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Understanding sediment dynamics and their controlling factors is essential for

Quaternary studies, yet they remain poorly documented in the Mariana Trench.

In this work, we examine this basic character from a sediment core collected at a

depth of 6470 m from the southern part of the Mariana Trench, documenting

changes in sedimentary dynamics over the past ~440 kyr. Our primary findings

are as follows: (1) Themedian grain size is 13.6 ± 12.0 mm, andminimal changes in

clay (30.9 ± 9.4%) and silt (56.6 ± 4.0%) contents, indicating a low-dynamic

depositional environment; (2) Three grain-size components were identified,

characterized by modal changes of ~4/60 mm, ~20 mm, and >100 mm. By

comparing these results with various environmental proxies, including glacial-

interglacial alternations, eolian input, and bottom-water intensity, we suggest

that marine productivity has a dominant influence on deep-sea sediment

dynamics, though post-depositional processes also contribute. Additionally,

topographical conditions and sea-water chemistry appear to be related to the

presence of coarse particles, possibly through coarse transport and micro-

nodule development. Overall, grain-size parameters provide a valuable

investigative tool for understanding the various influences on sediment

dynamics in this region.
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1 Introduction

The Mariana Trench, the deepest part of the Earth’s surface,

reaches a maximum depth of ~11,000 m at the Challenger Deep,

likely due to minimal sediment infill (Fryer et al., 2003). It lies along

the boundary between the eastern Philippine Sea plate and the

subducting Pacific plate (Figure 1). This region represents a non-

accretionary convergent plate margin, where the basement of the

overriding plate is in direct contact with the subducting plate at the

trench axis (Hussong and Uyeda, 1981), with subduction beginning

prior to ~50 Ma (Ranken et al., 1984; Jurdy, 1979).

Technological advances in deep-ocean exploration over the past

decade have drawn significant attention to the Mariana Trench,

revealing the uniqueness of its hadal environment. Research into

hadal water mixing (Kawagucci et al., 2018; Maruyama et al., 2013;

van Haren et al., 2017) and hadal ecosystem (Hiraoka et al., 2019;

Nunoura et al., 2015; Peoples et al., 2018; Wang et al., 2019) has

highlighted two important factors affecting depositional processes

in the trench: eroded and windblown particles (Jiang et al., 2019;

Wang et al., 2016). Moreover, an antiphase relationship between

bottom-water intensity in the trench and the eastern Pacific has

been identified, potentially due to the redistribution of Antarctic

bottom water (AABW) into the North Pacific (Yi, 2023).

However, there is still a lack of verification of various proxies to

infer the paleoenvironmental history of this region. While sediment

grain size is broadly used in environmental studies, it remains unclear

which factors predominantly control this basic characteristic in the

trench. To better understand the paleoenvironment of the surficial

sediments in this abyssal environment, we conducted a detail study of

sediment grain size on a gravity core collected from the south of the

Mariana Trench (Figure 1). By integrating magnetostratigraphy with

authigenic beryllium isotope (10Be/9Be) analyses, a reliable age-depth

model was established, and based on this geochronological

framework, grain-size properties and its controlling factors were

discussed on glacial-interglacial timescales in this work.
Frontiers in Marine Science 02
2 Methodology

2.1 The studied core

Core JL7KGC-11b (J11b; 142.34° E, 10.95° N, 6470 m water

depth) was collected using a gravity piston by the R/V HAI YANG

LIU HAO, Guangzhou Marine Geological Survey in June 2012,

from the southern part of the Mariana Trench. The core is 67 cm in

length and 7 cm in diameter, composed of light-yellow (10YR 7/8)

to brown (10YR 3/3) muds (Figure 2A).

In order to establish an age-depth model for core J11b, sediment

samples were firstly subjected to stepwise alternating field (AF)

demagnetization up to a peak field of 90 mT, using a three-axis

cryogenic magnetometer (2G Enterprise Model 755, USA) installed

in a magnetically shielded room at the State Key Laboratory of

Marine Geology, Tongji University. As a result, no reversal of

magnetic inclination was observed in measurements. As an

alternative geochronological test, 10Be/9Be ratios were employed

to constrain the duration of the core, yielding an age of 405 ± 6 kyr.

Together with Ba/Al ratio changes and correlating with the stacked

benthic d18O record (LR04) (Lisiecki and Raymo, 2005), the

geochronology of core J11b was finally established (Figure 2).

Subsequently, sedimentation rates of 0.7 ± 0.2 mm/kyr for the

upper part and 2.2 ± 0.4 mm/kyr for the lower part were established.

All geochronological data have been previously reported in Yi

(2023) and are used here to assist sediment grain-size analysis.
2.2 Grain-size measurements

A total of 122 sediment samples were collected at 5 mm

intervals from core J11b for grain-size analysis. Samples were

dispersed using sodium hexametaphosphate [(NaPO3)6] and

subjected to ultrasonic vibrator for 6 h. Grain-size distributions

were measured with a Malvern Mastersizer 2000 laser-particle size
FIGURE 1

Schematic map of the Mariana Trench region as well as the location of core JL7KGC-11b. (A) Tectonic setting of the study area. PAC, Pacific plate; PHI,
Philippine plate; CAR, Caroline Ridge. The red rectangle labels the location of the Challenger Deep. (B) Location of the Mariana Trench. (C) Location of the
studied core. The bathymetric data of the Mariana Trench was downloaded from http://ccom.unh.edu/theme/law-sea/mariana-trench-pacific-ocean/.
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analyzer at Second Institute of Oceanography, Ministry of Natural

Resources of China. One hundred grain size classes between 0.3 and

300 mm were analyzed using mathematical methods, including the

varimax-rotated principal component analysis (VPCA),

environmentally-sensitive components, and lognormal-based

unmixing. The common signal of deep-sea sedimentary dynamics

was extracted for paleoenvironmental inferences, following the

established procedures (e.g., Boulay et al., 2003; Paterson and

Heslop, 2015; Chen et al., 2020, 2021).
2.3 Lognormal-based unmixing

Grain-size spectra of sediment are often polymodal, and can be

estimated by superposition of multiple unimodal components,

following a particular theoretical distribution. In this study, we

applied a lognormal function to the grain-size spectra. The

polymodal distribution can be expressed as:

f = p1f 1 + p2f 2 +…(1 − p1 − p2− … pn−1)f n (1)

where fi represents the function for component iwhere i = 1 to n

components, and pi is the component’s percentage in the bulk

sample. Within each spectrum, there are n−1 coefficients, pi, that

need to be estimated due to closure. The lognormal function has the

following form:

f (c , a , b) =
a
ba ca−1e−(

c
b )

a
(2)
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where x represents the grain size in µm, the coefficient a
determines the distribution’s shape, and b controls the position of

the central tendency of the curve - here, the mean grain-size curve.

Because grain-size distribution of all samples consists two

components, the function formula for partitioning can be

expressed by the following equation:

f (c ,a1, b1, p1,a2, b2)

= p1
a1

ba1
ca1−1e−(

c
b1
)a1 + (1 − p1)

a2

ba2
2

ca2−1e−(
c
b2
)a2 (3)

The values a1 and b1 are parameters of the distribution function

of the fine-grained component, a2 and b2 represent the coarse-

grained component. The percentages of each component in a sub-

population are given by p1 and (1-p1), respectively. Using the

measured grain-size data in one hundred grain-size classes (x),

the parameters can be estimated by General Least Squares Fitting.
3 Results

3.1 Grain-size properties

The median grain size (M) throughout the studied interval of

core J11b is 13.6 ± 12.0 mm, suggesting a low-dynamic depositional

environment that has remained relatively stable over the past ~440

kyr (Figure 3A). Clay (< 4 mm) and silt (4~63 mm) contents showed

minimal variation, with average values of 30.9 ± 9.4% and 56.6 ±
FIGURE 2

The age-depth model of core J11b. (A) The core photo. (B) Ba/Al changes of core J11b for tuning. (C) Benthic d18O stack LR04 (Lisiecki and Raymo,
2005) versus the tuned Ba/Al record of core J11b (11-point moving average). This tuning process was preliminary constrained by 10Be dating (405 ±
6 kyr), and all of these data was reported in Yi (2023).
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4.0%, respectively. However, sand particles (> 63 mm) exhibited

greater variability, with an average value of 12.5 ± 9.2%. Similar

variability can be also observed in C values (207.7 ± 122.6 mm),

which represents the one percentile of grain size distribution. For

the coarsest component (typically >300 mm), they are observed only

in several samples, which could be micro authigenic nodules

occurring in slowly accumulating marine low sediments (Wang

et al., 2016), or biogenic silica debris (Lai et al., 2023). These coarse

particles seem independent to other grain-size components, and

consistent with sediments from surrounding regions (Yi et al.,

2020, 2021).

To further characterize the sedimentary dynamics, we analyzed

two parameters: C value, representing the most hydrodynamically

active component, and M, the median diameter, indicating the

mean hydrodynamic energy. In the C-M diagram, in which valuable

insights into sediment transport and hydrodynamic intensity can be

revealed (Passega, 1957, 1964), it is observed that these two

parameters are generally coupled (Figure 4B). However, when C

values exceed 300 mm, the most dynamic sedimentary process

appears uncoupled from the dominant sedimentary components,

suggesting distinct dynamics.

The grain-size distributions are bimodal, with modal sizes of

~4 mm and ~60 mm (Figure 3). Minor differences in grain-size
Frontiers in Marine Science 04
distributions among samples indicate a stable sedimentary

environment throughout the studied period. Environmentally

sensitive grain-size components are useful for characterizing

specific sedimentary processes and/or dynamics (Boulay et al.,

2003), and they have been used in various paleoenvironmental

studies (e.g., Hu et al., 2021; Sun et al., 2003). Following the method

of Boulay et al. (2003), two environmentally-sensitive components

were determined (Figure 3C): CC-1 and CC-2, peaking at 2.8-4.0

mm and 55.3-83.6 mm, respectively.

Polymodal grain-size spectra can be mathematically partitioned

(Ashley, 1978), enabling the separation of orthogonal modes

(independent grain-size components/factors) to identify potential

changes in input functions and/or sedimentary dynamics (e.g.,

Chen et al., 2020, 2021; Yi et al., 2012a). Using lognormal-based

unmixing (Paterson and Heslop, 2015), we identified two primary

components (Figure 4C): EM-1 and EM-2, with modal sizes of 4.3

mm and 48.1 mm, respectively. VPCA can be also used to identify

the processes controlling sediment grain-size changes and to extract

paleoenvironmental signals (e.g., Hu et al., 2021; Yi, et al., 2012b).

As a result, four components (VF1-VF4) account for 98.6% of the

variance (Figure 4D).

Combining all the grain-size results, it is inferred that for

environmentally-sensitive components and lognormal-based
FIGURE 3

Spectral profile of sediment grain size of core J11b (A) with probability density function (B) and the results of environmentally-sensitive components
(CC-1 and CC-2) (C). Mean, the average grain-size curve of all samples; S.D., the standard deviation for all samples.
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unmixing (Figures 3, 4), two grain-size components are similarly

identified and negatively correlated with each other, suggesting a

single major factor dominating sedimentary dynamics. However,

for VPCA results, four extracted components may infer a more

complex process, which highlights the potential of the VPCA

method in analyzing grain-size data in this critical region. In

details, components VF1 and VF2 are closely related to changes

in CC-1 and EM-1, and CC-2 and EM-2, respectively. Components

VF3 and VF4 highlight more complex processes, indicating

additional sedimentary factors influencing grain-size distribution.
3.2 Changes in grain-size parameters

Constrained by the refined age-depth model, variabilities in each

grain-size parameter can be revealed. As shown in Figure 5, four key

grain-size parameters, including median size (M), and clay, silt and

sand contents, are well correlated with each other in the past ~440

kyr. For example, clay and silt contents exhibit negative correlations

with median size (M) and sand content, respectively. During 150-300

ka, all grain-size parameters display a significant shift. This variation
Frontiers in Marine Science 05
is similarly reflected in the derived grain-size components, including

EM1, EM2, VF1, and VF2 (Figure 6), supporting the inference that a

single major factor dominating sedimentary dynamics in the study

area during the depositional interval.

Interestingly, for the most hydrodynamic sedimentary

component, the C value exhibits distinct variability. Although not

as pronounced as other parameters, it generally aligns with glacial-

interglacial alternations (Figure 5B). This pattern is also observed in

the VF4 record (Figure 6D). Specifically, during interglacial

intervals, such as since <20 ka, 70-130 ka, 190-240 ka, 300-340

ka, and 370-420 ka, C values were significantly lower compared to

glacial periods, suggesting relatively low sedimentary dynamics in

the study area during these intervals. The VF3 component,

according to the VPCA eigenvalues (Figure 4D), appears to reflect

different variabilities compared to VF1, VF2, and VF4. This

observation implies that, although the dominant processes

remained consistent and characterized by low dynamics over the

past ~440 kyr, the dispersion between C and M values suggests the

influence of high-dynamic processes in core J11b, which may be

responsible for the dominance of coarse particles in the sediments

on glacial-interglacial timescales.
FIGURE 4

Characteristics of sediment grain size of core J11b. (A) Ternary diagrams; (B) C-M diagrams; (C) Unmixing results. EM-1 and EM-2 are the two
characterized grain-size components through mathematical partitioning of sediment grain-size spectrum; (D) Principal component analysis, VF1-VF4
are the four components by VPCA.
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4 Discussion

4.1 Productivity influence on low-
dynamics processes

By analyzing the sedimentary dynamics in the study area,

several influencing factors were identified, allowing for the

reconstruction of sedimentary history over the past 440 kyr.

Considering the grain-size pretreatment listed in the method part

(section 2.2), biogenic particles from the upper ocean are firstly

testified, such as silica/carbonate debris and organic matters that

were not removed before grain-size measurement.

As shown (Figure 7), elemental changes, including Si, K, and

Ca, show strong correlations with grain-size variations in core J11b,
Frontiers in Marine Science 06
while this agreement is less evident when compared to the benthic

d18O stack LR04, which is a proxy for Northern Hemisphere

glaciation (Lisiecki and Raymo, 2005).

Calcium content in deep-sea sediments is generally linked to

biogenic changes (Murray and Leinen, 1993; Yi et al., 2021), and is

often used for geochronological tuning (Bickert and Henrich, 2011;

Farrell and Prell, 1989; Jakob et al., 2018). However, in some deep-

sea sites below the CCD (typically >4,000 m in the Pacific), such as

core I8 from the west Philippine Sea (Xu et al., 2022), core GC18

near the Marshall seamount (Wang et al., 2023), and core J01A

from the Mariana Trench (Yi et al., 2020), the relationship between

calcium changes and the LR04 record is not as clear. The great water

depth and the locality-specific influences (Anderson et al., 2008;

Qin et al., 2018) could be the potential factors for this discrepancy
FIGURE 5

Comparison between the LR04 (A) and grain-size variabilities of core J11b (B–F).
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between sedimentary Ca and the LR04, likely involving an

interaction between marine productivities and post-deposition

processes (Xu et al., 2022; Wang et al., 2023). In this case, the

negative relationship between Ca content and M value observed in

core J11b might suggest that when carbonate particles fell through

the CCD, their sizes significantly reduced due to the dissolving

processes, possibly resulting in carbonate residuals with a very fine

size deposited in the sediments.

On the other hand, the proxies from core J11b shown in Figure 7

exhibit a long-term V-shaped trend from MIS 8 to MIS 5 (~300-100

ka), which correlates with the highest Si value and the light-yellow

color of the sediments (Figure 2). Biogenic silica, primarily

distributed around the Antarctica and the North Pacific (Moore,

2008; Shibamoto and Harada, 2010; Luo et al., 2022), is linked to

regions of high nutrient concentrations and primary productivity

(Lisitzin, 1966; Broecker and Peng, 1982; Martin, 1990). Considering

the relatively larger size of biogenic silica observed in the deep-sea
Frontiers in Marine Science 07
sediments (Lai et al., 2023), the positive relationship between Si

content and M value may illustrate that the increased production of

biogenic silica could significantly enlarge the sediment grain size.

Hence, it is summarized that the consistency between elements

Ca, K, Si, and sediment grain-size parameters such as M values,

EM1, and VF1 suggests that marine productivity may have

influenced sediment dynamics in deep-sea environments, while

the contributions of post-depositional processes are worthy of

investigation in future to further clarify the influences from

productivity changes.
4.2 Influences from eolian dust and
bottom water

Eroded and windblown particles are two important factors

affecting depositional processes in the trench (Jiang et al., 2019;
FIGURE 6

Comparison between the LR04 (A) and the derived parameters of core J11b (B–G).
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Wang et al., 2016), and bottom-water currents can be reconstructed

by grain-size analyses (Hall et al., 2001; Yi et al., 2022; Lamy et al.,

2024). Eolian particles, transported from the Asian interior (Jiang

et al., 2019; Wang et al., 2016; Xiao et al., 2020), can account for up

to 75% of non-biogenic components in deep-sea sediments

(Windom, 1969). AABW flows across the North Pacific and

serves as the primary source of dissolved oxygen in the trench

(Xiao et al., 2020), making it critical to reconstruct the influences of

AABW on western Pacific sedimentation using oxygen-sensitive

elements (Yi, 2023).

In previous studies, a pattern of increased eolian dust during

glacial periods and decreased input during interglacial periods was

observed in the North Pacific (e.g., Zhang et al., 2018). This pattern

is similarly reflected in variabilities of C values and VF4 record of

core J11b (Figure 8). Specifically, when eolian dust decreased during

interglacial periods, the C values were low, while the VF4 record was

high (Figure 8B), indicating reduced sedimentary dynamics during

interglacial intervals in the study site.

However, both the C values and the VF4 record are

characterized by coarse particles, typically > 200 mm. These

coarse particles are unlikely to be transported by winter

monsoon or the westerlies, and may originate from proximal
Frontiers in Marine Science 08
sources, such as materials dropping from the upper slope of the

trench. Additionally, elemental ratios such as Ba/Al exhibit

similar variability between glacial and interglacial alternations

(Figure 8B). This ratio was used to refine the age-depth model of

the studied core (Yi, 2023), though marine productivity may

show di fferent re la t ionships with g lac ia l per iods as

aforementioned. For example, carbonate preservation in many

Pacific sites is higher during glacial intervals (‘Pacific style’), a

phenomenon linked to seawater chemistry changes (Anderson

et al., 2008) and likely initiated from ~1.1 Ma (Sexton and

Barker, 2012), while in Atlantic sites ( ‘Atlantic style ’),

carbonate content tends to be higher during interglacial

intervals (Qin et al., 2018; Sexton and Barker, 2012; and

references therein). These complex responses of marine

productivity suggest that these coarse particles in the study

area are not directly related to regional productivity. Instead,

considering micro-nodules tending to form in an oxygenation

environment (Wang et al., 2016), sea-water chemistry in the

trench related to bottom-water evolution likely influenced the

development of micro-nodules in the sediments, and

topographic conditions might induce the transport of coarse

particles from the upper part of the trench.
FIGURE 7

Comparisons between various productivity-related proxies. (A) The leading components of grain-size and geochemical results; (B) Benthic d18O
stack LR04 (Lisiecki and Raymo, 2005); (C) Elemental changes from XRF scanning of core J11b (Yi, 2023); (D) Grain-size parameters of core J11b
derived from this study. See notes in Figures 3, 4.
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Additionally, an agreement between the VF3 record and

oxygen-sensitive proxies of bottom-water evolution in core J11b

was observed in the comparisons (Figure 8B). These oxygen-

sensitive proxies have been employed to make regional inferences

regarding bottom-water evolution over the past 1.2 Myr (Yi, 2023).

The VF3 component likely represents the shifting position of

intersection between two major grain-size groups (Figure 4C),

suggesting that oceanic circulation in the trench affects the

inflection points between these two dynamic groups, rather than

altering their modal sizes.
5 Conclusions

By studying core J11b in terms of sediment grain size and

geochronology, we have documented significant changes in the

sedimentary dynamics of the southern Mariana Trench over the

past ~440 kyr. Our findings indicate that the median value of

sediment grain size is 13.6 ± 12.0 mm, and clay and silt particles
Frontiers in Marine Science 09
exhibit minimal variation, with average values of 30.9 ± 9.4%, and

56.6 ± 4.0%, respectively. The variance in sand particles, however,

was relatively large, with an average of 12.5 ± 9.2%. These

observations suggest a low-dynamic sedimentary process that has

remained largely stable over the past 440 kyr, with a single major

factor dominating sedimentary dynamics.

Through comparisons of these results with various environmental

proxies, the dominant influence of marine productivities on deep-sea

dynamic processes was confirmed, although post-depositional

processes also played a role. Topographical conditions and seawater

chemistry were found to influence the transport of coarse particles, as

well as the development of micro-nodules in the sediments.

Therefore, we concluded that grain-size parameters are a useful

tool for detecting sedimentary properties in the trench. These

parameters reflect a combination of influences, including marine

productivity, sediment sources, topography, and bottom-water

intensify. Future paleoenvironmental inferences should incorporate

cross-validation with other evidence to improve accuracy

and reliability.
FIGURE 8

Comparisons between various environmental proxies. (A) Benthic d18O stack LR04 (Lisiecki and Raymo, 2005), versus the K content of IODP Site
U1422 in the Japan Sea (Zhang et al., 2018), indicating eolian dusts to the North Pacific; (B) C values and VF4 record of core J11b (this study), versus
elemental ratios of Ba/Al for age tuning of core J11b (Yi, 2023); (C) Comparison for proxies of bottom water intensity, including VF3, and two
geochemical PCA components. Chem_F2 was derived elemental contents of core J11b (recalculating in this study), and Mn_f1 was from elemental
ratios of three cores (Yi, 2023). See notes in Figures 3, 4.
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