated SIT anomaly datasets;

b�
YY and b�

ZZ are the multiplicative scaling parameters for Y and Z,

respectively; sXY denotes the covariance of the time series of

anomaly datasets X and Y. The error variance of the recalibrated

SIT anomaly datasets is calculated as follows:

s 2
eX = s 2

eX� = 〈 (X� − Y�)T (X� − Z�) 〉 (15)

b�
Y
2s 2

eY = s 2
eY� = 〈 (Y� − X�)T (Y� − Z�) 〉 (16)
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b�
Z
2s 2

eZ = s 2
eZ� = 〈 (Z� − X�)T (Z� − Y�) 〉 (17)

where s 2
eX� denotes the error variance of the recalibrated

anomaly dataset X�, and 〈 · 〉 indicates the time average. The

fusion weights of SIT anomalies are determined by the error

variances of the recalibrated SIT anomaly datasets (Dong et al.,

2020; Zhou et al., 2021), as follows:

WX =
s 2
eY� s

2
eZ�

s 2
eX� s

2
eY� +s

2
eX� s

2
eZ� +s

2
eY� s

2
eZ�

(18)

WY =
s 2
eX� s

2
eZ�

s 2
eX� s

2
eY� +s

2
eX� s

2
eZ� +s

2
eY� s

2
eZ�

(19)

WZ =
s 2
eX� s

2
eY�

s 2
eX� s

2
eY� +s

2
eX� s

2
eZ� +s

2
eY� s

2
eZ�

(20)

The least squares-based fusion calculation formula for SIT

anomaly datasets is:

ANOFuse = WXX
� +WYY

� +WZZ
� (21)

The fused anomaly datasets is added to the climatological mean

subtracted in (Equation 10) to obtain the multi-source fused

SIT dataset.

4 Results analysis

4.1 TC premise test results and analysis

In this study, in-situ observation validation utilized ULS and

OIB in-situ observation data as reference true value datasets. The

SIT data from four different products were resampled to achieve

spatial and temporal consistency with the in-situ data, facilitating

product error correlation verification. Spatially, when the in-situ

data was ULS, the product data were resampled to three fixed points

(A, B, D). When the in-situ data was OIB, the product data and OIB

data were both resampled to the EASE2 grid of NSIDC (Dong et al.,

2022; Jiang et al., 2023; Jinghui Jiang et al., 2023). Temporally, the

ULS data covered the years 2010-2021, while the OIB data covered

March to April of 2010-2019. For pseudo -truth validation, the

product data were used as reference values. The temporal and

spatial scales of other product data were matched using the

resampling method to calculate the error covariance between

pairs of product datasets, thereby verifying the correlation of

product errors. This validation required traversing all product

data and calculating all error covariance results, enabling

correlation testing without true values and compensating for the

limitations of correlation tests with limited in-situ observations.

Initially, the reference data and product data were linearly fitted to

obtain error sequences, and the covariance between product errors

was calculated to verify error correlation between products. As an

example of true value validation, the linear fitting results are shown

in Figure 3.

Based on the Mann-Whitney U test, all results indicated p <

0.001, demonstrating a significant relationship for the

aforementioned linear fitting results. This confirms the linear
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relationship between the true values and the product data. Using the

same method, the significance of the fit between the reference data

from the pseudo-true value test method and the product data was

tested, and all results showed p < 0.001, indicating a valid linear

relationship. Consequently, the error after the product’s linear

fitting was calculated, and the covariance of errors between each

pair of product data was computed. For the pseudo-true value

method, the covariance of errors for each pair of products was

calculated twice and then averaged. The results of the true value and

pseudo-true value tests are presented in Table 2.

The table indicates that when using the true value as a

reference for linear fitting, the error covariances between the

products are all below 0.2, except for the error covariance

between CS2SMOS and CPOM. For all other data pairs, the

error covariances are below 0.15. When using OIB and ULS as

true values, the results of the correlation test for product errors fall

within the acceptable range of the study. The results of the error

correlation tests for the four types of products using both true and

pseudo-true values are generally consistent. Compared to other

product datasets, the error covariance between CS2SMOS and

CPOM is relatively larger, likely due to different product members
Frontiers in Marine Science 08
in the triplet. Therefore, in this section, two TC triplets were

constructed: Triplet (A) consisting of APP-x, PIOMAS, and

CS2SMOS; and Triplet (B) consisting of APP-x, PIOMAS,

and CPOM. These triplets will be used for the evaluation

and integration of multi-source SIT data products in the

following sections.
(a) (b)

(c) (d)

FIGURE 3

Linear regression results between the truth and product data (truth: ULS and OIB in-situ observations) (A) APP-x; (B) PIOMAS; (C) CS2SMOS;
(D) CPOM.
TABLE 2 Calculation results of error covariance for product data.

Products

Error Validation Methods

True
Values Test

Pseudo-True
Values Test

APP-x PIOMAS 0.1396 0.1405

APP-x CS2SMOS 0.1458 0.0264

APP-x CPOM 0.1169 0.0417

PIOMAS CS2SMOS 0.1481 0.1735

PIOMAS CPOM 0.1173 0.0891

CS2SMOS CPOM 0.1922 0.2697
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4.2 Evaluation and analysis of sea ice
thickness based on the TC algorithm with
limited in-situ observations

Using the TC algorithm to evaluate SIT data with limited in-situ

observations, we validated the results by comparing them against

in-situ data and product data using two indicators: correlation and

root mean square error (RMSE). This approach tests the reliability

of SIT data evaluations derived from the TC algorithm with limited

in-situ observations. Initially, we conducted an assessment using

OIB in-situ data and TC method product results, as presented

in Table 3.

Table 3 presents the R and RMSE values for different SIT

products, evaluated using two methods. The results indicate that,

compared to evaluations based on in-situ datasets, the TC method

generally yields higher correlation values with the true values.

However, both methods consistently show that CS2SMOS has the

highest correlation, followed by CPOM and PIOMAS, with APP-x

having the lowest correlation. This suggests that while the TC

method’s correlation values differ, the ranking of the correlations

between different products is consistent with the evaluation based

on in-situ datasets. The comparison of RMSE values calculated by

both methods also reveals that APP-x has the highest RMSE, while

CS2SMOS has the lowest. Additionally, the TC analysis results for

the two triplets show that the R and RMSE values for the same

product with the true values are similar across different triplets,

indicating the robustness of the TC method. Although the TC

method does not provide unique error results under different

combination conditions, this does not affect the relative

comparison between different products.

The ULS data, which is a long-term time series at fixed points,

offers more accurate correlation evaluation results. By utilizing ULS

in-situ datasets to assess the correlation of the TC fusion results, the

findings are presented in Tables 4, 5.

From Tables 4, 5, it can be observed that, compared to the

evaluation based on the true values, the correlation results obtained

by the TC method are generally higher. However, both methods

indicate that PIOMAS has the highest correlation, followed by APP-

x, with CPOM having the lowest correlation. This suggests that

while the TC method yields different correlation values, the ranking

of the correlations among different products remains consistent

with the results of the evaluation based on actual measurements. It

can also be found that the conclusions derived from comparing
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product evaluations with OIB as the in-situ observations to TC-

based product correlations with limited in-situ observations still

hold when using ULS as the in-situ observations for comparison. In

summary, TC-based product evaluation with limited in-situ

observations can effectively compare the relative quality of

product data, providing a reliable reference for selecting

appropriate product data in different scenarios.
4.3 Results and analysis of sea ice
thickness data fusion

In this study, when fusing the triplet (A) TC, we selected the

climatological and corresponding SIT anomaly datasets of each

product in triplet (A) - APP-x, PIOMAS, and CS2SMOS. These

datasets were combined to obtain three fused SIT datasets, referred to

as Fused-A1, Fused-A2, and Fused-A3 in the subsequent discussion.

Similarly, for the fusion of triplet (B) TC, we selected the

climatological and corresponding SIT anomaly datasets of each

product in triplet (B) - APP-x, PIOMAS, and CPOM. These

datasets were combined to obtain three fused SIT datasets, referred

to as Fused-B1, Fused-B2, and Fused-B3. The accuracy of the three

parent products in triplet (A) - APP-x, PIOMAS, and CS2SMOS,
TABLE 3 Comparison of observed OIB data with evaluation product
results from the TC method.

APP-x PIOMAS CS2SMOS CPOM

R

In-situ data 0.56 0.64 0.73 0.72

TC(A) 0.72 0.86 0.92

TC(B) 0.74 0.84 0.88

RMSE

In-situ data 0.95 0.83 0.74 0.73

TC(A) 0.46 0.35 0.31

TC(B) 0.45 0.37 0.34
TABLE 4 Comparison of observed ULS data with evaluation product
results from the TC method (Triplets A).

Method
Fixed
Points

APP-x PIOMAS CS2SMOS

R

In-situ data

A 0.6456 0.7210 0.6944

B 0.7013 0.8126 0.7567

D 0.5998 0.7408 0.6956

Mean 0.6489 0.7581 0.7156

TC

A 0.8822 0.8764 0.8421

B 0.7885 0.9108 0.8737

D 0.8333 0.9236 0.8391

Mean 0.8347 0.9036 0.8516
TABLE 5 Comparison of observed ULS data with evaluation product
results from the TC method (Triplets B).

Method
Fixed
Points

APP-x PIOMAS CPOM

R

In-
situ data

A 0.6456 0.7210 0.5772

B 0.7013 0.8126 0.6031

D 0.5998 0.7408 0.5084

Mean 0.6489 0.7581 0.5629

TC

A 0.8310 0.9036 0.6704

B 0.7725 0.9300 0.7204

D 0.7717 0.9671 0.6201

Mean 0.7917 0.9336 0.6703
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along with the three fused products Fused-A1, Fused-A2, and Fused-

A3, was assessed using R, RMSE, and mean absolute error (MAE)

with respect to ULS observed data. The results are presented in

Table 6. Similarly, accuracy evaluations for the parent and fused

products in triplet (B) were conducted, with results shown in Table 7.

Upon analyzing the table, we compare the climatology products

with the corresponding fused products and find that the precision

assessment results of the fused products are superior to those of the

original climatology products. The precision assessment result of

the fused product Fused-A3, derived from the CS2SMOS

climatology data and triplet (A) anomaly fusion, is superior to the

original CS2SMOS product. Comparing the fusion results with the

product data reveals that the fusion results have achieved precision

improvements over their corresponding climatology mean

products. Among triplet (A), the fusion result Fused-A3 based on

CS2SMOS climatology data exhibits the highest precision. In triplet

(B), the fusion results Fused-B2 and Fused-B3, based on PIOMAS

and CPOM respectively, demonstrate higher precision compared to

the fusion product Fused-B1 based on APP-x climatology data. The

evaluation results of the merged product based on OIB observations

are consistent with those based on ULS observations.

In terms of spatial distribution, all OIB data from 2012 to 2019

were temporally and spatially matched with the fused products.

Subsequently, the spatial distribution map of the differences

between the observed OIB data and the fused products was

plotted, as shown in Figure 4.

Figure 4 illustrates that within the Triplet (A) fusion results,

Fused-A1 exhibits the largest discrepancies compared to the in-situ

data among the various fusion products. In the Beaufort and Chukchi

Seas, Fused-A3 shows smaller discrepancies relative to Fused-A2

when compared to the in-situ data. In other regions, the discrepancy

results of Fused-A3 and Fused-A2 are close to the in-situ data.

For the Triplet (B) fusion results, Fused-B1 demonstrates the

largest discrepancies relative to the in-situ data compared to other

fusion products. In the Beaufort and Chukchi Seas, Fused-B3

presents smaller discrepancies compared to Fused-B2 when
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compared to the in-situ data. In the central Arctic region, Fused-

B2 shows smaller discrepancies than Fused-B3 compared to the in-

situ data. In other regions, the discrepancy results of Fused-A3 and

Fused-A2 are similar to the in-situ data.

In summary, the TC algorithm enhances the accuracy of the

original climate-related products. The highest accuracy fusion

product shows an improvement in precision over all parent

products. Selecting high-quality parent products before

performing data fusion with the TC algorithm is crucial for

achieving high-accuracy fusion products.
5 Discussion

The integration of product thickness data affects not only the

precision of the product itself but also the spatial resolution. In this

study, the spatial resolution of the CPOM SIT product data in the

determined triplet (B) is 5 km. Therefore, the spatial resolution

analysis will be exemplified using the integration results of triplet

(B). Firstly, the APP-x and PIOMAS SIT product data in the TC

triplet (B) are resampled onto the CPOM product grid. The

resampled SIT data from the three sources are then integrated to

form TC, and the effective spatial resolution of the integrated product

is measured using the wavenumber spectrum method. Given that the

precision of the integrated product Fused-B1, based on APP-x

climatological data, is lower than that of Fused-B2 and Fused-B3,

and considering that Fused-B3 is based on CPOM climatological data

where the daily data is generated by replicating monthly data, this

study opts for Fused-B2, which is based on PIOMAS climatological

data. The effective spatial resolution of Fused-B2 will be discussed

using the wavenumber spectrum method.

A wavenumber spectrum is a power spectrum plotted with

wavenumber on the horizontal axis. The simplest and most intuitive

wavenumber spectrum represents the wavenumber and spectral

energy (i.e., the square of the amplitude in Fourier space) obtained

via Fourier transform. Previous studies have computed meridional,
TABLE 6 Accuracy evaluation results of SIT parent products and fusion products for triplets (A) based on ULS.

APP-x PIOMAS CS2SMOS Fused-A1 Fused-A2 Fused-A3

N 5805 5805 5805 5805 5805 5805

R 0.63 0.75 0.72 0.72 0.77 0.75

RMSE 0.80 0.59 0.40 0.74 0.57 0.37

MAE 0.66 0.50 0.29 0.62 0.50 0.27
TABLE 7 Accuracy evaluation results of SIT parent products and fusion products for triplets (B) based on ULS.

APP-x PIOMAS CPOM Fused-B1 Fused-B2 Fused-B3

N 5698 5698 5698 5698 5698 5698

R 0.62 0.72 0.55 0.69 0.74 0.65

RMSE 0.80 0.59 0.55 0.75 0.59 0.50

MAE 0.66 0.51 0.43 0.63 0.50 0.40
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zonal, and isotropic spectra based on this principle. In this section, the

meridional spectrum is calculated by obtaining the wavenumber

spectrum from the sequence data along each longitude line in the

region and then averaging them (Wang et al., 2019). Following the

methods used in previous studies to calculate wavenumber spectra for

other oceanic parameters, the sequence data is first detrended, and a

Blackman-Harris window is applied to prevent spectral energy

leakage. The Burg method (MATLAB built-in function) is then used

to estimate the wavenumber spectrum (Nardelli et al., 2016). Using

November 21, 2017, as an example, the meridional spectra for CPOM,

PIOMAS, and the integrated product Fused-B2 are computed for a sea

area with complete SIT data and within the latitude range [78°N-80°N,

343°E-355°E]. The results are shown in Figure 5.

The CPOM dataset, characterized by a spatial resolution of 5

km, demonstrates energy attenuation patterns consistent with the

Fused-B2 fusion product. Previous research indicates that the ideal

spectral slope derived from quasi-geostrophic turbulence theory is

approximately -2, and the wavenumber spectral slope for passive

tracers moving along isopycnal lines is also around -2 (Callies and

Ferrari, 2013). Despite sea ice not being a strict passive tracer, its

thickness is closely linked to seawater temperature and salinity, with

corresponding spectral slopes reported to fall between -3 and -2

(Castro et al., 2017; Yi and Wang, 2024). Consequently, this study

contends that a plausible spectral slope for SIT should also be within

the -3 to -2 range. Considering the Nyquist folding frequency, both

the Fused-B2 fusion product and CPOM achieve a spatial resolution

of 5 km, while PIOMAS is incapable of resolving mesoscale

variations below 25 km.
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6 Conclusion

For the first time, this study establishes a comprehensive

system for the evaluation and fusion of SIT data in scenarios

with limited in-situ observations. The TC algorithm is

incorporated into the processing of four types of SIT products:

CS2SMOS, APP-x, PIOMAS, and CPOM. This approach allows

for the assessment of uncertainties in SIT data and achieves
   

 

(a) (b) (c) 

   

(d) (e) (f) 

FIGURE 4

Spatial Differences Between OIB and SIT Fusion Products from 2012 to 2019 (A) Fused-A1, (B) Fused-A2, (C) Fused-A3, (D) Fused-B1, (E) Fused-B2,
(F) Fused-B3.
FIGURE 5

Zonal Wavenumber Spectra of Three SIT Products within [78°N-80°
N, 343°E-355°E] on November 21, 2017.
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quality evaluation and data fusion with limited in-situ

observations. This study combines true value testing and

pseudo-true value testing to verify the prerequisites for applying

the TC algorithm, selecting product data triplets suitable for TC

fusion. Based on the characteristics of the TC algorithm, a large-

scale, long-term product data ranking was achieved without in-

situ observations. The results indicate that the CS2SMOS product

data exhibit the highest quality among the four types of product

data used in this study. Anomalous time series were extracted

from the product data, and data fusion was performed using the

TC algorithm. The experiments demonstrated that the fusion

results showed improved accuracy compared to the original

climatological product data. The optimal fusion data results,

Fused-A3 and Fused-B2, exhibited superior accuracy compared

to all parent product data.

In addition to evaluating the accuracy of the fusion results, this

study also investigates the spatial resolution of the fusion results.

Taking the triplet (B), which includes the CPOM product with a

spatial resolution of 5 km, and its fusion product Fused-B2 as

examples, the effective spatial resolution was discussed using

wavenumber spectrum analysis results. The findings reveal that

the effective spatial resolution of the fusion product can reach 5 km.

Compared to the parent product CPOM, the temporal resolution is

improved; compared to the parent products APP-x and PIOMAS,

the spatial resolution is enhanced. This addresses the limitation

where satellite observations cannot simultaneously achieve high

temporal resolution, spatial resolution, and spatial coverage in

SIT products.

Future research will focus on the following areas: deepening

error analysis by conducting more thorough quantitative analyses of

the errors in different types of remote sensing data and clarifying

their spatiotemporal distribution characteristics. Optimizing fusion

algorithms by integrating machine learning or deep learning

techniques to further improve the spatiotemporal resolution and

accuracy of the fused data. Enhancing application validation by

applying the fused SIT data to practical scenarios such as Arctic

navigation planning and natural resource development to verify

their effectiveness and utility.
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