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AB-LSTM: a mesoscale
eddy feature prediction
method based on an improved
Conv-LSTM model
Xiaodong Ma, Lei Zhang*, Weishuai Xu and Maolin Li

Department of Military Oceanography and Surveying, Dalian Naval Academy, Dalian, China
Mesoscale eddies are the most important mesoscale phenomena in the oceans,

and determining how to predict their spatial and temporal characteristics is a very

challenging task. Most previous studies focused on the accuracy of full-domain

prediction and ignored the accuracy of single-eddy prediction. To solve this

problem, in this paper, we first apply multi-year sea surface height data to

produce a spatiotemporal sequence sample dataset with a bidirectional

prediction mechanism. Then, we introduce an adversarial generative

mechanism through stacked spatiotemporal prediction blocks and rely on the

strong generative ability of the generative adversarial network models to

construct an adversarial bidirectional long- and short-term memory model

(AB-LSTM). Next, the mesoscale eddy mixing algorithm is used to extract the

matching eddy pair features from the real and predicted data, and several

evaluation metrics are used to conduct error analysis. The experiments yield

the following results. Prediction sequence days 1–7: the root mean square error

(RMSE) values are 1.97–7.70 cm, the structural similarity index (SSIM) values are

>0.61, the accuracy is >54.6%, and the eddy centre distance error is 6.34 km. The

result is 11.61 km, which is consistent with many spatiotemporal prediction

models and passes the generalisation test in many different sea areas. Finally,

we carry out single eddy prediction on the basis of the evaluation of the entire

prediction of the sea surface height and also obtain a more satisfactory

experimental effect. This method has a better prediction ability than the

original spatiotemporal method and has a certain reference significance for

mesoscale eddy spatiotemporal feature prediction technology and subsequent

underwater reconstruction.
KEYWORDS

mesoscale eddies, spatiotemporal sequence prediction, generative adversarial

networks, deep learning, sea surface height prediction, long short-term memory
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1 Introduction

Mesoscale eddies (MEs) are a special phenomenon that widely

occurs in the oceans. Their spatial scales are usually tens and

hundreds of kilometres, and their lifetimes vary from tens of days

to hundreds of days (Chelton et al., 2011). MEs are widely

distributed in the global oceans and have become an important

topic in research on ocean dynamics. According to the rotational

direction of the eddy, mesoscale eddies can be divided into two

categories: cold eddies (cyclonic eddies) and warm eddies

(anticyclonic eddies). In the Northern Hemisphere, cyclonic

eddies (CEs) rotate counterclockwise and anticyclonic eddies

(AEs) rotate clockwise. In the Southern Hemisphere, these two

types of eddies rotate in opposite directions (Zhang et al., 2013).

These types of eddies are widely distributed in the global oceans.

This rotation not only affects the fluid motion inside the eddy but

also has a significant impact on the ocean’s thermohaline

properties. Mesoscale eddies have an all-encompassing effect on

the marine environment. By adjusting local water masses, they

cause a huge difference in the thermohaline properties inside and

outside of their area. This difference not only affects the pattern of

ocean circulation but also influences the exchange of materials and

energy transfer in the ocean (Dong et al., 2014). In addition,

mesoscale eddies have a significant impact on marine

environment variability and are important drivers of dynamic

changes in marine ecosystems. The characteristics of mesoscale

eddies are particularly evident in specific oceanic regions, such as

the Kuroshio Extension (KE) region. Detailed statistics presented by

Itoh et al. (Itoh and Yasuda, 2010) indicate that the northern side of

the KE is dominated by a large number of anticyclonic eddies, and

these eddies usually have long life cycles. However, on the southern

side of the KE and near the flow axis, there are more CEs, and these

eddies usually have stronger intensities. Further analysis has

revealed that more than 85% of the anticyclonic eddies have

high-salt warm cores, whereas only 15% of the anticyclonic eddies

have cold cores. These features not only reveal the unique nature of

the mesoscale eddies in the KE region but also provide important

clues for understanding dynamic ocean processes in this region.

With the launch of ocean observation satellites, abundant large-

scale, long time-series, and high-precision ocean remote sensing

observation data have been obtained and processed, among which

long time-series observation data accumulated through many years

of observations have been widely used in analyses and forecasts of

oceanic phenomena (Oka and Qiu, 2012; Qiu and Chen, 2013). Liu

et al. (Liu et al., 2012) conducted a multi-year statistical analysis of

the number, life cycle, amplitude, and radius of mesoscale eddies in

the North West (NW) Pacific Ocean. Wang et al. (Wang et al.,

2016) found that the interannual characteristics of the KE region

may be affected by the instability of the main flow axis of the KE

under the effect of the topography, and the results of their

experiment were also affected by the instability of the main flow

axis of the Kuroshio under the effect of the topography. Qiu et al.

(Qiu and Chen, 2005) used the linear vorticity dynamics method to

back-project the high- and low-pressure signals and reached the

conclusion that the changes in the circulation characteristics of the

KE are associated with the high- and low-pressure anomalies in the
Frontiers in Marine Science 02
eastern North Pacific Ocean. In terms of prediction of the

characteristics of mesoscale eddies, roughly classified, most

scholars have adopted two approaches. The first is to make

predictions using ocean numerical prediction models. Shriver

et al. (Shriver et al., 2007) successfully improved the resolution of

the prediction system by combining the Naval Layered Ocean

Model (NLOM) with the optimal interpolation method, which in

turn enhances the accuracy of the ME prediction. Trott et al. (Trott

et al., 2023) used the hybrid coordinate ocean model (HYCOM) to

simulate future sea-level anomaly (SLA) data and then adopted an

SLA-based identification technique to identify MEs and predict

their future distribution. The second method is to make predictions

that are purely data-driven. This type of method can be subdivided

into the direct prediction of ME features (often multi-feature one-

dimensional sequence prediction). For example, Ashkezari et al.

(Ashkezari et al., 2016) successfully predicted ME lifetimes under

stable evolutionary conditions by employing an extreme random

forest regression method. Wang et al. (Wang et al., 2020) combined

extreme random trees and a long short-term memory (LSTM)

network based on mesoscale eddy trajectory and feature datasets to

predict several key features, including the latitude and longitude

coordinates. Wang et al. (Wang et al., 2021) incorporated meso-

historical latitude and longitude sequence data, sea surface height

data, sea surface temperature data, and other additional

information using a gated recurrent unit (GRU) network

combined with a temporal attention mechanism to improve the

prediction accuracy of the future centre coordinates of the ME. Ge

et al. (Ge et al., 2023) developed a neural network for predicting the

trajectory of an ME in compliance with the physical constraints,

providing a more reliable and comprehensible method for the

prediction of the trajectories of MEs. Another prediction method

is to reconstruct a large sea surface height field (2-D) and

accordingly to use a mesoscale eddy identification algorithm to

obtain mesoscale eddy features in the predicted spatiotemporal

sequence. For example, Ma et al. (Ma et al., 2019) obtained an

accuracy higher than that of HYCOM for predicting the 7-day sea

surface height field using a more mature convolutional LSTM. Nian

et al. (Nian et al., 2021) proposed a neural network equipped with a

Memory In Memory (MIM) model and a spatial attention module

and obtained higher experimental results than those of many

spatiotemporal prediction methods. However, according to the

current state of research, the limitations of numerical modelling

methods in terms of prediction performance should not be ignored.

These limitations mainly stem from the nonlinear nature of MEs

and the sensitivity of numerical models to initial conditions.

Furthermore, these models mainly focus on the prediction of the

marine environment rather than directly targeting the ME, so it is

difficult to achieve a direct prediction. However, the pure data-

driven approach has a lower demand for the initial field, and the

current sea surface height observation data have the natural

advantages of being large, continuous, and accurate, making the

data sufficient to support the model computation. This also lays a

solid foundation for the pure data-driven deep learning network

prediction model.

The spatial and temporal smoothing properties of mesoscale

eddy trajectory and feature prediction enable continuous
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observations with a high accuracy, which often causes the spatial

and temporal properties between sequence units to have a nonlinear

correlation. However, previous studies tended to focus on the

predecessor sequence to the successor sequence prediction, which

inevitably leads to the propagation of the errors generated by the

predecessor prediction resulting in backward cumulative

propagation. Although Nian et al. (Nian et al., 2021) utilized

corresponding improvement measures for the non-stationary

state and error accumulation problems in sea surface height

anomaly (SLA) prediction, including optimising the memory and

planned sampling methods, and achieved lower prediction errors,

the error accumulation effect still occurred and was significant. This

was due to the fact that the planned sampling method is only used

to correct the weights via jump verification during the learning

process, thus turning the continuous error into the accumulation of

the stage error, rather than considering the entire range of errors in

the prediction sequence as a whole. In addition, since most long-

lived mesoscale eddies (more than 7 days) have strong continuity

and physical interpretability of the sea surface height field with and

without eddy features, we can make predictions from past

measurements and can also make predictions from past

measurements in the reverse direction. However, the related work

has not been carried out so far. Currently, the models commonly

used for spatiotemporal prediction are generally based on stacked

recurrent neural network (RNN) models or LSTM models. Thus,

the former links the correlation between the temporal and spatial

attributes, while the latter is more prominent in solving the

challenge of gradient explosion, leading to its wider use compared

with the RNN. However, native LSTM models tend to focus more

on non-Markovian attributes in the time series rather than spatial

feature variations in dealing with long time-series prediction

problems. For mesoscale eddy prediction tools that are time-

varying and highly dependent on variations in spatial feature

attributes (Yunbo Wang et al., 2017), one or the other is

important. Second, the mesoscale eddy prediction process is often

accompanied by eddy generation and elimination, as well as fusion,

and existing prediction tools pay more attention to the description

of high-value features rather than those of low-level features, which

is acceptable in semantic recognition-related applications, but

neither of them can be neglected in mesoscale eddy prediction.

To solve the problem of the continuity of the prediction caused by

unidirectional inputs and the problem of complex spatiotemporal

feature description, in this paper, we propose an adversarial

bidirectional LSTM (AB-LSTM) and a set of evaluation criteria

for mesoscale eddy prediction, which obtained a good comparison

effect compared with various spatio-temporal prediction models

and numerical ocean prediction models.
2 Data and methods

2.1 Data

2.1.1 AVISO satellite altimeter data
The SLA data used in this paper were obtained from a gridded

product provided by the Satellite Ocean Archive Data Centre
Frontiers in Marine Science 03
(AVISO) of the Centre national d’études spatiales (CNES). This

dataset combines altimetry data from several satellites, such as

Jason-1, Topex/Poseidon, Envisat, GFO, and ERS-1&2, interpolated

to a 1/4°×1/4° grid spatial resolution on the Mercator projection.

The temporal resolution is interpolated from the original resolution

of 7 d to 1 d, the spatial range of the selected data is 25–45°N, 150–

170°E, and the time span is from January 1993 to December 2022.

These data have been widely used by many scholars (Dong et al.,

2014; Duo et al., 2019; Eden and Dietze, 2009), are the most

important sample and training data used in this paper, and are

also an important indicator for evaluating the quality of the

prediction data.

2.1.2 Marine model data
The HYCOM is a data-assimilated hybrid isodensity sigma

pressure (generalised) coordinate ocean model (Chassignet et al.,

2009, 2007). The subset of HYCOM global sea surface height

forecasts hosted in GEE (Google Earth Engine) has been plugged

into a 1/12 degree latitude/longitude grid and has been widely used in

several previous studies (Metzger et al., 2010; Wallcraft et al., 2007).
2.2 Research methods

2.2.1 Mesoscale eddy identification methods
Since the launch of the T/P satellite on 25 September 1992 and

the output of data, the study of ocean mesoscale phenomena using

ocean altimetry data has been taking place for more than 30 years.

Mesoscale eddy identification algorithms have attracted the

attention of several scholars, who have successively proposed

physical parameters (Isern-Fontanet et al., 2004), flow field

geometry (McWilliams, 2016; Nencioli et al., 2010), and machine

vision algorithms (Franz et al., 2018; Xu et al., 2019). Each of the

above-described algorithms has its own advantages, and in

combination with the reality of this paper, in this paper, we refer

to Ma et al (Ma et al., 2024).’s hybrid algorithm that combines flow

field geometry and closed contours as the mesoscale eddy

identification algorithm. Before carrying out the identification

process of the hybrid algorithm, we need to convert the SLA data

into the geostrophic flow field, which is calculated as follows:

u = −
g
f
∂ h
∂ y

 ,   v = −
g
f
∂ h
∂ x

(1)

where u and v are the latitudinal and longitudinal components

of the geostrophic anomalies, respectively, g is gravitational

acceleration, f is the Koch parameter, and h is the height of the

sea surface anomaly.

The flow field geometry method is based on the geometric

characteristics of mesoscale eddies, which are defined as regions

with rotating velocity vectors, a centre at the velocity extremum,

and symmetrically rotating surrounding vectors. The SLA closure

curve method focuses on the detection of sea surface altitude closure

curves, which reduces the likelihood of non-closed eddies. To

reduce the effect of the subjectivity of the sea surface height

difference threshold and to balance the identification effect with
frontiersin.org

https://doi.org/10.3389/fmars.2024.1463531
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Ma et al. 10.3389/fmars.2024.1463531
the subjective threshold sensitivity, a hybrid algorithm that

combines the two methods is used to analyse the sea surface flow

field and the SLA data. When the goal is to detect mesoscale eddy

pairs with the largest overlapping boundaries, the stable

identification of the same eddy using both identification methods

is determined by setting generic custom thresholds (intersecting

area more than 50% and eddy centre distance of less than 1/12°).

The eddy centre of this eddy determined using the flow field

geometry method is considered the actual centre (Figure 1).

In addition, in order to demonstrate the advantages of the

recognition effect of the hybrid algorithm, 1000 days were randomly

selected from the sample data set (daily sea surface height data

within the time span of the data), and the flow field geometry

method, closed contour method and hybrid recognition algorithm

were respectively adopted for recognition. In addition, most experts

and scholars in this field conducted artificial recognition and judged

the recognition effect. The recognition accuracy and the proportion

that should be recognized but not recognized were evaluated by

horizontal comparison. The results are shown in Table 1.

2.2.2 Determination of input frame
data resolution

For the identification of a mesoscale eddy, since all the current

data-driven mesoscale eddy identification algorithms are based on

feature identification of grid point data, the selection of the region

and the determination of the data resolution play crucial roles, and

too large or too small a resolution will have a great impact on the

eddy identification results. Thus, in this paper, to ensure that the steps

of the data extraction, model training, metric evaluation, and testing

of the generalisation capability are characterised by continuity and

referability, we fixed the study area as 25–45°N, 150–170°E. Since the

resolution of the original altimetry data is 1/4°×1/4°, i.e., the

dimension of the data in this part of the region is 80×80, to retain

the details of the original data and facilitate the construction of the

model, we interpolate all of the input–output data to 128×128 using

the Akima (Akima, 1970) interpolation algorithm.

2.2.3 Evaluation metrics for predicting mesoscale
eddy features

In previous mesoscale eddy predictions, most scholars have

tended to use the sea surface height forecast error and the mesoscale
Frontiers in Marine Science 04
eddy trajectory prediction as the evaluation metrics and have

achieved better experimental results, but these two metrics cannot

evaluate the sea surface height prediction in a complete way. Thus,

in this subsection, we propose a mesoscale eddy prediction

evaluation framework to evaluate the mesoscale eddy prediction

metrics in a complete way. It should be noted that the evaluation

metrics introduced in this subsection need to be predicated based

on the basic information about the eddies obtained using the

mesoscale eddy mixing identification algorithm described in

Section 2.2.1, except for the root mean square error (RSME) and

structural similarity index (SSIM), which is a metric for regional

prediction results.

The characteristics of mesoscale vortices in the prediction can

be expressed in a variety of ways, and the most important ones

that can be obtained from the sea surface information field can be

divided into three categories: The first type is the numerical error

index of eddy prediction, which is reflected as the RSME index of

sea surface height information, which intuitively reflects the

overall error level of the predicted results and the real results.

The second category is the representation of the number of

vortices, because deep learning network is the best solution

generated based on probability theory in two-dimensional

space-time prediction process, while the application of

mesoscale vortices may result in low numerical error and high

distortion. For this reason, Num index, Accuracy index and Dist

index are introduced. These three indexes can directly show

whether the number and location of vortices in the prediction

sequence can be accurately expressed without losing the target.

The third category is the performance of the overall similarity. We

use the SSIM index to show the structural similarity of the whole

selection area. This consideration is that not only the prediction

level of the eddy itself needs to be reflected, but also the

complex interaction field around it needs to be well predicted

and expressed.

The first metric is the sea surface height prediction error. We

use the two-dimensional RMSE as the standard for this metric:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

H �Wo
H

i=1
o
W

j=1
(Oa(i, j) − Pa(i, j))

2

s
  i = 1, 2, 3…H;   j

= 1, 2, 3…W, (2)
FIGURE 1

Schematic diagram of mesoscale eddy extraction in KE region utilizing the hybrid recognition algorithm.
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where H and W are the length and width of the data,

respectively, and Pa and Oa are the predicted and original

data, respectively.

The second metric is the mesoscale eddy prediction hit rate

(Accuracy) and mesoscale eddy trajectory error (Dist). We take the

distance of the same eddy centre (km) in the eddy identification

results corresponding to the real dataset and the prediction dataset

as the daily prediction trajectory error, in which the same eddy hit is

discriminated by the fact that the area inside the two eddy profiles

matches 75% or more of both the prediction results and real data in

the same day. Then, we sum and average the matched eddy centre

distances on that day to obtain the trajectory error indicator for that

day, which is calculated as follows:

Dist =
1
no

n
m=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(xO(m) − xP(m))2 + (yO(m) − yP(m))2

q
,

Accuracy =
NP

NO
*100%, (3)

Where n is the total number of identified matching eddies on

that day, xO,   yO, xP , and yP are the horizontal and vertical

coordinates in the real data identified eddy results, and NP and NO

  are the number of predicted eddies in the region and the number of

real eddies, respectively.

The third metric is the sea surface prediction SSIM, which is one

of the indicators used to measure the structural similarity of the

data. When we have two datasets x, y, the structural similarity can

be defined as follows:

SSIM(x, y) =
(2mxmy + c1)(2sxy + c2)

(mx
2 + my

2 + c1)(sx
2 + sy

2 + c2)

c1 = (k1L)
2  ,   c2 = (k2L)

2   (4)

where mx is the mean of x,    my is the mean of y, s 2
x is the

variance of x, s 2
y is the variance of y, and sxy is the covariance of x

and y. L is the dynamic range of the pixel value, which is set to 100

in this paper, and k1 and k2 are constants, which are set to 0.01 and

0.03, respectively, in this paper.
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2.3 Data cleaning

Both ocean observation data and model prediction data have

the advantages of wide coverage and clear grid, but they also often

contain uncontrollable abnormal data. Due to the various data

sources used in this paper, in order to ensure the quality of the

data when forming the deep learning sample dataset, We will

perform data cleaning on the data used for training, testing,

verification and evaluation in this paper. Drawing on the

experience of several atmospheric and oceanic researchers, we

used the Mahalanobis denoising method (Eq. 5). First, the

sequence data of sea surface height is obtained, and the

Mahalanobis Distance (DM) of each two-dimensional grid point

in the sequence is calculated. When DM is greater than three

standard deviations of the average distance, the grid point data is

considered as “abnormal”; when the number of “abnormal” grid

points exceeds 1% of the total grid points, the entire sequence

including the two-dimensional grid point data is discarded.

m =
1
no

n

i=1

xi

S =
1

n − 1o
n

i=1

(xi − m)(xi − m)T

DM(xi) =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(xi − m)S−1(xi − m)

p
(5)
3 Model

3.1 Spatiotemporal Long Short-Term
Memory Model

Suppose we are monitoring a dynamic system in which each

measurement is recorded at all locations in a spatial region

represented by an M  �  N grid. From a spatial point of view,

these P measurements observed at any time can be represented by

the tensor X ∈ RP�M�N (Liu et al., 2018; Wang et al., 2021). From a

temporal point of view, the observations at t time steps form a

tensor sequence of X1,X2,X3,X4,…,Xt . The spatiotemporal

predictive learning problem is to predict the most probable length −

K sequence in the future given the two previous length-J sequences,

including the current observation:

X̂ t+1,…,   X̂ t+k = a rgmax
Xt+1,…,Xt+k

p(Xt+1,…,Xt+kjXt−j+1,…,Xt) : (6)

Sequence prediction has been a popular research topic in the field

of machine learning, and LSTM, as an emerging RNN model with

long- and short-term memory, has led to a breakthrough in dealing

with the solution of long-term-dependent problems. Shi et al. (Shi et al.,

2015) creatively used the input-to-state and state-to-state methods to

visually extract the inputs using stacked LSTM layers and achieved
TABLE 1 Results of horizontal comparison of recognition effects of
various recognition methods.

Methods

Recognition
Accuracy (%)

Failure to
recognize* (%)

AE CE AE CE

Flow field geometry 82.12 76.17 1.52 2.27

Physical parameter 73.24 70.56 2.36 3.52

Closed profile 79.38 79.01 0.62 0.95

Hybrid (ours) 88.32 80.17 1.97 2.34
*Represents eddies that should be detected but are not and the bolded part is the one with
better value.
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pioneering research results in this field. However, the current problem

is that this model needs to continue learning and predicting from the

previous state. This means that the continuity prediction will be based

on the previous prediction result, which will lead to the accumulation

of error and feature bias. To solve this problem, several scholars have

improved this model (Kalchbrenner et al., 2017; Patraucean et al., 2015;

Villegas et al., 2017). In this paper, we utilize a spatiotemporal long-

and short-term memory model (ST-LSTM) (Wang et al., 2022) as the

basis of the generation of the model. Based on the stacking technique of

the convolutional LSTM (Conv-LSTM), the model obtains higher

experimental results than other models by proposing spatiotemporal

memory flow and memory transfer across layers in several prediction

results. The model’s architecture is shown in Figure 2.

The formulas are as follows:

Gt = tanh(WxG ∗Xt +WHG ∗Ht−1 + bG)

It = s(WxI ∗Xt +WHI ∗Ht−1 + bI),

Ft = s (WxF ∗Xt +WHF ∗Ht−1 + bF),

Ct = Ft ⨀Ct−1 + It ⨀Gt ,

gt=tanh(Wxg∗Xt+WMg∗Mt−1+bg ),

it=s (Wxi∗Xt+WMi∗Mt−1+bi),

f t=s (Wxf ∗Xt+WMf ∗Mt−1+bf ),

Mt=f t⨀Mt+it⨀gt ,

Ot=s (WxO∗Xt+WHO∗Ht−1+WCO∗Ct+WMO∗Mt+bO),

Ht=Ot⨀tanh(W1�1∗½Ct ,Mt �), (7)

where s is the activation function,W corresponds to the process

weight of the corner scale, b is the bias term (distinguished by the

corner scale), X is the input sequence, C is the output cell, and H is

the hidden state. The most important feature of the ST-LSTM

model is that the memory cell is divided into two parts, namely, the

classical Ct temporal cell and the Mt spatio-temporal cell, and they

are distinguished in the level of the data flow. The Ct stream is

passed continuously between the same corresponding layers of

different stacks according to the classical Conv-LSTM. The Mt

stream is first passed layer by layer in the same stack, repeated as

the input of the next stack, and finally reduced to the same

dimension by a 1×1 convolutional gate and outputted as Ht. This

is different from the spatiotemporal memory transfer method of the

classical Conv-LSTM to a large extent.
3.2 Generative adversarial network models

The main idea of the basic model of the generative adversarial

network (GAN) is to make the two neural networks continuously
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play the binary extremely large and extremely small game, during

which the model gradually learns the real sample distribution. In

general, the training is considered complete when the two networks

reach a Nash equilibrium in their want confrontation (Goodfellow

et al., 2014).

The basic GAN model is shown in Figure 3. The input of the

generator network (denoted as G) is a random variable (denoted as z)

from the hidden space (denoted as pz) and the output of the generator

samples, the training goal of which is to improve the similarity

between the generator samples and real samples, so that they are

indistinguishable from those of the discriminator (denoted as D)

network, i.e., to make the distributions of the generator samples

(denoted as   pg  ) and real samples (denoted as pdata) as identical as

possible. The training objectives of the native GAN network can be

summarized as follows: to minimize the distance between  pg and

pdata and to maximize the accuracy of the samples discriminated by

D, i.e., the value of D(x) tends to be 1 and the value of D(x0) tends to
be 0. This leads to the basic GAN network objective function

expression:

min
G

max
D

Exe pdata(x)
½logD(x)� + Eze pz(z)

½log (1 − D(G(z)))� : (8)
3.3 Adversarial bidirectional long- and
short-term memory models

To solve the problems of the LSTM, namely, unidirectional

prediction error and continuous accuracy of the spatiotemporal

prediction, we embed a 4-layer stacked ST-LSTM model as the

generative unit into the adversarial network model as the core of the

generator. Then, we divide the generator inputs into forward

spatiotemporal sequence inputs and inverse spatiotemporal

sequence inputs and control the input streams of the two

according to the discriminative results of the discriminators in a

training cycle to achieve effective bi-directional training (Figure 4).

To increase the learning ability of the overall trend, we train a global

discriminator (Iizuka et al., 2017) to discriminate whether the

output is true. The purpose of constructing the global

discriminator is to strengthen the ability of the discriminator to

identify the overall characteristics of the input region and to

emphasise the importance of guiding the model to pay more

attention to the overall trend of the sea surface data. The global

discriminator consists of five consecutive convolutional layers, each

of which has a step size of 2. It uses a fully connected layer and a

sigmoid output layer to process the input data of size 128 × 128 into

a high-dimensional vector, which is then transformed into a

continuous and normalised real probability distribution by a fully

connected layer and a sigmoid transfer function.

In this paper, we use a total of 10,000 days of sea surface

altimetry data from 1 January 1993 to 19 May 2020 as the training

(first 90%) and validation datasets (second 10%), and the sea surface

altimetry data from 20 May 2020 to 20 May 2022 as the model

generalisation test datasets (validation and testing sets). We process

each of the three datasets into time-series blocks with a length of 10

days (structure 3-4-3: the first number is the length of the forward
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input sequence, the second number is the length of the target

prediction sequence, and the third number is the length of the

reverse input sequence, as shown in pdata in Figure 4), with 3 days of

forward prediction input (pforward) in each block, 7 days (including 3

days of reverse input) of target prediction data (x), and 3 days of

reverse prediction input pbackward , corresponding to the generation

results denoted as xforward and xbackward . The next batch of inputs in

the generator is updated after the discriminator decides whether it is

true or false and updates the current batch of generators (ST-LSTM

cells) and the discriminator weights. The corresponding objective

function is updated to

min
G

max
D

Exe pdata(x)
½logD(x)� + Exe pforward

½log (1

− D(G(pforward))) + Exe pbackward
½log (1 − D(G(pbackward)))� (9)

In the model proposed in this paper, we use the L1+L2 loss

function and the Adam optimiser (Kingma and Ba, 2014) for the

training, and in the actual training process we pre-train the GAN

network and then access the ST-LSTM module. Regarding the

setting of the hyperparameters, in general, the learning rate is set

within 0.0001–0.1. A learning rate that is too high will make the
Frontiers in Marine Science 07
model training effect poor, while a learning rate that is too low will

make the model training convergence slow. Thus, through many

adjustments, we determine the learning rate to be 0.0001, the batch

is determined to be eight, and the corresponding epoch is

appropriately increased to 100,000. If the dataset has a large

amount of noise, we should try to minimise b1 and b2. Although
the average coefficients converge faster, they are more susceptible to

noise. In this paper, we set b1 = 0.9 and b2 = 0.999. All of the

experiments are implemented in Pytorch = 3.10 (Paszke et al., 2019)

and trained on an NVIDIA RTX4080. Additionally, it should be

emphasized here that the parameter Settings of the Adam optimizer

in this paper are determined by many attempts in the experiment

process and previous experience of Adam optimizer parameters

when applying deep learning models in the Marine field.
4 Model evaluation

In this subsection, first, we discuss the effect of different

prediction lengths on prediction accuracy to confirm the optimal

prediction range of the proposed model. Then, we conduct a multi-
FIGURE 3

Schematic diagram of the basic GAN model.
FIGURE 2

Schematic diagrams of the ST-LSTM model (left) and the stacked sequence monolayer (the dark blue marks are space-time fluid cells different from
the original Conv-LSTM).
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criteria comparison with the two modal datasets and a variety of

existing spatiotemporal prediction models. Finally, we test the

generalisation ability of the model using the day-by-day

prediction history data from HYCOM. It should be noted that all

input and output data used in this process are first interpolated to

128 × 128 using the interpolation method described in Section 2.2.2.

Based on the conclusion of Ma et al. (Ma et al., 2019), the polarity of

the mesoscale eddies has a limited effect on the smoothness, as well

as the accuracy of the prediction process, so we do not take the issue

of eddy polarity into account during the training process, but we do

discuss it in the evaluation process.
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4.1 Prediction effect

Figure 5 shows the trend of the training loss after 100,000

iterations. The black solid line in the figure is the real value of the

training loss from iteration to iteration, and the red line is the

higher-order smoothing curve of the black real loss. It can be seen

from Figure 5 that the training loss of the model decreases rapidly

during the initial training and stabilises at 10,000 iterations. After a

long period of small and slow increase, it continues to decrease

slowly after 40,000 iterations and finally converges slowly after

90,000 iterations.
FIGURE 5

Plot of training loss versus number of iterations for the AB-LSTM and the AVISO sea surface height dataset. Due to the large span of the original
training loss (Y-axis), to better show the trend of the change, we present it in logarithmic form, which results in the absence of some of the
magnitude (the original magnitude is in cm), The black line is the original value of the training loss, and the red line is the error smoothing curve after
5-order Fourier fitting).
FIGURE 4

Overall schematic diagram of the AB-LSTM model.
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Figure 6 shows the effect of the prediction experiment for 7 days for

different numbers of iterations. Intuitively, the prediction effect is good.

As the number of iterations increases, the model prediction effect

continues to improve. The effect tends to stabilise at 50,000 iterations,

and the subsequent prediction results are not easily distinguished by

the human eye. In addition, it can be seen that the prediction sequences

for the different numbers of iterations exhibit good continuity of the

overall trend, and the mesoscale eddy characteristics are more obvious,

except for the test with 5000 iterations. This indicates that the training
Frontiers in Marine Science 09
process is effective. Figure 7 shows the change trends of the RMSE and

SSIM metrics for the AB-LSTM for the AVISO sea surface height

dataset with increasing iteration numbers. It can be clearly seen that the

results shown in Figure 7 are highly consistent with the prediction effect

shown in Figure 6. This also shows that the selected metrics can

accurately reflect the actual performance of the model in terms of the

prediction process.

To discuss the effect of the forward and backward inputs on the

model training in the AB-LSTM model, in this subsection we set up
FIGURE 6

Schematic representation of the effect of the prediction experiment with different numbers of iterations. The predicted values are shown in the
red boxes.
FIGURE 7

Plots of RMSE and SSIM metrics versus number of iterations for the AB-LSTM and the AVISO sea surface height dataset.
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control experiment groups A (forward and backward) and B

(forward only), randomly select 500 sets of experimental data

from the sample dataset, which all have 3-4-3 structures, and

make a 7-day prediction. The obtained results are averaged

within each group according to the day-by-day prediction

results (Table 2).
4.2 Model comparison validation

In this subsection, to demonstrate the feasibility and the

advantages of the model, we compare the AB-LSTM with the

HYCOM model forecast and the FC-LSTM (Srivastava et al.,

2015), PredRNN (Wang et al., 2022), and Conv-LSTM (Shi et al.,

2015) spatiotemporal prediction methods under the 3-4-3 input

block conditions described in Section 4.1 and using the evaluation

metrics described in Section 2.2.3. It is worth emphasizing that the

horizontal comparison verification of the model should be

discussed in different scenarios. For mesoscale vortices, the
Frontiers in Marine Science 10
different properties of vortices and the setting of the research area

are very important elements for scene division. Therefore, we will

reflect the model verification effect under different research areas in

the subsequent regional generalization verification. The model

generalization test for differentiating AE and CE in a single eddy

prediction scenario is also presented.

Since the prediction results of AE and CE are similar, we

consider the polarity of the eddy to be less influential on the

comparison experiments, so we will not distinguish between them

in this subsection. To avoid the high prediction effect caused by the

use of the sample dataset and the inability to effectively compare the

results of the experiments, we conduct the experiments on 1000 sets

of sea-surface height data that are not included in the sample data.

Data structure is still 3-4-3, and the metrics are averaged within the

groups. We set the prediction area to the KE region of 25–45°N and

150–170°E. The results are shown in Figure 8.

As can be seen from Figure 7, according to all the computational

indexes, the AB-LSTM yields better results. The AB-LSTM’s RMSE

index increases from 1.97 cm on the first day to 7.70 cm on the
TABLE 2 Quantitative analysis of the effect of the forward and backward input conditions on the prediction.

Assessment
Indicators

Forecasting Days

1 2 3 4 5 6 7

RMSE
(cm)

A 1.97 2.90 3.90 4.77 5.80 6.84 7.70

B 2.42 3.12 4.91 5.11 6.23 8.65 9.39

Accuracy
(%)

A 90.0 81.3 72.7 72.7 66.7 57.1 54.6

B 85.7 75.0 62.5 61.5 52.9 50.0 41.3

SSIM
A 0.91 0.86 0.81 0.76 0.71 0.66 0.61

B 0.88 0.83 0.78 0.75 0.69 0.64 0.57

Dist (km)
A 6.34 6.52 7.40 8.18 9.27 9.80 11.61

B 6.88 7.00 7.82 8.39 10.55 11.65 12.96
A (forward and backward) and B (forward only).
FIGURE 8

Plots of the (A) RMSE, (B) SSIM, (C) accuracy, and (D) Dist metrics for a 7-day forecast series for multiple forecasting methods and models.
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seventh day, which is the same trend as the other methods, but the

values are significantly lower than those of the other prediction

methods. The AB-LSTM yields lower RMSE values than the

unidirectional model in the control group, which distinguishes

between positive and bidirectional inputs. Regarding the SSIM

index, the AB-LSTM method has values similar to several of the

prediction methods, except that the numerical prediction is within

the range of 0.6–0.9 and only differs from the other prediction

methods by about 0.05. This is since several of the deep learning-

based spatial-temporal prediction models utilized as the control

group in this paper are able to achieve very good results in terms of

structural similarity, so it is not possible for this metric to clearly

reflect the superiority of the AB-LSTM. The AB-LSTM has a much

higher Accuracy, with a hit rate of more than 50% during the

prediction sequence (days 1–7). This is 10–20% better than those of

the other methods. On average, it achieves a 5% higher Accuracy in

the control experiments and can distinguish between forward and

reverse inputs. This suggests that the forward and reverse inputs are

important for the model in the long mesoscale eddy time series

prediction. The AB-LSTM model has a slightly better Dist value.

The prediction distance error ranges from 6.34 to 11.61 km, which

is generally 1–10 km lower than those of the other prediction

methods for the 7-day prediction series. The AB-LSTM model with

bidirectional input is more accurate in terms of the prediction

results after the fourth day compared with the model with only

forward input. After the fourth day, the prediction results of the AB-

LSTM model with bi-directional inputs are lower, which suggests

that the bi-directional inputs have a positive effect on the model in

the long-term prediction of mesoscale eddies. Overall, compared

with the traditional numerical prediction models’ results, the spatial

and temporal prediction models that use deep learning algorithms

have a greater advantage in terms of the overall prediction error and

mesoscale eddy-related prediction indexes. For the sample dataset

introduced in this paper, according to all the metrics, the AB-LSTM

has the best performance, which directly proves the superiority of

the AB-LSTM. In addition, by analysing the experimental results of

the control experiment group, it was found that the two-way input

training of the confrontation has more advantages and positive

significance compared with the one-way input.
4.3 Model generalisation test

Model generalisability refers to the model’s ability to adapt to

new data, i.e., whether the model can make accurate predictions for

data that does not appear in the training set. A model with a strong

generalisability can perform well on different datasets, not just on

the training set. In summary, generalisability concerns the model’s

ability to adapt to unknown situations (Liu and Aitkin, 2008). To

explore the generalisability of our model, we experimentally validate

the AB-LSTM using data from the same region as the data in the

training sample set but that are not included in the training and

testing sets. We also test the model on data for other sea areas. In

this paper, we take the Oyashino Extension (OE, 35–45°N, 140–

150°E) region and the North Pacific Subtropical Countercurrent

(STCC, 15–25°N, 130–140°E) as the validation areas. It should be
Frontiers in Marine Science 11
noted that in this subsection, the sea surface height data for the OE

and STCC regions are processed into 128×128 grids using the data

processing method described in Section 2.2.2, and the data span

from January 1993 to 31 December 2022. The experimental data for

the KE region, which are not included in the training and testing

datasets, span from 1 to 30 October 2023 and are processed in the

same manner.

As can be seen from Figure 8, the prediction results of the tested

models are slightly poorer than the prediction results presented in

Section 4.2, but the overall effects are similar, and all of the models

yield more stable and good prediction results. The AB-LSTM is still

better than the other models in terms of several metrics. For the

prediction results for the three regions, the RMSE index remains

within the range of 2.25–9.41 cm, which is slightly higher than the

prediction results of 1.97–7.70 cm obtained in Section 4.2. The

SSIM indicator remains within the range of 0.52–0.85, which is

slightly lower than the range of 0.61–0.90 obtained in Section 4.2.

The Accuracy remains within the range of 48.35–84.03%, which is

slightly lower than the range of 54.60–90.00% obtained in Section

4.2. The Dist remains within the range of 6.71–12.89 km, which is

slightly higher than the range obtained in Section 4.2. The possible

reason for this result is that the OE region and STCC region are not

within the region of the training set, and there may be motion

features that are not fully fitted by the model, which may lead to the

result that the AB-LSTM fits the KE region data better and the data

for the other two regions slightly worse in terms of the prediction

effect. The mesoscale eddy recognition algorithm used in this paper

has a better recognition ability, but it still has a slightly worse

recognition ability. In addition, it still has the possibility of

identification error, and the mesoscale eddies identified from the

predicted sea surface height data may have the intermittent

appearance or disappearance of error, which would lead to

problems in estimating the distance deviation of the centre of the

mesoscale eddy and will make the error falsely high.

Based on the prediction results presented in Figure 9, several of

the models achieve better prediction results in several sea areas, but

the performance of the AB-LSTM is the best, which proves that the

AB-LSTM model has an acceptable generalization ability for

different sea surface height datasets.
4.4 Single eddy prediction effect

Although regional sea surface prediction can reflect the overall

prediction effect better, the prediction effect on single eddies is not

fully reflected, so in this subsection, we predict multiple single

eddies and use the strength at the centre of the eddy (denoted as the

SSH in the centre of the eddy in this paper) and the eddy radius to

describe them. Thus, the prediction effect of single eddies will be

more clearly reflected in the form of data. Figure 10 shows a

schematic representation of the evolution of a typical dipole pair

over the course of its evolution.

We randomly select 1000 days of data in the sea surface height

sample dataset used in this paper as experimental samples, and then we

use the AB-LSTM model to make predictions for a period of 7 days

according to the 3-4-3 structure. We use the mesoscale eddy mixing
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FIGURE 10

Schematic of the 7-day evolution of a pair of dipoles located in the KE region on 1 September 2017. To make the dipole evolution visually clearer,
we converted the sea surface height data into a pseudo-colour map with an intercept area of 28–32°N, 146–150°E.
FIGURE 9

Generalisation test of the AB-LSTM model using data for the (A) OE region, (B) STCC region, and (C) KE region.
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identification algorithm to identify the matched eddy pairs (real vs.

predicted). Then, we extract their centre eddy strengths and eddy radii

as the control group for the experiments. To avoid the unmatched

vortices and matching errors caused by the identification algorithms

(described in the previous section) and thus to more effectively reflect

the prediction effect, we exclude the matching error terms. Table 3

presents the single eddy prediction errors in the form of within-group

averages and the distinction between AEs and CEs.

The Radius metric is the equivalent radius of the identified

eddy. As can be seen from Table 4, the AB-LSTM model also

achieves relatively good prediction results in single-eddy prediction.

In terms of the eddy centre height errors, the AE centre height

errors are within the range of 1.12–6.59 cm, and the CE centre

height errors are within the range of 1.31–7.86 cm. Overall, both

increase as the prediction time increases. However, under the

condition of distinguishing between the AEs and CEs, there is not

a large difference in the overall errors of the two, which is similar to

the conclusion of Wang et al (Wang et al., 2020). In terms of the

eddy radius error, it also exhibits an overall prediction result with a

trend similar to that of the eddy centre height error, which indicates

that the model is more stable in the prediction process. In order to

reflect the advantages of the AB-LSTM model in the single-eddy

experiment, we conducted experiments according to the same

sample collection method, and the results are shown in Table 4.

From Table 3, AB-LSTM is significantly better than the primary

Conv-LSTM in single-eddy prediction results, and the experimental

results of the AB-LSTM model are continued by the experimental

results in Table 2. It is worth emphasizing that we have obtained the

horizontal comparison results among multiple models above, so in

the horizontal comparison experiment of single eddy prediction, we
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only compared the two models with similar performance as the AB-

LSTM model.
4.5 Additional experiment

In the first few sections of this chapter, the AB-LSTM model

proposed by us has achieved a small advantage in the image numerical

evaluation index (SSIM, RMSE), and an even greater advantage in the

feature prediction of mesoscale vorticity. However, its performance in

the prediction error analysis results on the 7th day still makes us

worried: Whether the trend of error change shown by AB-LSTM

during the 7-day forecast will lead to more drastic changes over a

longer forecast time horizon, making the prediction model worse than

other spatio-temporal prediction models over a longer time horizon.

Since the data input format we selected in the previous paper is 3-4-3

mode, which is not fully applicable for a longer prediction time, we use

a longer data input mode here: 3-7-3. As a comparison, we still use

RMSE, Accuracy, SSIM and Dist for error quantification (for longer

forecast time series, a longer input should be selected).

After comparing the results of the two data input modes, we can

find from Table 5 that there is no significant increase in prediction

error on the whole. The 3-4-3 input mode has better prediction

effect within 3 days, while the 3-7-3 input mode has better lasting

prediction ability within a longer prediction period. This error is

generally reversed on the fourth or fifth day of prediction, which

also shows a relatively easy to understand trend, that is, different

input data models are generated under different deep network

models, and with the change of its application scenario, its

prediction effect will also change.
TABLE 4 Quantification of single eddies during the 7-day forecast period (different models and no distinction between AE and CE).

Assessment
Indicators

Forecasting Days

1 2 3 4 5 6 7

Amplitude
(cm)

AB-LSTM 1.21 2.69 3.44 3.81 6.00 5.78 7.23

PredRNN 1.52 2.94 3.98 4.22 5.97 6.71 8.64

Conv-LSTM 2.99 4.12 5.32 6.64 8.24 10.58 12.21

Radius
(km)

AB-LSTM 7.30 8.84 9.81 11.93 12.93 15.60 19.39

PredRNN 8.15 8.99 10.10 12.52 13.17 16.02 21.10

Conv-LSTM 12.98 14.35 16.58 19.71 21.39 24.14 26.54
TABLE 3 Quantification of single eddies during the 7-day forecast period.

Assessment
Indicators

Forecasting Days

1 2 3 4 5 6 7

Amplitude
(cm)

AE 1.12 2.54 3.12 3.27 5.67 5.21 6.59

CE 1.31 2.83 3.76 4.35 6.33 6.34 7.86

Radius
(km)

AE 6.82 8.32 9.37 10.17 10.62 12.64 17.24

CE 7.77 9.36 10.24 13.69 15.24 18.56 21.54
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5 Summary and outlook

In this study, we acquired AVISO satellite altimeter data and

HYCOM ocean model forecast data as the basis of our work. These

data not only provide rich ocean information but also provide the

necessary data support for the identification and characterization of

mesoscale eddies. Then, we effectively identified and extracted the

features of mesoscale eddies utilizing the hybrid mesoscale eddy

identification algorithm, which has a better identification effect. We

combined it with the sea surface height data and established an

evaluation system for mesoscale eddy prediction, which includes

four test metrics, namely, the RMSE, SSIM, Dist, and Num.

Subsequently, we combined the time-series prediction

advantages of the LSTM model with those of previous studies,

utilized the ST-LSTM model as the base generative model, and

stacked them to form a prediction network in the same way as the

Conv-LSTM. In addition to introducing the generative adversarial

network model, which has a strong generative capability, the AB-

LSTM model was constructed by embedding the ST-LSTM module

into the generator therein. Considering that previous studies have

mostly focused on unidirectional sequence prediction without using

backward-assisted prediction, we incorporated backward sequence

prediction into the input sequences based on the AB-LSTM model

and obtained better results than when only unidirectional inputs

were utilized. The RMSE was 1.97–7.70 cm, the SSIM was ≥0.61, the

Accuracy was ≥54.6%, and the Dist was 6.34–11.61 km. All of the

above indicators were better than those of the other models and

numerical prediction products, thus achieving the goal of this study.

In the training process, we used the Adam optimizer as the

hyperparameter container, and through many experiments, we

determined that the number of iterations should be 100,000 times

and the number of batches should be 8. The experimental results

show that the relevant parameters were set reasonably, and a

relatively smooth trend was maintained in the training iteration

loss. Then, we tested the model’s generalization ability using data

for a different sea area and new data for the same sea area to achieve

data expansion of the non-training testing set. The experimental
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results show that the AB-LSTM also has a good prediction ability

for data that are different from the training test sample dataset. Its

prediction ability is only slightly lower than the training sample

prediction results according to the indicators, and it is still able to

maintain a large improvement compared with the other models.

Therefore, the results of the generalization test prove that the AB-

LSTM has an acceptable generalization ability. Finally, to address

the problem that the full-domain prediction error cannot directly

describe the single-eddy prediction effect, we conducted single-eddy

prediction analyses using randomly selected pairs of identified

vortices. The results show that the eddy polarity has little effect

on the prediction effect and that the single-eddy prediction error

tends to be smaller than the full-domain prediction error.

Although the AB-LSTM model developed in this study

preforms better than other prediction models in terms of the

prediction error, it still has some shortcomings. First, the

mesoscale eddy identification algorithm used in this paper was

found to have discrepancies in terms of matching the real eddy with

the predicted eddy, and there is no matching criterion that can be

adopted, which leads to the fact that we have no choice but to

eliminate the eddy pairs that are incorrectly matched in our single-

eddy prediction analysis. To a certain extent, this is not possible in a

single eddy prediction analysis. This may make our experimental

results better than the real results to a certain extent. Second, more

physical parameters should be introduced into the single-eddy

prediction instead of only using the eddy centre height and radius

to evaluate the error. In the future, we plan to introduce vorticity,

shear deformation, and tensile deformation to improve the

evaluation of the single-eddy prediction effect. Third, the

computational redundancy of the AB-LSTM model is greater

than those of several of the prediction models cited in the paper.

To achieve better results, the AB-LSTM takes longer to run,

occupies more memory, and has more training iterations, which

means that our model still needs to be improved in terms of

performance. In the next step, we will try to introduce more

mesoscale eddy physics information to improve the prediction

effect while improving the model.
TABLE 5 Quantification of eddies over a 7-day forecast period (No distinction is made between AE and CE).

Assessment
Indicators

Forecasting Days

1 2 3 4 5 6 7 8 9 10

RMSE
(cm)

A 1.97 2.90 3.90 4.77 5.80 6.84 7.70 8.57 9.44 11.01

B 2.04 3.11 3.97 5.13 5.77 6.37 7.26 8.29 9.17 10.67

SSIM
A 0.91 0.86 0.81 0.76 0.71 0.66 0.61 0.55 0.50 0.43

B 0.88 0.82 0.78 0.73 0.69 0.65 0.62 0.57 0.53 0.49

Dist(km)
A 6.34 6.52 7.40 8.18 9.27 9.80 11.61 12.17 14.25 15.97

B 7.15 7.39 7.75 8.21 8.69 9.22 10.15 10.98 12.19 14.76
fro
A (3-4-3 input format) and B (3-7-3 input format).
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