
Frontiers in Marine Science

OPEN ACCESS

EDITED BY

Selvaraj Kandasamy,
Central University of Tamil Nadu, India

REVIEWED BY

Xiting Liu,
Ocean University of China, China
Yuan-Pin Chang,
National Sun Yat-sen University, Taiwan

*CORRESPONDENCE

Yajuan Yuan

yuanyajuan@m.scnu.edu.cn

Wei Zhang

zwgmgs@foxmail.com

RECEIVED 08 July 2024
ACCEPTED 02 October 2024

PUBLISHED 30 October 2024

CITATION

Luo X, Yuan Y, Zhang W, Huang W, Ou S, Ji C
and Cao J (2024) Methane seepage activities
in the Qiongdongnan Basin since MIS2.
Front. Mar. Sci. 11:1460657.
doi: 10.3389/fmars.2024.1460657

COPYRIGHT

© 2024 Luo, Yuan, Zhang, Huang, Ou, Ji and
Cao. This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other forums
is permitted, provided the original author(s)
and the copyright owner(s) are credited and
that the original publication in this journal is
cited, in accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research

PUBLISHED 30 October 2024

DOI 10.3389/fmars.2024.1460657
Methane seepage activities in the
Qiongdongnan Basin since MIS2
Xiaokang Luo1,2, Yajuan Yuan1,2*, Wei Zhang2,3*, Wei Huang2,3,
Shimin Ou1, Chunsheng Ji2,3 and Jun Cao2,3

1School of Geography, South China Normal University, Guangzhou, China, 2National Engineering
Research Center of Gas Hydrate Exploration and Development, Guangzhou, China, 3Sanya Institute of
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Gas hydrates are globally acknowledged as a significant strategic alternative

energy source, and there is a consensus on the necessity to enhance their

exploration. However, gas hydrates are highly prone to decomposition under

variations in external environmental conditions, which can result in subsea

methane seepage activities. Consequently, investigating subsea methane

seepage activities holds substantial theoretical and practical significance for

exploring gas hydrates. This paper evaluates the history of methane seepage

activities in the Qiongdongnan Basin (QDNB) by analyzing the carbon and

oxygen isotopic characteristics of benthic foraminifera and the geochemical

properties of pore water from gravity sediment cores at sites QH-CL4 and QH-

CL40. The results indicate that since the Marine isotope stage2 (MIS2),

continuous micro-methane seepage activity has been present in the QDNB,

characterized by a slight negative deviation in the carbon isotopes of benthic

foraminifera. Methane seepage activity intensified during 14.6 ka BP and between

19.64–23.22 ka BP. This increase is thought to be associated with rising seawater

temperature during the Bølling–Allerød interstadial and declining sea level during

the Last Glacial Maximum, respectively. Moreover, current geochemical

characteristics of pore water reveal strong methane seepage activity, with flux

as high as 28.968 mmol·m-²·a-¹. This ongoing activity has led to gas hydrate

formation within shallow layers while also causing negative deviations in pore

water salinity.
KEYWORDS

methane seepage act iv i t ies , pore water , foraminifera , geochemistry ,
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1 Introduction

Gas hydrates are ice-like crystalline substances formed by the combination of methane

and other hydrocarbon gases with water under conditions of low temperature and high-

pressure. They predominantly occur in terrestrial permafrost zones and continental marine

sediments (Kvenvolden, 1995; Suess, 2014). Gas hydrate systems exist in a state of dynamic
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equilibrium and are highly sensitive to environmental changes

(Lemaitre et al., 2014). Variations in seabed temperature and

pressure changes can induce the dissociation of gas hydrates,

resulting in the release of hydrocarbon gases (Niemann et al.,

2006; Boetius and Wenzhoefer, 2013; Kirschke et al., 2013). The

methane released during this process may migrate or be ejected

through surface sediments, triggering seafloor geological events that

contribute to global climate change (Dickens et al., 1997; Dickens,

2001; Archer et al., 2009; Them et al., 2018), thereby significantly

impacting the global carbon cycle and climate dynamics. Therefore,

it is of great significance to study methane seepage activities in

regions abundant in gas hydrates.

Foraminifera are sensitive to environmental changes and have

emerged as an significant indicator of methane seepage activities

throughout geological history (Tetard et al., 2017). The stable

isotopes of their shells can effectively record the properties of the

surrounding water, and the extremely light carbon isotope values in

methane will affect the dissolved inorganic carbon in the water,

thereby inducing a negative bias in the d13C of foraminifera shells

(Burkett et al., 2018). Since the Quaternary, numerous gas hydrate

events have been identified by negative d13C excursions in

foraminiferal shells, with discoveries reported from various

regions, including the Bay of Bengal (Cen et al., 2022; Clemens

et al., 2023), the Svalbard margin in the North Atlantic (Dessandier

et al., 2020; Melaniuk et al., 2022a), the California margin in the

North Pacific (Rathburn et al., 2000; Hill et al., 2003), Hydrate Ridge

in Oregon, North Pacific (Hill et al., 2004, the Pearl River Mouth

Basin (Wan et al., 2018), and the Dongsha area (Huang et al., 2022).

The current active methane seepage can be identified through

the geochemical characteristics of pore water. Methane released

from the dissociation of deep gas hydrates interacts with sulfate ions

(SO2−
4 ) in pore water, undergoing the anaerobic oxidation of

methane (AOM, Equation 1) (Borowski et al., 1999). During

drilling, the dissociation of shallow hydrates directly injects fresh

water into pore water, causing anomalies in pore water salinity

(Hesse and Harrison, 1981). Therefore, sediment pore water is

crucial for documenting ongoing methane seepage activities and

indicating the presence of gas hydrates. Abnormal geochemical

signatures in pore water have confirmed current methane seepage

activities as well as their existence. Examples include the Taixinan

Basin in the South China Sea (Ye et al., 2016; Bohrmann et al.,

2023), the Okinawa Trough in the East Sea (Xu et al., 2021), the

Ulleung Basin in the East Sea (Kim et al., 2013), the Svalbard margin

in the North Atlantic (Hong et al., 2018), and the Cascadia margin

(Haeckel et al., 2004; Malinverno et al., 2008).

CH4 + SO2−
4 → HCO−

3 + HS− + H2O (1)

The Qiongdongnan Basin in the South China Sea is abundant in

gas hydrate resources, which significantly influence methane

seepage fluxes (Wei et al., 2019; Ye et al., 2019; Lai et al., 2021;

Ren et al., 2022). The geochemical characteristics of pore water

indicate ongoing methane seepage activities in this region (Feng

et al., 2018a; Hu et al., 2019; Sun et al., 2019; Wan et al., 2020).

Additionally, evidence from authigenic carbonates and pyrite

suggests that historical dissociation events of gas hydrates have
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occurred (Miao et al., 2021; Zhang et al., 2023a). This study

concentrates on the QH-CL4 and QH-CL40 sites in the

Qiongdongnan Basin. By analyzing the carbon and oxygen

isotopic characteristics of benthic foraminifera from gravity core

samples, we aim to reconstruct the history of methane seepage since

MIS2. Furthermore, we investigate current methane seepage

activities through geochemical analysis of pore water, exploring

their implications for natural gas hydrates in the region.
2 Geological setting

The study area is located in the Qiongdongnan Basin on the

northern continental slope of the South China Sea (Figure 1).

Structurally, it is situated in the southwestern part of the Songnan

Low Uplift, extending from longitudes 108°40′ to 112°35′ E and

latitudes 16°50′to 19°00′ N, covering an area of approximately

80,000 km² (Wang et al., 2015). The water depth in the

Qiongdongnan Basin varies between 1600 m and 1800 m, with a

geothermal gradient ranging from 65 to 113°C/km (Wei et al., 2019;

Deng et al., 2021).

Previous studies indicate that the Qiongdongnan Basin

underwent a rifting stage from the Eocene to the Oligocene,

followed by a post-rift thermal subsidence stage from the Tertiary

to the Quaternary, which has shaped the current sedimentary

characteristics of the basin (Hu et al., 2013; Zhao et al., 2015).

The sedimentary succession is composed of Eocene lacustrine

mudstones, Oligocene lacustrine and shallow water sediments,

and Miocene deep water deposits (Zhao et al., 2015). The Eocene

lacustrine mudstone, formed during the early rift stage, is

characterized by multiple depressions and uplifts controlled by

faulting (Li et al., 2017a). The Oligocene Yacheng Formation,

deposited during the late rifting stage, is recognized as a primary

source rock for hydrocarbons in the basin. Miocene deep-water

deposits, including the Sanya, Meishan, and Huangliu formations,

consist predominantly of mudstone and sandstone, representing

products of the subsidence stage, and are located in channel

sandstone reservoirs within the basin (Zhang et al., 2020). These

thick hydrocarbon source rocks are crucial for the natural gas

formation. Rapid sedimentation during the Cenozoic led to deep

burial and compaction of sediments, resulting in widespread

overpressure in the basin (Shi et al., 2013). This overpressure has

triggered the formation of mud diapirs and gas chimneys, which are

extensively distributed in the deep water, providing crucial vertical

migration pathways for hydrocarbons (Zhang et al., 2019a).

In 2018, Guangzhou Marine Geological Survey (GMGS)

conducted the 5th China gas hydrate drilling expedition

(GMGS5) in the northwestern South China Sea and massive gas

hydrate were sampled during this cruise. The true amplitude was

preserved in the processing to clearly interpret the seismic features

associated with the gas hydrates, especially the Bottom Simulating

Reflectors (BSRs) (Yoo et al., 2013). The gas hydrate drilling site,

GMGS5-W7-2018, is situated atop a large gas chimney, which

originated from a low uplift (Figure 2). BSRs appeared on the top

of or flank of the gas chimney area.
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FIGURE 1

Location of the Qiongdongnan Basin and drilling location (The base map was modified after Ryan et al., 2009, with the drilling location of Q6 from
Miao et al., 2021).
FIGURE 2

Seismic profiles across W07 with interpretations.
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3 Materials and methods

3.1 Samples

The samples for this study were collected from the QH-CL4 and

QH-CL40 sites during the fifth hydrate drilling expedition

(GMGS5) by the Guangzhou Marine Geological Survey. Located

near drilling site GMGS5-W7-2018 (Figure 1), these samples were

obtained using large gravity piston cores. Each core measures 4.8

meters in length and was retrieved from a depth of approximately

1766 m. The cores primarily consist of light gray silty clay, with

sections exhibiting greenish-gray silty clay (Liang et al., 2024).

Upon arrival on deck, pore water was extracted from the

sediment cores of QH-CL4 and QH-CL40. The bottom 5-10 cm

of each gravity piston core sample was removed, while the

remaining samples were processed at intervals of 60 cm using a

vacuum extraction device, yielding a total of 16 pore water samples.

These samples were subsequently sealed in PTFE bottles and stored

at 4°C for preservation.
3.2 Analytical methods

Following sample collection, the cores were transported to an

indoor laboratory for further analysis. The frozen sediment samples

were placed in a vacuum freeze-dryer for 72 hours, with the cold

trap set to a minimum temperature of -80°C and the vacuum

maintained at 0 Pa. After the samples were fully dried, they were

sealed and stored under freezing conditions for future experiments.

Key tests include scanning electron microscopic (SEM)

observation of foraminifera, stable isotope analysis of

foraminifera, determination of major anions and cations in pore

waters and Total organic carbon (TOC) in sediments.

The sediment samples were dried using a freeze dryer and

preprocessed following standard micropaleontological methods.

Fresh, uncontaminated benthic foraminifera species Cibicidoides

wuellerstorfi (C. weullerstorfi) were selected from samples larger

than 250mm for subsequent testing.

The foraminifera samples were coated with a gold film and

examined using a field emission scanning electron microscope (FE-

SEM TESCAN Mira3) at a voltage of 5kV. Comprehensive

observations and secondary electron imaging were conducted for

detailed analysis.

Fresh, uncontaminated fossils of Cibicidoides wuellerstorfi were

cleaned with ≥99.7% anhydrous alcohol using a Branson 200

ultrasonic cleaner at 40KHz for 10-15 seconds. After removing

the cloudy liquid, the samples were dried at 60°C for 5 hours. They

were then placed in sample vials of a Kiel IV carbonate preparation

device, dissolved in phosphoric acid at 70°C to release CO2, and

analyzed for oxygen and carbon isotope ratios using a MAT253

mass spectrometer. This analysis was conducted at the State Key

Laboratory of Marine Geology at Tongji University, with precision

verified using the NBS19 standard. Results were correlated to the

international PDB scale.

TOC in the sediment samples was tested using a Heraeus CHN-

O Rapid elemental analyzer (Germany). Prior to testing, an
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appropriate amount of sediment was selected, and excess 10%

HCl was added to remove calcium carbonate. The samples were

then repeatedly washed with distilled water until neutral, followed

by drying in an oven at 50°C. The precision and accuracy of the

TOC analyzer are better than 3%. The experiments were conducted

at the Guangzhou Institute of Geochemistry, Chinese Academy

of Sciences.

The pore water samples were transported to the State Key

Laboratory of Organic Geochemistry at the Guangzhou Institute of

Geochemistry for anion and cation concentration analysis. Anions

concentrations were measured using a Thermo Fisher DIONEX

AQUION RFIC ion chromatograph, while cations concentrations

were analyzed with a Thermo Fisher ICS900 ion chromatograph.

The analyses followed the standards HJ84-2016 for inorganic

anions and HJ 812-2016 for soluble cations in water quality. The

detection limits were 0.007 mg/L for Cl-, 0.018 mg/L for Br- and

SO2−
4 , and 0.03 mg/L for Na+, K+, Mg²+, and Ca²+, with a precision

requirement of ≤5%.
3.3 Methane seepage flux
calculation method

The calculation of methane seepage flux follows Fick’s first law:

J = −fDs
∂C
∂ x

(2)

Where J denotes the ion diffusion flux (mmol×m-2×a-1); f is the

sediment porosity; Ds is the diffusion coefficient in sediment (m-2×s-1),

which can be calculated as Ds =
D0

1−ln f2 ; D0 is the free diffusion

coefficient in seawater (m-2×s-1), C is the ion concentration in

pore water (mmol/L), x is the sediment depth (m). For this

study, the bottom water temperature at the research site is

approximately 5°C (Wei et al., 2019), and the porosity is 75%

(Feng et al., 2018a). The diffusion coefficient of SO2−
4 at 5°C 5.72×10-

10m-2×s-1 (Schulz et al., 2006).
4 Result

4.1 Stable carbon and oxygen isotope
characteristics of foraminifera

The carbon and oxygen isotope test results for Cibicidoides

wuellerstorfi (Figure 3) indicate the d18O values of this species range

from 2.254‰ to 3.928‰ for QH-CL4 and from 2.302‰ to 4.249‰

for QH-CL40, with average values of 3.110‰ and 3.347‰,

respectively. Both cores exhibit lighter d18O values in their upper

sections, which correspond precisely to the MIS1 period. Similarly,

the d13C values vary between -0.802‰ to 0.021‰ for QH-CL4 and

-1.039‰ to -0.01‰ for QH-CL40, yielding mean values of -0.357‰

and -0.399‰, respectively.

Notably, carbon isotopes display varying degrees of negative

shifts in two stages: Stage 1 (at a depth of 1.8 m) and Stage 2

(between depths of 3 to 4.2 m). In Stage 1, the d13C of foraminifera

shells at site CL4 decreased to -0.802‰, approximately 0.5‰ lower
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than the average, while at site CL40, it dropped to -1.039‰,

representing a decrease of 0.7‰ from the average. In Stage 2, the

d13C at CL4 ranged from -0.636‰ to -0.021‰, with an average of

-0.36‰, while CL40 values ranged from -0.885‰ to -0.041‰,

averaging -0.52‰. Overall, the carbon isotopes at both sites display

a negative correlation with oxygen isotopes, although a positive

correlation is observed at 1.8m.

The stratigraphic ages for these stations were initially determined

using opto-luminescence dating data from nearby stations like W07

(Liang et al., 2024). However, due to the absence of data for the upper

0 to 1.8 meters, we referenced dating data from the Q6 station in the

Qiongdongnan Basin (Miao et al., 2021). This provided eight age

control points, which were utilized to estimate sedimentation rate

changes for the two gravity piston core samples using a linear method

(Table 1). These calculations facilitated the conversion of each

sample’s depth into its corresponding age (Table 2).
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4.2 Pore water ion
concentration characteristics

The analysis of ion concentrations in pore water from QH-CL4

sediment shows significant variation with depth (Figure 4).

Specifically, the Na+ concentrations range from 101 to 467 mmol/

L, averaging 336 mmol/L. The K+ concentrations vary between 2.38

and 12.1 mmol/L, with a mean of 8.85 mmol/L. The divalent cations

Mg2+ and Ca2+ also show characteristic distributions. Mg2+

concentrations range from 10.6 to 56.4 mmol/L, averaging 43.5

mmol/L. Meanwhile, Ca2+ concentrations fluctuate between 3.25

and 14.3 mmol/L, with a mean value of 10.4 mmol/L. Among the

anions, Cl- concentrations vary from 121 to 556 mmol/L, averaging

440 mmol/L. Additionally, Br- concentrations range from 1.27 to

1.45 mmol/L, averaging 1.36 mmol/L, while SO2−
4 concentrations

vary from 9.57 to 29.5 mmol/L, averaging 22.2 mmol/L.

The vertical variations in cation and anion concentrations at the

study site exhibit similar patterns, with notable negative anomalies at

depths of 1.8m, 3.6m, and 4.8m. For instance, chloride (Cl-)

concentrations in the upper sediment layers (0-1.2m) remain stable

at around 556 mmol/L, close to seawater salinity (Staudigel et al.,

1998). Starting at 1.2m, Cl- concentration declines to 416 mmol/L at

1.8m, then rebounds to 528 mmol/L at 2.4m, and drops sharply to a

low of 121mmol/L at 3.6m. This suggests significantly lower Cl- levels

between 1.8m and 3.6m compared to standard seawater. From 3.6m

to 4.2m, the concentration gradually returns to normal levels.

The ion concentrations in pore water from QH-CL40 sediment

exhibit notable variations (Figure 5). Sodium (Na+) ranges from 435

to 481 mmol/L, averaging 473 mmol/L, while potassium (K+)

varies between 10.9 and 12.1 mmol/L, averaging 11.7 mmol/L.

Similarly, magnesium (Mg2+) concentrations range from 49.5 to

56.4 mmol/L, averaging 52.8 mmol/L, and calcium (Ca2+) fluctuates

between 5.91 and 9.93 mmol/L, with an average of 8.57 mmol/L.
TABLE 1 Estimated sedimentation rates at various stages based on data
from 8 age control points.

Stage
Depth

range (m)
Age range
(kaBP)

sedimentation rate
(cm/ka)

1 0.11~0.61 2.17~7.61 9.19

2 0.61~1.07 7.61~9.91 20.00

3 1.07~1.33 9.91~10.07 162.50

4 1.33~1.8 10.07~14.6 10.38

5 1.8~2.8 14.6~19.2 21.74

6 2.8~3.8 19.2~21.4 45.45

7 3.8~4.9 21.4~26.4 22
FIGURE 3

Stable isotope characteristics of the benthic foraminifera C. wuellerstorfi from sites QH-CL4 and QH-CL40. The shaded areas in the figure represent
possible stages of enhanced methane seepage.
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Chloride (Cl-) concentrations range from 516.5 to 565.7 mmol/L,

averaging 554.1 mmol/L, while bromide (Br-) shows slight variations,

ranging from 1.69 to 1.77 mmol/L, averaging 1.73 mmol/L. Sulfate

(SO2−
4 ) concentrations vary between 13.96 and 30.4 mmol/L, averaging

21.5 mmol/L.

At a depth of 0.6 meters, the sulfate (SO2−
4 ) concentrationmeasures

approximately 30.4 mmol/L, consistent with typical seawater values

(Staudigel et al., 1998). Deeper into the sediment, sulfate concentration

gradually declines in a gradient, reaching 19.2 mmol/L at 4.8 meters.

Notably, calcium (Ca2+) follows a similar downward trend as sulfate.

Meanwhile, other ion concentrations remain within typical

seawater ranges.
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4.3 Total organic carbon content

Total organic carbon values are presented in Table 3. At site

CL4, the TOC content in the sediment ranged from 0.61% to 0.76%,

with an average of 0.701%. The surface sediments on the seafloor

exhibited the highest TOC content at 0.76%, while the TOC levels in

the remaining layers were above 0.60%. At site CL40, TOC contents

varied between 0.65% and 0.79%, averaging 0.7225%. Overall, the

TOC contents at both sites were comparable and showed little

variation with depth.
5 Discussion

5.1 Negative carbon isotope excursions of
benthic foraminifera and methane
seepage activities

Cibicidoides wuellerstorfi, an epifaunal benthic foraminifera

species, is primarily influenced by bottom water, making it well-

suited for reconstructing d13C values of dissolved inorganic carbon

(DIC) in bottom waters (McCorkle et al., 1990; Wollenburg et al.,

2015). This species typically attaches to structures above the

seafloor (Melaniuk et al., 2022b) and shows minimal absolute

changes in shell structure due to methane seepage. Although the

negative deviation in its isotopic values is not pronounced, its broad

oceanographic and stratigraphic range allows it to effectively
FIGURE 4

Profiles of pore water geochemical parameters of site QH-CL4. The shaded areas in the figure represent the layers with abnormal ion concentration,
indicating the presence or suspected presence of gas hydrate. The dark gray dashed line represents the typical seawater concentration, with data
from (Staudigel et al., 1998).
TABLE 2 Stratigraphic ages at various depths at sites QH-CL4 and
QH-CL40 calculated based on sedimentation rates.

Depth (m) Age (kaBP)

0.6 7.5

1.2 9.99

1.8 14.6

2.4 17.36

3 19.64

3.6 20.96

4.2 23.22

4.8 25.95
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indicate methane leakage activity (Mackensen et al., 2006;

Wollenburg et al., 2015; Mackensen et al., 2017; Burkett et al.,

2018; Su et al., 2020; Melaniuk et al., 2022a; Weldeab et al., 2022).

Studies have shown that in non-methane seep areas, the d13C values

of C. wuellerstorfi range from -0.9‰ to 1.92‰, with an average of

0.217‰, and d18O values range from 1.38‰ to 4.09‰, with an

average of 2.56‰. In contrast, in methane seep areas, the d13C
values range from -1.39‰ to 1.31‰, with an average of -0.0685‰,

and d18O values range from 1.38‰ to 4.09‰, with an average of

2.62‰ (Kubota et al., 2015; Mackensen et al., 2017; Scheiner et al.,

2018; Cen et al., 2022; Dou et al., 2022). Overall, C. wuellerstorfi

shows a slight negative shift in d13C and a positive shift in d18O in

methane seep environments. The formation of hydrates
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preferentially incorporates d18O-rich water, and their

decomposition releases heavier d18O, altering the surrounding

pore water’s oxygen isotopic composition and influencing the

oxygen isotope composition of foraminifera (Kvenvolden, 1993;

Mackensen et al., 2006). In a non-seep marine environment in the

South China Sea, the d13C values of epifaunal benthic foraminifera

Cibicidoides wuellerstorfi range from -0.73‰ to 1.53‰, with an

average of 0.113‰ (Cheng et al., 2005). In this study, the average

d13C values at sites QH-CL4 and QH-CL40 were -0.199‰ and

0.0224‰, respectively, with d18O values averaging 2.63‰ and

2.66‰. These shifts suggest potential methane seepage.

In gas hydrate geological systems, methane leakage events are

intermittent and occur in multiple stages, corresponding to changes
FIGURE 5

Profiles of pore water geochemical parameters of site QH-CL40. The dark gray dashed line represents the typical seawater concentration, with data
from (Staudigel et al., 1998).
TABLE 3 TOC values of cores CL4 and CL40.

Sample Depth (m) TOC (wt, %) Sample Depth (m) TOC (wt, %)

CL4-1 0.6 0.76 CL40-1 0.6 0.74

CL4-2 1.2 0.73 CL40-2 1.2 0.76

CL4-3 1.8 0.71 CL40-3 1.8 0.74

CL4-4 2.4 0.72 CL40-4 2.4 0.65

CL4-5 3 0.61 CL40-5 3 0.79

CL4-6 3.6 0.64 CL40-6 3.6 0.73

CL4-7 4.2 0.76 CL40-7 4.2 0.66

CL4-8 4.8 0.68 CL40-8 4.8 0.71
frontiersin.org

https://doi.org/10.3389/fmars.2024.1460657
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Luo et al. 10.3389/fmars.2024.1460657
in the stability of gas hydrates. Thus, the negative shift in d¹³C of

benthic foraminifera not only reflects the impact of methane

leakage but may also be influenced by d¹³C of dissolved inorganic

carbon (DIC) in pore water. When organic matter settles to the

seafloor, it undergoes anaerobic oxidation under low-oxygen

conditions (Equation 3) and aerobic oxidation in an oxic

environment (Equation 4). The d¹³C of organic matter is typically

around -20‰, and lighter carbon can enter the pore water DIC pool

through degradation, leading to a negative shift in d¹³C of benthic

foraminifera (Schmiedl and Mackensen, 2006; Kuhnt et al., 2008).

To determine whether enhanced organic matter supply is a

primary factor for the negative shift in d¹³C, we conducted a series

of correlation analyses between sediment total organic carbon

(TOC) content and d¹³C of benthic foraminifera. The results

showed a very weak correlation between the foraminifera

Cibicidoides wuellerstorfi and sediment TOC content (Figure 6),

indicating that increased organic matter supply is not the dominant

factor influencing the negative shift in d¹³C of benthic foraminifera.

2CH2O + SO2−
4 → 2HCO−

3 + H2S (3)

CH2O + O2 → CO2 + H2O (4)

In addition to organic matter, methane is another potential

source of light carbon. Methane has a very negative d¹³C
composition (–110‰ to –30‰). This methane, which is rich in

¹²C, is converted to HCO−
3 through anaerobic oxidation of methane

(AOM) and added to the pore water DIC pool, leading to a

significant negative shift in the d¹³C of the pore water DIC. The

lowest d13C value observed at CL4 was -1.039‰ and at CL40 was

-0.802‰, which is significantly lower than fluctuations caused by

climate change (<0.6‰) (Wei et al., 2006). This indicates that the

strong negative carbon isotope deviation is likely due to the release

of highly negative dissolved inorganic carbon from the anaerobic

oxidation of methane (AOM). This is consistent with sulfate

depletion in the pore water at site QH-CL40 (Figure 5),

indicating weak methane seepage, or “micro-seepage” (Wei et al.,

2019; Feng et al., 2018a). The variations in carbon isotope depletion
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reflect changes in methane flux during different seepage stages.

Notably, heavier negative d13C values at depths of 1.8m and 3-4.2m

indicate increased methane seepage activity near the W07

pockmark area of the Qiongdongnan Basin since MIS2 (Rathburn

et al., 2003; Bernhard et al., 2010).

Additionally, scanning electron microscopy (SEM) observation

of C. wuellerstorfi from different layers at sites QH-CL4 and QH-

CL40 revealed that foraminifera in layers exhibiting severe d13C
depletion possessed internal structures encrusted with authigenic

carbonate particles (Figure 7). In contrast, foraminifera from layers

with minor d13C depletion displayed clear, sharp shell edges and

open surface pores, indicating no alteration by later authigenic

carbonate. The d13C anomalies are likely attributed to the formation

of secondary carbonate resulting from anaerobic oxidation of

methane (AOM).

Moreover, the d18O values at these sites show significant

positive deviations. At site QH-CL4, the average d18O value was

2.63‰, while it was 2.66‰ at site QH-CL40, which both are

significantly different from the background values of 0.89‰ to

1.16‰ during the MIS2 period in the South China Sea (Jian, 1998).

This suggests the influence of methane seepage activities.
5.2 Methane events recognized and
their mechanisms

The carbon and oxygen isotopic data from benthic foraminifera

in the Qiongdongnan Basin have revealed two significant

anomalies, suggesting major episodes of gas hydrate dissociation

and methane release since MIS2 (Figure 3). Globally, methane

hydrates on the upper continental slopes are estimated to contain

approximately 60 Gt C and are significantly more susceptible to

climate-driven changes in bottom water pressure and temperature

conditions compared to those found in the deep ocean. Gas

hydrates form under low-temperature, high-pressure seabed

conditions and are sensitive to external changes in temperature

and pressure. Research indicates that sea level fluctuations during
FIGURE 6

Correlation diagram between benthic foraminiferal d13C and sediment TOC content at CL4 and CL40 cores. Red represents C. wuellerstorfi from site
CL40, while black represents C. wuellerstorfi from site CL4.
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glacial-interglacial cycles are the primary driver of gas hydrate

dissociation, with sea level drops reducing pressure and triggering

methane seepage globally (Watanabe et al., 2008; Feng et al., 2018b).

Since MIS2, sea levels and seawater temperatures in the South

China Sea have changed many times, altering seabed conditions and

causing multiple methane seepage events (Dai and Weng, 2015;

Yang et al., 2020). Additionally, volcanic activity, and turbidity

currents can also trigger methane seepage (Panieri et al., 2014;

Bayon et al., 2015; Feng et al., 2015; Liang et al., 2017; Karstens et al.,

2018). Understanding the distinction between primary and

secondary influences on methane seepage is crucial for

comprehending the dynamics of methane release. This paper will

explore two significant methane seepage events in the

Qiongdongnan Basin as illustrative examples.

5.2.1 Stage 1 (around 19.64-23.22 ka)
Around 19.64~23.22 ka ago, benthic foraminifera carbon

isotopes showed a negative excursion, coupled with a positive

excursion in oxygen isotopes, indicating an intensification of

methane seepage during this period. This corresponds to the Last

Glacial Maximum (LGM, approximately 23–18 ka BP). The
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dissociation of methane hydrates on the South China Sea slope

during the LGM is widely documented by various authors (Hu et al.,

2017; Li et al., 2017b; Zhang et al., 2018; Liu et al., 2020; Di et al.,

2021; Feng et al., 2021; Li et al., 2021, 2023; Dan et al., 2023). During

this time, sea levels in the South China Sea dropped by

approximately 120 meters compared to present levels (Wang

et al., 2020). This sea-level drop led to a reduction in hydrostatic

pressure of approximately 1 MPa on the seafloor, destabilizing

methane hydrates and increasing methane seepage activity

(Rothwell et al., 1998; Holbrook et al., 2002).

Additionally, the lower sea level shortened the distance between

river mouths and marginal sea basins, increasing terrestrial

sediment supply to the continental slope. This sediment

accumulation may have triggered submarine landslides, further

promoting gas hydrate dissociation (Kvenvolden, 1993; Zheng

et al., 2017). The high sedimentation rate recorded at this layer

(~45 cm/ka) supports this interpretation (Table 1).

Therefore, this study concludes that the primary factor driving

the intensification of methane seepage during the LGM was the

drop in sea level, with increased sedimentation rates due to sea-level

changes acting as a secondary factor.
FIGURE 7

Scanning Electron Microscope (SEM) images of the benthic foraminifera C. weullerstorfi of the sites QH-CL4 and QH-CL40. (A, B) are photos of
benthic foraminifera with a relatively slight bias, taken from the QH-CL40 site at a depth of 2.4 meters. Their shells are relatively well-preserved, with
open micropores on the surface. (C-I) are photos of sections with severe bias in d13C, showing distinct framboidal pyrite and authigenic carbonate
particle accretion.
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5.2.2 Stage 2 (around 14.6 ka)
Around 14.6 ka, another increase in methane seepage occurred

in the Qiongdongnan Basin. This period marks the end of the

Oldest Dryas and the start of the Bølling–Allerød interstadial.

However, during this period, both sea level and sea temperature

in the Qiongdongnan Basin experienced varying degrees of change

(Figure 8). Therefore, identifying the primary and secondary

controlling factors is of significant importance.

Compared to the Last Glacial Maximum (LGM), the sea level in

the Qiongdongnan Basin has risen by approximately 8.2 meters,

resulting in a pressure increase of about 0.08 MPa (Wang et al.,

2020). While this rise in sea level has enhanced the stability of

seafloor gas hydrates, preventing their dissociation, the overall sea
Frontiers in Marine Science 10
level has remained relatively low since the LGM. Studies show that

gas hydrates are more sensitive to changes in bottom water

temperature than to hydrostatic pressure (Guan et al., 2022).

During the Bølling–Allerød interstadial, the intermediate water

temperature in the South China Sea increased by 6°C (Yang et al.,

2020). This rise in oceanic water temperature elevated the bottomwater

temperature on the continental slope, triggering large-scale dissociation

of gas hydrates (Kennett et al., 2000; Camoin and Webster, 2014; Li

et al., 2023b). Although increased pressure aids in stabilizing hydrates,

the rise in temperature significantly reduces their stability. Research

indicates that even a 1°C increase in bottom water temperature can

trigger the dissociation of local hydrates, particularly those in shallow

sediments (Mienert et al., 2005; Reagan and Moridis, 2007; Westbrook
FIGURE 8

Comparison of methane seepage events and control factors. (A-D) show the benthic d18O and d13C measured on C. wuellerstorfi at sites QH-CL4
and QH-CL40. (E) presents sea-level reconstruction results from Qiongdongnan Basin (Wang et al., 2020), Sunda (Zhao et al., 2017) and the Global
mean (Waelbroeck et al., 2002). (F) displays the Seabed Pressure calculated based on sea-level changes. (G) shows the benthic foraminifera d18O of
core MD05-2904 (Wan and Jian, 2014) and the LR04 stack (Lisiecki and Raymo, 2005). (H) displays the Intermediate water temperature calculated
using Mg/Ca ratios of Globorotalia scitula (Yang et al., 2020). (I) illustrates the Linerar Deposition Rates in Qiongdongnan Basin, as detailed in
Table 2.The shaded areas in the figure represent possible stages of enhanced methane seepage.
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et al., 2009; Biastoch et al., 2011). During rapid warming events in

interglacial periods, temperature increases can negate the stabilizing

effect of pressure, leading to hydrate dissociation (Wei et al., 2022).

Therefore, this study identifies the primary driver of enhanced

methane seepage during this period as the rise in seawater temperature,

with sea level changes as a secondary factor. The variations in sea level

and seawater temperature disrupt the thermodynamic equilibrium of

hydrates, causing them to dissociate from their stability zone. This

process releases large amounts of freshwater and methane gas, which

spread into near-seafloor sediments as plumes. These plumes can

trigger submarine landslides, leading to turbidity currents that carry

large sediment blocks down steep slopes into the deep sea. As a result,

fine materials suspended in the water settle over coarser grains,

disrupting the original sediment sequence within a certain depth

range (Wang et al., 2020).

5.2.3 Correlation between carbon and
oxygen isotopes

A negative correlation between carbon and oxygen isotopes was

observed at both sites (Figure 3). Notably, during the transition into

the Bølling–Allerød interstadial, the carbon isotope at site CL40

dropped to -1.039‰, while at site CL4, it dropped to -0.802‰.

However, both sites showed a downward trend in oxygen isotopes,

indicating a positive correlation pattern.

Upon further literature review, we found that methane seepage

activity generally results in a negative excursion in d13C values and a

positive excursion in d18O values, indicating opposite trends. However,

at peripheral seep sites such as GC26 on the Vestnesa Ridge and U1446

in the Mahanadi offshore basin (Panieri et al., 2014; Clemens et al.,

2023), carbon isotopes documents strongly negative benthic d13C
values without significant changes in oxygen isotopes. Moreover, at

hydrocarbon-bearing areas like MD2707 site in the Gulf of Guinea and

08CF7 site in the northern South China Sea, benthic foraminifera

species such as C. wuellerstorfi, G. crassaformis andUvigerina peregrina

exhibit a positive correlation between d13C and d18O (Wang et al.,

2013; Weldeab et al., 2022). This phenomenon likely results from the

combined effects of increased temperatures and changes in bottom

water d18O. Increasing sea water temperature lessens the difference in

reaction rates of oxygen isotopes in foraminifera, leading to a reduction

in d18O (Urey, 1948; Pearson, 2012), attenuating the signal of oxygen

isotopes enriched through hydrate decomposition. Consequently,

assessments of methane seepage should primarily focus on

carbon isotopes.

In this study, at certain depths of the CL4 and CL40 cores, a

positive correlation between these isotopes is observed, similar to

findings at GC26, indicating that the increase in bottom water

temperatures (Figure 8) overshadowed the influence of gas hydrates

on the oxygen isotopes. Thus, carbon isotopes in foraminifera

reliably record methane seepage activities in the study area.
5.3 Current methane seepage activity
indicated by pore water characteristics

At site QH-CL40, sulfate concentrations in pore water decrease

continuously from 30.4 mmol/L at 0.6m depth to 19.24 mmol/L at
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4.8m depth, indicating ongoing biogeochemical processes

consuming sulfate. This depletion is typically associated with two

processes: anaerobic oxidation of methane (AOM) and

organoclastic sulfate reduction (OSR). AOM occurs when

methane interacts with sulfate in the presence of methane-

oxidizing bacteria, leading to sulfate depletion at the sulfate-

methane interface (SMI) (Borowski et al., 1999). OSR involves

sulfate reacting with organic matter in sediments. To determine

the primary cause of sulfate depletion, it is essential to assess the

contributions of AOM and OSR.

AOM generally has a higher sulfate consumption rate than

OSR, characterized by a steep, nearly linear gradient, whereas OSR

shows a convex curve (Dickens, 2001; Borowski et al., 1996;

Niewöhner et al., 1998; Joye et al., 2004). The sulfate

concentration profile at QH-CL40 (Figure 5) shows a steep,

nearly linear decline below 1.2m, indicative of strong AOM

activity and significant methane seepage. Notably, as sulfate

concentrations decrease, Ca2+ also decreases with depth,

suggesting that bicarbonate produced by AOM increases

alkalinity, promoting authigenic carbonate precipitation.

Utilizing Fick’s first law, the methane flux at QH-CL40 is

calculated to be 28.968 mmol·m-²·a-1, with the sulfate-methane

interface (SMI) estimated at a depth of 8.54 m. This site shows a

higher methane flux and a shallower SMI compared to other

locations in the Qiongdongnan Basin (Table 4). According to

global gas hydrate exploration results, areas where SMI <50m and

methane flux >3.5 mmol·m-²·a-1 are likely to contain gas hydrates.

The SMI depth at QH-CL40 is much less than 50m, thereby

validating the potential presence of gas hydrates and suggesting

that they may be distributed at shallow depths or even directly

exposed on the seabed (Liang et al., 2017; Snyder et al., 2020). In

contrast, site QH-CL4 does not exhibit significant sulfate depletion,

likely due to fluid dilution or varying seepage intensities within the

pockmark area (Hovland et al., 2002; Newman et al., 2008).

Consequently, methane flux was not calculated for QH-CL4.
5.4 Controlling factors of current
methane leakage

Methane seepage refers to the release of methane from the

shallow lithosphere into the hydrosphere and atmosphere (Yang

et al., 2021). Some instances of seabed methane seepage are

associated with gas hydrate systems, while others originate from

deeper gas reservoirs. However, numerous studies have

demonstrated that methane seepage in the Qiongdongnan Basin

is largely controlled by the presence of gas hydrates within the

shallow sediment column (Wang et al., 2018; Wei et al., 2019; Liu

et al., 2020; Miao et al., 2021). There is substantial evidence

indicating that the Qiongdongnan Basin contains rich gas hydrate

resources. Gas hydrates remain stable under low-temperature and

high-pressure conditions, so any factors that disrupt these

conditions are key to controlling modern methane seepage.

As discussed in section 5.2, we first considers global

environmental changes, such as climate shifts, sea level

fluctuations, volcanic activity, and tectonic movements, as
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potential external influences. However, since 7.5 ka BP, the

sedimentation rate at site W7 in the Qiongdongnan Basin has

shown no significant changes (Figure 7), which may suggest the

absence of substantial turbidite activity. Additionally, foraminifera

have not recorded modern methane seepage, making it difficult to

confirm whether long-term climate factors have played a significant

role in gas hydrate dissociation. Further analysis of sediment grain

size data is needed to clarify this relationship.

Another possibility is that methane seepage activity was

intensified due to drilling and sampling operations. Hydrate-

bearing sediments may destabilize naturally as part of geological

processes or during petroleum drilling and production operations

(Briaud and Chaouch, 1997). Such drilling activities could disrupt

gas hydrates beneath the stable sediment layer, leading to large-scale

methane leakage. The dissociation of gas hydrates in the underlying

stable zone releases a significant amount of methane into the

shallow sediments, resulting in notable anaerobic oxidation of

methane (AOM) reactions with sulfate ions in the pore water

(Figure 5). This process leads to a rapid depletion of sulfate ions.

Additionally, short-term dynamic changes within the gas

hydrate system of the gas chimney may play a significant role in

controlling modern methane leakage. As previously mentioned,

methane seepage in the Qiongdongnan Basin is influenced by the

gas hydrate system. The GMGS5-W7-2018 site is situated above a
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large gas chimney, where a thick, stable gas hydrate zone is

developed. Wei et al. (2019) suggest that this area experiences

dynamic changes on a monthly timescale. (1) Fluids migrate

vertically through fractures and faults, forming gas hydrates

under suitable temperature and pressure conditions. (2) The

formation of gas hydrates reduces the permeability of sediments,

which in turn decreases the intensity of methane leakage. When

fluid migration pathways in fractures become blocked due to

insufficient methane supply, the gas hydrates begin to dissolve.

(3) As deep pressure accumulates to a certain level, overcoming the

rock’s hydrostatic pressure, fractures reopen, allowing methane

leakage activities to resume (Bangs et al., 2011). This cyclical

pressure mechanism regulates the intensity of fluid flow, which

ultimately influences the strength of modern methane

leakage activities.
5.5 Gas hydrate occurrence inferred from
dissolved Cl- concentrations

Pore water in sediments typically reflects seawater composition,

with chloride concentrations approximately 556 mmol/L (Staudigel

et al., 1998). At site QH-CL4, chloride levels exhibit a significant

decline between 1.8m and 3.6m, reaching a low of 121 mmol/L. This
TABLE 4 The SMI depth and methane flux of pore water at stations with natural gas hydrate occurrences in the Qiongdongnan Basin.

Site SMI depth (m) Methane flux (mmol m-2 a-1) Sea water depth (m) Data source

CL30-2014 5.4 38.9 1255 (Feng et al., 2019)

CL44-2014 7.34 30.9 1279 (Feng et al., 2019)

CL47-2014 7.42 29.0 1301 (Feng et al., 2019)

W08C 9.04 20.6 1737 (Feng et al., 2020)

W09 9.21 24.4 1722 (Feng et al., 2020)

R7 9.05 18.1 1737 (Feng et al., 2020)

R7-1 2.12 76.4 1737 (Feng et al., 2020)

R7-3 3.08 54.1 1737 (Feng et al., 2020)

CL48 111.19 1.6 1722 (Feng et al., 2020)

R1 1.41 159.3 1370 (Hu et al., 2019)

QDN50-15 21.71 9.1 700~2000 (Zhang et al., 2019b)

QDN44-15 18.72 10.7 700~2000 (Zhang et al., 2019b)

QDN14A-15 3.56 94.2 1370 (Hu et al., 2019)

QDN14B-15 4.92 44.7 1370 (Hu et al., 2019)

QDN-C-S03 10.55 18.2 1390~1400 (Hu et al., 2021)

ROV05-CS01 0.33 705.8 1350~1450 (Hu et al., 2021)

R0V01-PC01 2.45 218.7 1400 (Hu et al., 2021)

R0V02-PC01 2.06 108.5 1400 (Jin et al., 2022)

R0V04-PC01 4.56 84.5 1300~1400 (Jin et al., 2022)

QH-CL40 8.54 28.968 1766 This study
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change is likely attributable to clay mineral dehydration or gas

hydrate dissociation (Kim et al., 2013; Kastner, 1991; Torres et al.,

2004; Teichert et al., 2005; Kim et al., 2022).

Gas hydrates form under low-temperature, high-pressure

conditions, increasing local pore water salinity. However, hydrate

dissociation during drilling can lead to reductions in salinity, as

observed globally (Huang et al., 2022; Bohrmann et al., 2023; Ye

et al., 2019; Torres et al., 2004). The salinity reduction at QH-CL4

aligns with these global patterns, suggesting the presence and

dissociation of gas hydrates.

In regions with geothermal gradients above 60°C/km,

montmorillonite dehydrates to illite, releasing freshwater and

diluting ion concentrations (Dählmann and de Lange, 2003). This

process, observed in various locations (Brown et al., 2001; Aloisi

et al., 2004; You et al., 2004), typically involves sodium enrichment

and potassium depletion in pore water (Huang et al., 2015), which is

not evident at QH-CL4. At the QH-CL4 site, the trends of pore

water chloride (Cl-), potassium (K+), and sodium (Na+) in the

sediment show similar patterns, aligning with the seawater dilution

line (Figures 9A, B). Additionally, K+ and Na+ exhibit a strong

correlation (Figure 9C). Seismic profiles indicate that sites QH-CL4

and QH-CL40 are located in gas chimney structures (Wei et al.,

2021), making clay mineral dehydration unlikely, as this process

typically occurs in mud volcano zones. Furthermore, clay mineral

dehydration releases significant freshwater, affecting larger depth

ranges and causing overall concentration reductions, unlike the

localized concentration jumps observed in Figure 4 (Bohrmann

et al., 2023). Opal dehydration, typically occurring within

geothermal gradients of 22-68°C (Murray et al., 1992), is unlikely

at these sites due to the higher gradient of approximately 103°C

(Wei et al., 2019). Additionally, the shallow depth of the negative

chloride anomaly at QH-CL4 suggests minimal diagenetic

compaction and pore water migration. This indicates that the

pore water concentration at QH-CL4 is more consistent with gas

hydrate dissociation than with clay mineral dehydration or

diagenetic compaction. Therefore, the 1.8m to 3.6m depth range

at QH-CL4 likely contains gas hydrates that dissociate during core

recovery, releasing freshwater and methane, which causes the

observed chloride concentration anomaly (Figure 3).
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5.6 Mechanisms behind the rapid
formation of gas hydrates in
shallow sediments

In the Qiongdongnan Basin, gas hydrates typically occur

between 6m and 250m below the seabed, situated near the gas

hydrate stability zone. LWD Resistivity indicate that the upper

boundary of this stability zone is located at a depth of 22.5m (Wei

et al., 2019). However, analyses of pore water salinity and sulfate

concentrations indicate the presence of gas hydrates in very shallow

sediments (0-5m), suggesting localized hydrate mounds.

Recent studies on the dynamics of gas hydrate formation in

methane seep areas have addressed this concern (Zhang et al.,

2023b; Wang et al., 2024; Xie et al., 2024; Zhang et al., 2024).

These studies indicate that near the seabed at methane seep outlets,

the induction time for gas hydrate formation, influenced by

memory effects and authigenic carbonate particles, is less than

two minutes, with a metastable nucleation time of only ten

seconds. This provides a theoretical basis for the occurrence of

shallow gas hydrates.

Fluid properties, gas origins, solid particle types, and the

hydrate memory effect significantly influence gas hydrate

formation (Zhang et al., 2023b). In fluid seep environments,

hydrate formation requires less induction time compared to

freshwater and seawater environments due to the inhibitory

effects of chloride ions present in seawater. Freshwater released

from decomposing bottom hydrates dilutes the surrounding fluid,

resulting in salinity levels that fall below those of seawater.

Additionally, carbonate particles accelerate hydrate formation

by increasing the contact area between gas and liquid phases. Ion

concentration analyses show declining calcium levels with depth

(Figure 4), indicating the likely presence of authigenic carbonate

particles. SEM analysis of foraminifera shells reveals attached

carbonate particles (Figure 6), supporting this hypothesis and

providing evidence for rapid gas hydrate formation.

Furthermore, research shows that gas bubbles from melted

hydrates form gas hydrates more readily than primary methane

bubbles, a phenomenon referred to as the hydrate memory effect

(Uchida et al., 2000; Lee et al., 2005). In the Qiongdongnan Basin,
FIGURE 9

Correlation graph of pore water concentrations between Na+ and Cl- (A), K+ and Cl- (B), K+ and Na+ (C) in the QH-CL4 columnar sediments. The
red dots in graphs (A, B) indicate the concentrations of Na+, K+, and Cl- in seawater, while the black squares represent the actual measured values.
The solid red lines in these graphs depict the seawater dilution line. Additionally, in graph (C), the solid red line signifies the fitted curve for the
concentrations of K+ and Na+.
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gas hydrates located near the stability zone are prone to temperature

and pressure changes, leading to their dissociation. The released

methane bubbles ascend rapidly along gas chimneys, aggregating

with authigenic carbonate nodules at seepage exits, where the

memory effect facilitates accelerated hydrate formation. Dilution

by seepage fluid further enhances this process.

In conclusion, ongoing methane seepage in the Qiongdongnan

Basin has led to the formation of gas hydrates in near-seabed

shallow sediments. Fluid properties, thermogenic methane,

authigenic carbonate nodules, and the hydrate memory effect

collectively contribute to the formation of these shallow

gas hydrates.
6 Conclusion

Analysis of foraminifera stable isotopes and pore water

geochemistry at sites QH-CL4 and QH-CL40 reveals persistent

methane microseepage in the Qiongdongnan Basin since MIS2.

Significant carbon isotope depletion at 1.8m and 3m indicates

increased seepage around 14.6ka and 19.64ka, possibly associated

with sea-level drops during the Last Glacial Maximum and rising

temperatures during the Bølling–Allerød interstadial. QH-CL40 has

an SMI depth of 8.54m and a methane flux of 28.968mmol×m-2×a-1,

suggesting strong potential for hydrate development. Severe salinity

reduction between 1.8m and 3.6m at QH-CL4 indicates shallow gas

hydrate formation, accelerated by both the hydrate memory effect

and authigenic carbonate particles.
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