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Titanium dioxide nanoparticles (TiO2-NPs) released into the environment is

becoming more prevalent due to their increased usage, marine TiO2-NPs

contamination is escalating concerns in coastal areas. To understand the

potential impact of TiO2-NPs on transcript changes in pearl oyster (Pinctada

fucata martensii), transcriptome analysis on the gill tissues of pearl oysters was

conducted after 14-day TiO2-NPs exposure and 7-day brief recovery. A total of

911 differentially expressed genes (DEGs) were identified between the control

group (TC) and the experimental group (TE) exposed to 14-day TiO2-NPs. Gene

ontology (GO) analyses of the DEGs demonstrated their substantial enrichments

in functions related to “hydrolase activity”, “oxidoreductase activity”, and “DNA

integration”. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways

analyses of the DEGs indicated enrichment in several pathways, including

“ubiquitin-mediated protein hydrolysis”, “ECM-receptor interactions”, “NOD-

like receptor signaling pathway”, “Toll-like receptor”, and “FOXO signaling

pathway”. This suggests that exposure to TiO2-NPs intensifies oxidative stress

and apoptosis in pearls oysters, leading to negative effects such as disrupted

protein homeostasis, decreased biomineralization activity, reduced neuronal

excitability, weakened immune response, and reduced cellular metabolism.

Transcriptome analysis identified 844 DEGs between the TE and recovery

group (TR), which underwent a 7-day brief recovery period. GO analyses of the

DEGs demonstrated their substantial enrichments in functions related to “DNA

integration”, “obsolete oxidation-reduction process”, and “proteolysis”. KEGG

pathways analyses of the DEGs indicated enrichment in several pathways,

including “lysine degradation”, “glycine, serine, and threonine metabolism”, and

“NOD-like receptor signaling pathway”. The findings indicated that although

pearl oysters showed only slight relief after 7 days of brief recovery, they
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continued to experience negative effects from TiO2-NP exposure. Our findings

shed light on the complex responses of pearl oysters to TiO2-NPs stress and offer

valuable theoretical insights into the toxicological impact of TiO2-NPs on

pearl oysters.
KEYWORDS

TiO2-NPs, Pinctada fucata martensii, transcriptomics, protein homeostasis,
oxidative stress
1 Introduction
Titanium dioxide nanoparticles (TiO2-NPs) demonstrate

remarkable UV-absorbing properties, outstanding chemical

stability, high opacity, and excellent resistance to fading. These

unique characteristics make TiO2-NPs an essential component in

numerous consumer goods, including sunblocks, cosmetics,

pharmaceuticals, coatings, fabrics, polymers, paper, and wood

treatments (Aitken et al. , 2006). TiO2-NPs can enter

environments via production, transportation, usage, and disposal

stages, thereby posing risks to diverse aquatic organisms and their

ecosystem (Shi et al., 2016; Carbuloni et al., 2020). High-

concentration TiO2-NPs have been detected in coastal waters,

with even greater accumulations observed in sediments (Garner

and Keller, 2014). Based on model computations, the TiO2-NP

concentration in surface waters and wastewater varies from dozens

to several hundred micrograms per liter (Sun et al., 2016).

Concentrations have been recorded to be 900 mg/L in the surface

water near French Mediterranean beaches (Labille et al., 2020). The

titanium dioxide levels were found exceeding the 1.85 ± 0.55 ng/g

detection limit by analyzing the bivalve shellfish from northern

China coastal cities, indicating notable accumulation (Li and Gao,

2014). Increased levels of TiO2-NPs pose significant threats to

various marine organisms, leading to increased concerns about

the ecological and physiological impact of TiO2-NPs. A growing

body of evidence has demonstrated that TiO2-NPs can lead to

various adverse effects, including reduced fertilization success

(Gallo et al., 2016), decreased metabolism (Johari et al., 2013;

Muller et al., 2014), delayed embryonic development (Libralato

et al., 2013), impaired immune response (Ringwood et al., 2009;

Rocha et al., 2014), intestinal microbiome disorders (Chen et al.,

2022b; Duan et al., 2023; Li et al., 2024a), and DNA damage

(Hu et al., 2017).

RNA sequencing (RNA-seq) is used to identify gene expression

patterns under environmental stress. This method is crucial for

examining the overall functional arrangement of genes and

investigating the control mechanisms of biological metabolic

pathways. In recent years, transcriptomics technology has been

extensively employed in toxicological studies of aquatic organisms

exposed to pollutants. By examining changes in gene expression
02
under toxic stress, this technology can reveal the intrinsic toxicity of

pollutants in aquatic organisms at the transcriptional level,

facilitating the prediction and prevention of pollutant toxicity in

aquatic organisms and the environments (Sharon et al., 2013; Liu

et al., 2020). Banni et al. (2016) examined the impact of TiO2-NPs

and 2,3,7, 8-tetrachlorodibenzo-p-dioxins on genes related to the

digestive glands of Mytilus galloprovincialis using a combination of

transcriptomics and immunohistochemistry. Zhou et al. (2024)

used transcriptomic methods to discover that TiO2-NP exposure

triggers lipid metabolism disorders, immune defense disruption,

and oxidative stresses in Acipenser schrenckii. These findings

underscore the effectiveness of transcriptomics in providing a

comprehensive analysis of the impact of TiO2-NPs on

aquatic organisms.

Pinctada fucata martensii, native to southern China, Southeast

Asia, Australia, India, and Japan (Yang et al., 2019, 2023), are filter-

feeding mollusks renowned for their high economic values,

contributing near 90% of the world’s marine pearl production

(He et al., 2020; Wu et al., 2022). Raft and pile cultures are the

primary cultural approaches of offshore pearl oysters (Yang et al.,

2017). Nevertheless, escalating nearshore marine pollution has

recently placed pearl oysters under significant threat. TiO2-NPs

are prone to condensation and deposition on the surface of

sediments. The gills of marine bivalves are the primary organs

exposed to waterborne pollutants and serve as major detoxification

organs in these species, rendering gene expression in this organ

highly prone to alterations (Brandts et al., 2018). This study used

RNA-Seq analysis of gill tissue to identify the potential genes and

pathways affected by TiO2-NPs in pearl oysters after 14-day

exposure and 7-day brief recovery, providing a theoretical basis of

TiO2-NPs’ effects on pearl oysters.
2 Materials and methods

2.1 Exposure of pearl oysters to TiO2-NPs

The anatase form of TiO2-NPs, approximately 5–10 nm in size,

was obtained from Shanghai McLean Biochemical Technology

(Shanghai, China). TiO2-NPs were initially added to filtered

seawater and homogenized for 20 min using an LC-JY92-TTN
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ultrasonic homogenizer (65 W; Lichen Bonsi Instrument

Technology, China) to prepare 1 g/L nanoparticle suspension.

The suspension was subsequently diluted with seawater to a final

TiO2-NPs concentration of 5 mg/L.

The pearl oysters with intact and uniform-sized shells (shell

width with 26.81 ± 2.53 mm) were selected from a fast-growing,

black-selective line of pearl oysters (Deng et al., 2013), sourced from

Liusha Bay, China. The pearl oysters were cleaned to remove

biofoulings and cultured in cylindrical barrels (300 L) for 7 days.

Then the pearl oysters were exposed to 5 mg/L TiO2-NPs for 14

days (treatment phase) and subsequently cultured in TiO2-NP-free

seawater for 7 days (recovery phase). Pearl oysters were fed

unicellular algae (morning: 20,000 cells/mL Chlorella; evening:

10,000 cells/mL Platymonas subcordiformis) during the study

period. The experiment comprised three parallel groups, each

consisting of 30 pearl oysters. The water in the barrels was daily

refreshed, and TiO2-NPs suspension was added to each barrel

maintain a constant TiO2-NPs concentration of 5mg/L. On days

0, 14, and 21, we randomly selected 2 pearl oysters from each

parallel group, designated the control (TC), experimental (TE), and

recovery (TR). Gill tissues were clipped and frozen in liquid

nitrogen and then stored at −80°C for subsequent analyses. No

dead pearl oysters were found during the exposure and

recovery periods.
2.2 RNA extraction and library construction

RNA extraction and purification from the gill tissue were

conducted utilizing TRIzol (Invitrogen, CA, USA) following

instructions from the manufacturer. The purity and quantity of

total RNA was evaluated utilizing a NanoDrop ND-1000

(NanoDrop, Wilmington, DE, USA). Oligo(dT) magnetic beads

(Dynabeads Oligo, No. 25-61005, Thermo Fisher, USA) were

utilized in two consecutive purification steps to specifically

capture mRNA containing PolyA tails. NEBNext® Magnesium

RNA Fragmentation technology (product number E6150S, USA)

was used to fragment the captured mRNA at a high temperature of

94°C for 5 to 7 min. Subsequently, the DNA-RNA complex double

strands into pure DNA double strands. Simultaneously, a dUTP

solution (product number R0133, Thermo Fisher, California, USA)

was added to smooth the ends of the double-stranded DNA.

Subsequently, A bases were added to each end to and used

magnetic beads for fragment size screening and purification. The

UDG enzyme (NEB, product number m0280, Massachusetts, USA)

was then used to digest the double-stranded DNA, followed by PCR

amplification. Thus, a library was constructed with a 300 bp ± 50 bp

fragment size. In accordance with the standard process provided by

LC Bio-Technology Co., Ltd. (Hangzhou, China), Illumina

Novaseq™ 6000 was utilized for dual-end PE150 sequencing.
2.3 Bioinformatics analyses of RNA-seq

Cutadapt ver. 1.9 was utilized to discard adapter sequences,

polyA sequences, polyG sequences, and other low-quality reads.
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FastQC ver. 0.11.9 was used to verify the GC content and Q20/30

content of the quality-controlled reads. HISAT2 ver. 2.0.4 was

utilized to align the reads to the reference genome (Zheng et al.,

2023). StringTie ver. 2.1.6 was employed for gene transcription or

assembly using FPKM quantification. The reads were assembled

with StringTie ver. 1.3.4d, using default parameters. The gffcompare

ver. 0.9.8 was selected for comprehensive transcriptomic

reconstruction. The R package EdgeR was then utilized to

examine the difference between sample genes, defining significant

difference as twice difference ratio > or < 0.5 times and p value <

0.05 (Robinson et al., 2010). Finally, Kyoto Encyclopedia of Genes

and Genomes (KEGG) and gene ontology (GO) gene enrichments

analyses were performed utilizing DAVID software. Raw

transcriptome sequences data have been deposited at Genome

Sequence Archive (GSA) under accession CRA017826.
2.4 Gene expression validation

Eight DEGs were randomly selected for qRT-PCR experiments

to determine whether the results of RNA-seq data were reliable. b-
Actin was used as the internal reference gene. Primers were

designed using Primer Premier 5.0 software as shown in

Supplementary Table 1. The total mixture of 10 mL of each

sample was reacted by the following procedure: denaturation at

95°C for 5 min, followed by 40 amplification cycles (95°C for 10 s,

60°C for 15 s for annealing, and 72°C for 15 s for extension).

Expression levels of different genes were analyzed using the 2-DDCT

method (Livak and Schmittgen, 2001).
3 Results

3.1 Transcriptome sequencing

Illumina sequencing generated a significant number of raw

reads (758,415,850), which were processed to yield 737,017,614

high-quality clean reads following quality control (QC). The GC

contents of these reads ranged from 38.5% to 40%, with Q30 and

Q20 quality scores ranging from 96.93% to 97.52% and 99.97% to

99.98%, respectively, as detailed in Table 1. Subsequently, a

substantial proportion of the genes (61.95%–67.44%) were aligned

successfully with the reference genome. This alignment rate

highlights the suitability and reliability of sequencing data for

follow-up analytical procedures.
3.2 Detection of differentially expressed
genes at different experimental periods

Further differential expression analyses revealed 911 DEGs

between the TC and the TE, with 390 downregulated and 521

upregulated in the TC in comparison to the TE (Figure 1). Among

these, Cytochrome P450 4A25 (PIN0130055), toll-like receptor 13

(PIN0061698), DNA damage-inducible protein GADD45 gamma
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(PIN0103192), and several other genes expression exhibited

significant upregulation, as illustrated in Figure 2. Conversely,

pyridoxal 5’-phosphate synthase subunit SNZERR (PIN0051258),

gamma-glutamyltranspeptidase 1-like isoform X1 (PIN0020608),

DNA damage-inducible protein GADD45 gamma (PIN0103192),

ATP-binding cassette sub-family B member 6 (PIN0010578), and

other genes expression exhibited significant downregulation.

Furthermore, we identified 844 DEGs between the TE and the

TR, including 517 downregulated and 327 upregulated in TE in
Frontiers in Marine Science 04
comparison to the TR (Figure 1). Similarly, gamma-

glutamyltranspeptidase 1-like isoform X1 (PIN0020608), ATP-

binding cassette (ABC) sub-family B member 6 (PIN0010578),

and several other genes expression exhibited significant

upregulation after a short recovery. Conversely, genes, such as

toll-like receptor 3 (PIN0120448) and heat shock 70 kDa protein

12B (PIN0060012), were substantially downregulated (Figure 3).

These significantly altered genes are sensitive to TiO2 NP-induced

stress and may play an important role in physiological processes.
FIGURE 1

(A) Differential gene expression analyses between TC and TE. (B) Differential gene expression analyses between TE and TR. Red indicates the
upregulated gene expression level, blue indicates the downregulated gene expression level, and grey indicated insignificant differential expression.
TABLE 1 Summary of sequencing quality and annotation results.

Sample Raw Data Valid Data Valid Ratio (reads) Q20% Q30% GC content% Mapped reads

TC1 32386114 31605872 97.59 99.97 97.12 39.50 20590581 (65.15%)

TC2 40495812 39388364 97.27 99.98 97.31 39.50 26443594 (67.14%)

TC3 41246484 40113990 97.25 99.97 97.27 39.50 26235833 (65.40%)

TC4 36327138 35354150 97.32 99.97 97.22 39.50 21902326 (61.95%)

TC5 38432986 37181954 96.74 99.98 97.52 39.50 24313435 (65.39%)

TC6 38887062 37821322 97.26 99.97 97.23 39.50 24316076 (64.29%)

TE1 38779560 37672548 97.15 99.97 97.24 38.50 23417337 (62.16%)

TE2 43661260 42422590 97.16 99.97 97.23 39.50 26907831 (63.43%)

TE3 36839476 35906184 97.47 99.97 97.38 39.50 22550883 (62.81%)

TE4 45824350 44640396 97.42 99.97 97.15 40.00 28952056 (64.86%)

TE5 45630492 44422588 97.35 99.97 97.14 39.00 29365397 (66.10%)

TE6 40980192 39882088 97.32 99.97 97.14 39.50 25996906 (65.18%)

TR1 43830504 42419362 96.78 99.98 97.30 39.50 27699419 (65.30%)

TR2 43413570 42196960 97.20 99.97 96.93 39.50 27080947 (64.18%)

TR3 47130618 45804880 97.19 99.97 97.19 39.00 30198648 (65.93%)

TR4 52324586 50979916 97.43 99.97 97.14 39.50 33672004 (66.05%)

TR5 46114218 44446490 96.38 99.98 97.32 39.50 29762848 (66.96%)

TR6 46111428 44757960 97.06 99.98 97.36 39.50 30185390 (67.44%)
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3.3 GO analyses

GO enrichments analyses of the DEGs annotated 3373 and 2577

DEGs across molecular functions, cellular components, and

biological process in the TC and TE groups and TE and TR

groups, respectively. We selected the 30 entries with the highest

enrichment levels for bar charts plotting (Figure 4A). Among them,

the most annotated DEGs in the TC and TE groups were “metal ion

binding”, “DNA binding”, “ATP binding”, “deoxyribonucleotide

biosynthetic process”, “DNA recombination”, “mitotic spindle

assembly”, “RNA-dependent DNA biosynthetic process”, “DNA

integration”, and “nucleus”. In the TE and TR groups, the most

annotated DEGs were “biological process”, “proteolysis”, “zinc ion

binding”, “metal ion binding”, “obsolete oxidation-reduction
Frontiers in Marine Science 05
process”, “DNA integration”, “DNA binding”, and “integral

component of membrane” (Figure 4B).
3.4 KEGG enrichments analyses

KEGG enrichments analyses demonstrated the enrichments of

a total of 369 DEGs in 129 signaling pathways in the TC and TE

groups (Figure 5A). Notably, these pathways included significant

enrichment in “vitamin B6 metabolism”, “glycine, serine, and

threonine metabolism”, “biosynthesis of unsaturated fatty acids”,

“ubiquitin-mediated protein hydrolysis”. Furthermore, the “ABC

transporter”, and “ECM-receptor interactions”, “NOD-like receptor

signaling pathway”, “Toll-like receptor”, “neuroactive ligand-
FIGURE 2

A heatmap showing the differential gene expression analyses between TC and TE.
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receptor interaction signaling pathway”, “lysosomal pathway”,

“phagosomal pathway”, “FOXO signaling pathway”, and

“glutathione metabolite” were also identified to be associated with

pearl oysters’ responses to TiO2-NPs exposure. Conversely, a total

of 284 DEGs in the TE and TR groups were enriched in 102

signaling pathways (Figure 5B). Notably, significant enrichment

was observed in “lysine degradation”, “glycine, serine, and

threonine metabolism”, “NOD-like receptor signaling pathway”,

and other pathways.
3.5 qRT-PCR validation

To assess the accuracy of the RNA-seq results, 8 DEGs were

randomly selected for qRT-PCR in each of the TC vs TE and TE vs

TR groups. qRT-PCR selective gene expression trends were
Frontiers in Marine Science 06
consistent with DEG analyses, suggesting that the transcriptome

data were reliable (Figure 6).
4 Discussion

The survival of aquatic organisms is significantly affected by

salinity, oxygen content, temperature, and pollutants in the water

(Valavanidis et al., 2006). In particular, environmental chemicals

pose various toxic threats to aquatic organisms, such as DNA

damage, oxidative stress, inflammation, apoptosis, and cell death

(Lim et al., 2022; Wang et al., 2023). To withstand complex and

variable living environments, intertidal bivalves have developed

highly intricate adaptive mechanisms (Falfushynska et al., 2020).

Considerable research interest has recently been focused on the

potential impacts of TiO2-NPs on marine bivalves (Abdel-Latif
FIGURE 3

A heatmap showing the differential gene expression analyses between TE and TR.
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et al., 2020; Li et al., 2021). This study revealed the molecular

response mechanisms of pearl oysters after exposure to TiO2-NPs,

providing crucial insights into evaluating the potential toxic impacts

of TiO2-NPs on these organisms.
4.1 TiO2-NPs cause of oxidative stress

TiO2-NPs function as prooxidants that can enter cell

membrane, inducing mitochondrial damage (Barmo et al., 2013).
Frontiers in Marine Science 07
It triggers excessive cellular production of reactive oxygen species

(ROS), leading to compromised membrane permeability

(Girardello et al., 2016). Under such conditions, living beings may

experience oxidative stress due to excessive ROS production when

the cellular antioxidant defense system becomes overwhelmed (Ray

et al., 2012). To mitigate the harmful impacts of ROS, numerous

animals can employ antioxidant defensing mechanisms, including

non-enzymatic components (such as carotenoids and glutathione)

and enzymatic components (such as glutathione peroxidase and

superoxide dismutase) (Yang et al., 2017). We detected the
FIGURE 4

GO terms enrichment analysis of DEGs in TC and TE (A), TE and TR (B).
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FIGURE 6

Validation of RNA-seq data by qRT-PCR in TC and TE groups (A), TE and TR groups (B).
FIGURE 5

KEGG pathway enrichment analysis of DEGs in TC and TE (A), TE and TR (B).
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substantial enrichment of the DEGs in the glutathione metabolism

pathway under TiO2-NP stress. Genes encoding glutathione

peroxidase-like (PIN0101396), gamma-glutamyltranspeptidase 1-

like isoform X1 (PIN0020608), glutathione S-transferase sigma 3

(PIN0052777), microsomal glutathione S-transferase 2

(PIN0060908), and aminopeptidase N (PIN0020097) were

substantially downregulated. According to these results, pearl

oysters experience oxidative stress under TiO2-NP stress, being

consistent with our prior finding (Li et al., 2024b).

Here, we observed notable enrichment of vitamin B6

metabolism in the KEGG pathway enrichment. Specifically, we

found that the pyridoxal 5’-phosphate synthase subunit SNZERR

(PIN0051258), which is involved in vitamin B6 metabolism, was

downregulated in response to oxidative stress. Pyridoxal-5’-

phosphate (PLP) acts as the physiologically active coenzyme of

vitamin B6, potentially playing pivotal roles in antioxidation

(Schneider et al., 2000). PLP can directly scavenge free radicals

for lipid peroxidation inhibition. Alternatively, PLP acts indirectly

as a coenzyme of the glutathione antioxidant defense system (Liu

et al., 2013). Studies have indicated that deficiencies in vitamin B6

can weaken antioxidant defensing mechanisms and increase

oxidative stresses (Danielyan and Chailyan, 2020). This study

demonstrated that TiO2-NPs exposure induced downregulation of

pyridoxal 5’-phosphate synthase subunit SNZERR (PIN0051258),

which is involved in vitamin B6 metabolism, thereby affecting

vitamin B6 synthesis and increasing oxidative stress in pearl oysters.

Aquatic species depend on the multi-xenobiotic resistance

(MXR) mechanism as a key defensing mechanism against

environmental toxins, minimizing intracellular accumulation of

toxins and potential damage (Kurelec, 1995), which is mediated

by the ABC transporter (Kingtong et al., 2007). The relationship

between ABC transporters and nanoparticles has gained increasing

attention (Yin et al., 2023). Kingtong et al. (2007) demonstrated the

significant roles of ABC transporters in the detoxification metabolic

mechanism of Saccostrea forskali after exposure to tributyltin.

Research on mussel gill cells has demonstrated the upregulation

of Abcb1 by silver NPs, aiding in silver NPs detoxification

(Katsumiti et al., 2015). Bhagat et al. (2022) reported that

polystyrene and metal oxide nanoparticles disrupt ABC

transporters’ functionality in zebrafish embryos, resulting in

increased aluminum and cerium ion toxicity. Similarly,

Georgantzopoulou et al. (2016) found that the MXR system could

be inhibited by silver nanoparticles in Daphnia magna larvae,

leading to increased calcineurin accumulation. After TiO2-NPs

exposure, significant downregulation was observed in genes

linked to the ABC transporters pathway, including ABC sub-

family B member 6, mitochondrial-like (PIN0010578), multidrug

resistance-associated protein 1-like isoform X1 (PIN0080856), and

canalicular multispecific organic anion transporter 2 (PIN0080857).

This indicates that TiO2-NPs inhibit the activity of ABC transporter

protein activity, thereby worsening oxidative stress and particle

accumulation in pearl oysters. After a brief 7-day recovery period,

genes associated with ABC transporters and glutathione

metabolism pathways exhibited significant upregulation,

indicating an increase in oxidative stress in pearl oysters.
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Cytochrome P450, a class of monooxygenase, is crucial for the

syntheses and metabolisms of various hormones, such as

glucocorticoids and mineralocorticoids, which are essential for

stress response (Urlacher and Girhard, 2012). Increased P450

production in aquatic organisms typically indicates they are

experiencing stress (Ibrahim et al., 2021). For instance, elevated

transcription of the cytochrome P450 gene was observed in the

kidney, gill, and liver tissues of Nile tilapia following exposure to

Aeromonas hydrophila (Hal and El-Barbary, 2020). An upregulation

was observed in genes such as cytochrome P450 4A25

(PIN0130055), cytochrome P450 2C8 (PIN0120270), cytochrome

P450 3A19 (PIN0100308), cytochrome P450 2C8-like isoform X1

(PIN0140634), and cytochrome P450 3A29 (PIN0100307)

following 14-day TiO2-NPs exposure, indicating that TiO2-NPs

exposure induces oxidative stress in pearl oysters. After a brief

recovery period, the related cytochrome P450 gene expression was

downregulated compared with that of the TE group, which also

indicates that brief recovery can alleviate stress in pearl oysters.
4.2 TiO2-NPs changes in immune activities

Exposure to TiO2-NPs can adversely affect bivalves’ immune

system (Wei et al., 2023). Bivalves primarily depend on innate

immunity due to their lack acquired immune system (Jiang et al.,

2017). Microbial recognition by innate immunity is mediated by

pattern recognition receptors, which bind to pathogen-associated

molecular patterns, the conserved microbial molecules. Toll-like

receptors detect microorganisms in extracellular cellular lumens

and phagosomes, whereas the Nod-like family of receptors

recognize intracellular pathogens, triggering transcriptional

responses and activating inflammatory vesicles (Chamaillard

et al., 2003; Inohara et al., 2005). Innate immune receptors

interact with specific microbial ligands to generate signaling

pathways triggering host transcriptional response linked to

inflammation. Research has demonstrated that bacterial lysis in

phagosomes is crucial for acquired and innate immune response

development (Herskovits et al., 2007). Phagosome maturation

involves regulatory interactions with other membrane organelles,

such as regenerating endosomes, late endosomes, and lysosomes.

Furthermore, the lysosomes-phagosomes fusion can release toxic

compounds that effectively kill and fragment major bacteria (Luzio

et al., 2007). Lysosomes play pivotal roles in various physiological

functions, such as immune responses, energy metabolism, cell

survival, cell membrane repair, and cellular homeostasis, most of

which rely on lysosomes’ protease activities (Martıńez-Fábregas

et al., 2018). We detected substantial upregulation of the toll-like

receptor 13 (PIN0061698), toll-like receptor 3 isoform X2

(PIN0061696), and toll-like receptor 3 isoform X1 (PIN0061693)

genes after exposure to TiO2-NPs. Furthermore, the expression of

some genes in the NOD-like receptor signaling pathway, lysosome

pathway, and phagosome pathway was substantially upregulated,

indicating that TiO2-NPs exposure activates the immune system of

pearl oysters and improves their immune ability to resist the

invasion of TiO2-NPs, being consistent with our prior finding (Li
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et al., 2024a, b). We observed substantial downregulation of the toll-

like receptor 3 (PIN0120448) and protein toll-like (PIN0071163)

genes after a brief recovery period. In addition, the NOD-like

receptor signaling, lysosome, and phagosome pathways remained

substantially upregulated compared with the TE group, indicating

that brief recovery may alleviate immune stress in pearl oysters.
4.3 TiO2-NPs induces apoptosis

Apoptosis is critical for the immune response of mollusks

(Zhang et al., 2022). The FOXO signaling pathway is associated

with apoptosis, DNA repair, and several cellular pathways (Chen

et al., 2022a). In aquaculture, there is increasing research interest in

investigating the changes in the FOXO pathway caused by

environmental stress. For instance, studies have demonstrated

that acute hypoxia induces changes in the FOXO signaling

pathway in Hypophthalmichthys nobilis (Chen et al., 2021) and

Oncorhynchus mykiss (Wu et al., 2023). Additionally, Ma et al.

(2023) revealed that high-temperature stress mitigates cellular

apoptosis by regulating the expressions of FOXO target genes

related to apoptosis, thereby mediating liver injury in

Brachymystax lenok tsinlingensis. After exposure to TiO2-NPs, the

expressions of genes related to the FoxO signaling pathway were

substantially downregulated, including epidermal growth factor

receptor-like isoform X2 (PIN0140090), growth arrest and DNA

damage-inducible protein GADD45 gamma (PIN0103192), growth

arrest and DNA damage-inducible protein GADD45 alpha-like

(PIN0103191, PIN0103190), growth arrest and DNA-damage-

inducible protein GADD45 gamma (PIN0103188), and

phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit

alpha isoform-like (PIN0101618). This indicates that exposure to

TiO2-NPs inhibits the FOXO pathway and induces apoptosis.

Gadd45 a is known to be activated in response to DNA damage

(Salvador et al., 2013). Martin-Folgar et al. (2022) discovered that

exposure of Danio rerio to plastic particles at a concentration of 0.1

ppm resulted in upregulation of GADD450 expression, whereas

exposures to 0.5 and 3 ppm led to downregulation of GADD450

gene expression. Consistent with observations of Martin-Folgar

et al. (2022), we also observed a significant downregulation of

Gadd45 expression in pearl oysters after 14 days of TiO2-NPs

exposure, which indicates that TiO2-NPs may have impacted the

DNA repair mechanism of pearl oysters by affecting the overall

repair capacity of DNA, potentially leading to apoptosis.

Inhibitors of apoptosis proteins (IAP) protect aquatic

organisms from the detrimental impacts of atmospheric exposure,

thereby extending their survival time (Zhou et al., 2021). A

significant upregulation of IAPs in oysters exposed to high

temperatures, air, and low salinity has been demonstrated

previously (Zhang et al., 2012). Under hypoxia in pearl oysters

(Yang et al., 2023) and manila clams (Nie et al., 2020), the

expressions of IAPs were substantially upregulated to activate

their apoptotic systems in response to survival conditions.

Nevertheless, baculovirus IAP repeat sequence protein 3-like

(PIN0060593), baculovirus IAP repeat sequence protein 7-A

(PIN0060592), and putative apoptosis inhibitory factors
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(PIN0070159, PIN0070593) were found to be downregulated

under the conditions of TiO2-NPs exposure, leading to apoptosis

and affecting cell viability and proliferation.
4.4 Energy supply and energy expenditure

Bivalves are particularly vulnerable to nanoparticle toxicity in

aquatic environments because of their filter-feeding strategy and

sessile lifestyle. Nanoparticles, which are often agglomerated, are

trapped in their gills and can enter the digestive system through

endocytosis, leading to harmful effects (Gornati et al., 2016; Li et al.,

2021). Nanomicroplastics have been demonstrated to disrupt the

digestive system of shellfish, impairing nutrient absorption and

consequently affecting shellfish health (Cole et al., 2020; Cappello

et al., 2021). Furthermore, Mytilus edulis could absorb 100 nm

microplastic particles, which affect the filtration activity of

these organisms, produce pseudofaeces, and consume energy

(Wegner et al., 2012).

Gluconeogenesis and glycolysis are critical metabolic pathways

involved in carbohydrate synthesis and catabolism (Jitrapakdee,

2012). Studies have demonstrated that shellfish maintain energy

balance under stress conditions by boosting glycolysis (Sun et al.,

2021; Hu et al., 2022). During pathogen infections, the host requires

increased energy to fight and survive the infection. However, relying

solely on sugar metabolism is insufficient to support the higher

energy requirements of the host due to its limited carbohydrate

content. Proteins and lipids serve as crucial alternative energy

sources to meet the increased energy demands of the host. Lipids

contribute significantly to animal adaptation to adverse

environments, in addition to supporting normal growth and

development by providing energy (Chen et al., 2013; Liu et al.,

2016). Studies have demonstrated that zebrafish experience

increased glucose consumption and energy supply deficits after

exposure to NPs (Chen et al., 2020). In Crassostrea gigas larvae,

stimulation by OsHV-1 infection resulted in large-scale mortality,

likely attributed to reduced oyster feeding activity and significant

disruption of lipid metabolism within the organisms (Young et al.,

2017). After exposure to TiO2-NPs, KEGG secondary pathways

analysis revealed significant enrichment in pathways related to

carbohydrate metabolism. Specifically, the expression of most

related genes within the glycolytic pathways, pentose and

glucuronate interconversion pathway, citrate cycle pathway, and

nucleotide and amino sugars metabolism pathway was substantially

downregulated. Furthermore, key genes associated with energy

metabolisms, such as glycogen-binding subunit 76A-like

(PIN0121059), 78 kDa glucose-regulated protein (PIN0111091),

and insulin-induced gene 2 protein (PIN0010512) were

substantially downregulated. This indicates a reduction in sugar

and carbohydrate supply to the organism from pearl oysters

exposed to TiO2-NPs. Most genes in the KEGG secondary

pathways associated with amino acid metabolism, such as

methionine and cysteine metabolism pathways, threonine, serine,

and glycine metabolism pathways, lysine degradation pathway, and

arginine and proline metabolism pathways, were substantially

downregulated. Conversely, most genes involved in pathways
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associated with lipid metabolism, such as steroid hormone

biosynthesis, unsaturated fatty acids biosynthesis, linoleic acid

metabolism, and fatty acid degradation pathways, were

substantially upregulated. This indicates that under TiO2-NPs

stress, lipid metabolism becomes the primary energy supply for

pearl oysters. We speculate that sugars, carbohydrates, and proteins

may primarily supply energy during the pre-exposure phase of

TiO2-NPs, and then switch to lipids during the post-exposure phase

of the exposure. However, further studies are required to confirm

this hypothesis. After a brief recovery period, secondary pathways

related to glycan biosynthesis and metabolism, lipid metabolism,

amino acid metabolism, and nucleotide metabolism exhibited

significant upregulation, revealing the restored energy supply in

pearl oysters after alleviating the stress induced by TiO2-NPs.

Under TiO2-NPs stress, the downregulated DEGs substantially

enriched the GO terms associated with “mitotic spindle assembly”,

“deoxyribonucleotide biosynthetic process”, “RNA-dependent

DNA biosynthetic process”, “DNA recombination”, and “DNA

integration”. Extended exposure to TiO2-NPs may cause cellular

injury, potentially disrupting metabolic activities within cells. This

suppression of cellular processes is hypothesized to be a strategic

response to conserve energy under TiO2-NPs-induced stress.
4.5 TiO2-NPs disrupt protein homeostasis

Ensuring protein equilibrium is essential for maintaining

physiological function, as it involves a dynamic balance between

synthesis and degradation. The accumulation of damaged or

misfolded proteins within cells can be toxic and disrupt normal

cellular processes (Sherman and Goldberg, 2001). The HSP70 family

members are crucial for maintaining protein homeostasis by

facilitating newly produced and denatured peptides’ folding into

native conformation as well as the refolding of proteins forming

aggregates within cells (Fu et al., 2014; Artigaud et al., 2015).

Overexpression of HSP70 genes is often pivotal for enhancing

resistance to various stresses, a common phenomenon observed

among aquatic organisms exposed to pollutants (Ivanina et al.,

2009). For instance, the proliferation of the HSP70 gene family and

the overexpression of the HSP70 gene are believed to significantly

contribute to the capability of oysters’ high-temperature withstanding

(Ivanina et al., 2009). Distinct amplification of HSP70 was identified

in bivalve shellfish, such as the Crassostrea hongkongensis (Brandts

et al., 2018). Conversely, HSP70 downregulation has been reported in

Mytilus galloprovincialis after exposure to heat stress and cadmium

(Izagirre et al., 2014). Transcript levels of hsp70 in the gill tissues of

Mytilus galloprovincialiswere observed to decrease after simultaneous

exposure to nanoplastics and carbamazepine (Brandts et al., 2018). In

our experiments, we observed substantial downregulation of the heat

shock 70 kDa protein 12B (PIN0060012), heat shock 70 kDa protein

12B-like isoform X4 (PIN0131632), and HSP70-binding protein

1-like (PIN0050777) genes. However, inactivating these gene

transcripts does not necessarily indicate low HSP70 protein levels.

High HSP70 level has been demonstrated to cause transcription

factors inactivation through a negative feedback mechanism (Pinsino

et al., 2017). HSP70 proteins aid in the lysosomal degradation of
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aggregated proteins, using either molecular chaperone-assisted

autophagy or the ubiquitin-proteasome system (Rokutan, 2000).

Based on reports, animals can regulate misfolded peptides

breakdown through the ubiquitin-proteasome mechanism

(Hampton, 2002). Ubiquitin genes activation is stimulated to break

down unrepairable proteins in a heat-sensitive abalone lineage (Chen

et al., 2019). Whiteleg shrimp (Penaeus vannamei) responds to stress

by upregulating ubiquitin gene expression after a short-term

microplastic exposure (Han et al., 2021). After exposure to TiO2-

NPs, substantial decreased expression of 13 genes, such as ubiquitin-

protein ligase E3C-like (PIN0100476) and apoptosis 1 inhibitor

(PIN0060591) was observed, indicating that the downregulation of

genes involved in the ubiquitin-mediated protein hydrolysis pathway

could affect the ability of pearl oyster to remove misfolded proteins,

thereby resulting in cytotoxicity. Heat shock 70 kDa protein 12B

(PIN0060012) and heat shock 70 kDa protein 12B-like isoform X1

(PIN0081248) remained downregulated following a short-term

recovery period of 7 days. In addition, although seven genes in the

ubiquitin-mediated proteolysis pathway were upregulated, six genes

remained downregulated, indicating that the short-term recovery

period was insufficient to restore pearl oysters to normal levels. These

findings reveal that TiO2-NPs can significantly affect protein

homeostasis in pearl oysters.
4.6 TiO2- NPs disrupt neuronal excitability

In invertebrates, neurons play crucial roles in receiving and

processing environmental information. Furthermore, neurons

positively regulate synaptic structural plasticity and function,

enhancing adaptive capacity under stressful conditions (Konstantinos

et al., 2012). In Limulus polyphemus, neurons contribute to osmotic

stress tolerance and adaptation through several processes, such as

depolarization of membrane potentials, modulation of burst

frequencies, and alteration of spiking patterns (David and Sidney,

1981). However, prolonged stress can lead to irreversible neuronal

damage (Samokhvalov et al., 2008). For instance, TiO2-NP stress

downregulates related genes in pearl oyster neurons, leading to

decreased neuronal excitability and inhibited neuronal activity (Yang

et al., 2023). Furthermore, Guan et al. (2018) discovered that high-

concentration TiO2-NPs induced substantial neurotoxic effects on

Tegillarca granosa. In addition, NPs are potentially neurotoxic for

mammals and teleosts (Sheng et al., 2016; Ze et al., 2016).

Neurofunctions are directly linked to the signaling pathway of

neuroactive ligand-receptor interactions (Duan et al., 2016).

Neuronal function is affected by neuroactive ligands that bind to

intracellular receptors, which in turn can bind with transcription

factors and regulate gene expressions (Xu et al., 2012). Disruption of

genes associated with neuroactive ligand-receptor interaction results in

compromised memory functions (Papassotiropoulos and de Quervain,

2015). Wei et al. (2020) reported that silica nanoparticles cause

developmental neurotoxicity in zebrafish embryos by disrupting the

signaling pathway of neuroactive ligand-receptor interactions.

Similarly, Gainey and Greenberg (2003) observed that

neurotransmitters that are both excitatory, such as acetylcholine, and

inhibitory, such as gamma-aminobutyric acid, are important for
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mollusks’ neural signal transduction. Previous studies have highlighted

the vital roles of neurotransmitter receptors in responding to changes

in neurotransmitters (Mao et al., 2017). Consequently, the

downregulation of genes encoding these receptors demonstrates that

TiO2-NPs exposure may disrupt various physiological processes

regulated by neurotransmitters (Guan et al., 2018). Here, we

identified a total of 23 DEGs significantly associated with pathways

related to “neuroactive ligand-receptor interaction.” Following 14-day

TiO2-NPs exposure, there was an indication of inhibited neuronal

activity, marked by substantial downregulation of various neuron-

related genes, such as activator of 90 kDa heat shock protein ATPase

homolog 1 (PIN0090777), gastrin/cholecystokinin type B receptor-like

(PIN2170002), ETS-related transcription factor Elf-5 (PIN0050085),

prostaglandin E2 receptor EP4 subtype-like (PIN0100254),

cholecystokinin receptor type A-like (PIN0071117), neuronal

acetylcholine receptor subunit alpha-10-like (PIN0051212),

hypothetical protein KP79_PYT23720 (PIN0110990), pyrokinin-1

receptor-like (PIN0101895), G-protein coupled receptor 54 isoform

X2 (PIN0010507), neuropeptide Y receptor type 2 (PIN0030378),

probable G-protein coupled receptor 139 (PIN0070411), gamma-

aminobutyric acid type B receptor subunit 2-like (PIN0020047), and

gamma-aminobutyric acid type B receptor subunit 2-like isoform X1

(PIN0051226). These genes are known to play crucial roles in

regulating nervous system processes, such as synaptic transmission,

strength, and maturation. After 7 days of recovery, a total of 10 DEGs

were significantly associated with pathways related to “neuroactive

ligand-receptor interaction,” indicating that the transient recovery

period restored neuronal activity. Furthermore, seven neuronal genes,

including somatostatin receptor type 2 (PIN0101576), allatostatin-A

receptor-like (PIN0111909), calcitonin receptor-like (PIN0010366),

blastula protease-10 (PIN0091326), cholecystokinin receptor type A-

like (PIN0080212), neuropeptide Y receptor type 6-like (PIN0120125),

and neurotensin receptor type 1-like (PIN0090157), remained

significantly downregulated. This indicates that even after 7 days of

recovery, the neuronal activity of pearl oysters could not return to

normal levels.
4.7 Impact of TiO2-NPs on
biomineralization activity

Biomineralization is a biological process by which organisms

control and promote mineral substances precipitation, such as pearls

and shells, through biological mechanisms (Yang et al., 2021).

Increased phenanthrene levels, seawater acidification, temperature

changes, hypoxia, and pollution can impact the expressions of genes

related to shell and pearl formation in economic pearl oysters (Jafari

et al., 2023; Yang et al., 2023). Du et al. (2017) discovered that chitin

plays a pivotal role as the primary organic matrix in the formation of

nacre in the shell of Pinctada fucata martensii. The researchers also

hypothesized that genes encoding chitinase could have had

substantial effects on the biomineralization process (Du et al.,

2017). After exposure to TiO2-NPs, the expression levels of

chitinase 1 (PIN0102750), chitinase 3 (PIN0101472), and chitinase-

3-like protein 1 (PIN0140499) were substantially downregulated.
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Studies have demonstrated that proteins containing VWA

domains, particularly collagen-related VWA-containing proteins

(VWAP), are critical for the organic matrix of nacre and are

essential for the formation of nacreous shells in Pinctada fucata

martensii (Du et al., 2017). A protein discovered in the shell of Pteria

sterna, referred to as N66, has been isolated and investigated,

indicating that it exhibits activity similar to carbonic anhydrase and

can generate crystalline forms of calcium carbonate under laboratory

conditions (Rivera-Perez et al., 2019). The shell matrix serves as a

complex system that facilitates interactions between proteins and

minerals, proteins and proteins, as well as the epithelium and

minerals (Marin et al . , 2012), being crit ical for the

biomineralization process (Sedanza et al., 2022). Here, the

expressions of von Willebrand factor type A (PIN0110615),

Full=N66 matrix protein (PIN0020545), and larval shell matrix

protein 3 (PIN0090029) genes associated with pearl oyster

biomineralization were substantially downregulated in the TE

group compared with the TC group following exposure to TiO2-

NPs. This indicates that TiO2-NPs negatively affected the

biomineralization capacity of pearl oysters. This finding is

consistent with our previous study, which demonstrated that TiO2-

NP stress damages pearl oyster microstructure (Li et al., 2024a).

Moreover, research has indicated that the kelch-like gene plays a role

in the prismatic shell layer formation in pearl oysters (Yang et al.,

2022). Shell formation involves a co-expression network of

extracellular matrix (ECM)-related proteins (Du et al., 2017). The

ECM comprises structural and functional macromolecules, such as

fibers (e.g., collagen, fibronectin) (Mariman andWang, 2010). After 7

days of recovery, the biomineralization-related genes kelch-like

protein 26 isoform X1 (PIN0081045), von Willebrand factor type A

(PIN0110615, PIN0053245), fibronectin type-III domain-containing

protein 3a-like isoform X4 (PIN0081841), and collagen alpha-4(VI)

chain (PIN0111490) were observed upregulated, indicating that a

short recovery period restored some biomineralization capacity of

pearl oysters, being consistent with our prior finding (Li et al., 2024b).
5 Conclusion

In this study, transcriptomic analysis was conducted to assess the

effects of TiO2-NPs stress on gene expression in pearl oyster. A total

of 911 and 844 DEGs were identified in the TC vs TE groups and the

TE vs TR groups, respectively. These findings indicate that exposure

to TiO2-NPs conditions disrupts protein homeostasis, reduces

biomineralization, decreases neuronal excitability, promotes

apoptosis, inhibits immune responses, and induces oxidative stress.

These findings help to provided a significant reference to evaluate the

threat of TiO2-NPs to pearl oysters in the general ecological

environment. Nevertheless, future studies are required for a better

assessment of these issues, such as whether a longer recovery period

can restore their normal levels, the potential interaction of TiO2-NPs

with variable environments (such as water temperature, salinity,

and the presence of other pollutants), more comprehensive

understanding of the systemic effects of TiO2-NPs, and how TiO2-

NPs affect pearl oysters populations and their role in the ecosystem.
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