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Estimating fish stock biomass
using a Bayesian state-space
model: accounting for
catchability change due to
technological progress
Makoto Nishimoto1*, Yoshinori Aoki1, Naoto Matsubara1,
Paul Hamer2 and Yuichi Tsuda1

1Fisheries Stock Assessment Center Fisheries Resources Institute, Japan Fisheries Research and
Education Agency, Yokohama, Japan, 2Oceanic Fisheries Program, The Pacific Community (SPC),
Nouméa, New Caledonia
The assessment of trends in fish stocks using long-term time-series data is

important for effective fisheries resource management. Despite technological

advancements in recent decades, the resulting increase in fisheries catch

potential with applied effort is often not adequately considered in stock

assessments. To address this gap, we developed a framework for

simultaneously estimating catchability and biomass using a state-space

population model. This model allows for the flexible integration of the timing

and functional form of the uptake of technological innovations that are assumed

to influence catchability. Our objective was to test the effectiveness of this

framework by applying it to 48 years of skipjack pole-and-line fishery data in

Japanese waters. We utilized two population models, the Ricker-type and

Gompertz-type, under three different scenarios of technology-driven

catchability changes: constant, exponential, and S-shaped. The results indicate

that the calculations converged for the constant and S-shaped scenarios, and

that both the Ricker and Gompertz models performed almost equally well in

terms of the goodness of fit and prediction accuracy under the S-shaped

scenario, which assumes time-varying catchability. Although time-varying

catchability poses challenges for accurate biomass estimation due to the large

range of uncertainty, the decreasing trend in stock status is still detected. The

estimated recent decline in the skipjack stock around Japan provides a warning

for stock assessments that do not incorporate technological progress, despite

the species’ high natural population growth rate and presumed stable stock

status. Our methodology, based on publicly available archived catch records

(catch and effort), can be applied to other species with known timelines of

technological innovation.
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fish stock management, hierarchical Bayesian model, population model, skipjack,
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1 Introduction

Assessment of population trends is a cornerstone of fisheries

management advice (Beddington et al., 2007; Mace, 2001). Accurate

assessments are critical for implementing and measuring

effectiveness of regulations that aim to prevent excessive declines

in fish stocks, ensuring the sustainability of fisheries, and

maintaining socioeconomic benefits and ecosystem functions

(Costello et al., 2016; Hilborn et al., 2004; Worm et al., 2009).

Hence, reliable population assessments are essential for supporting

the ecosystem as well as fisheries-dependent livelihoods (Allison

and Ellis, 2001; Crona et al., 2023).

Recent technological developments, such as sonar fish finders,

radars, high resolution satellite imagery of ocean conditions (e.g., sea

surface temperature), and improved inter-vessel communication, have

enhanced the efficiency of locating and catching fish. These

advancements have likely caused significant changes in catchability

(catch effectiveness per unit effort), which are not adequately

accounted for in many stock assessments (Eigaard et al., 2014;

Hoyle et al., 2024; Kleiven et al., 2022; Rousseau et al., 2019).

Accounting for rapid technology driven catchability changes in

stock assessment is challenging because data on technology uptake

are often not available at the vessel level. Even if available, the influence

of technology uptake on catchability is difficult to quantify, as most

vessels in a fishery are likely to adopt new technology simultaneously.

This results in very few vessels actively fishing with old technology or

gear alongside vessels using new technology for a sufficiently long

period to quantify the effects of technology on catch rates and

catchability. This situation can also make it difficult to standardize

catch per unit effort (CPUE) data statistically to eliminate the effects of

changes in fishing technology or practices. Because fishery-dependent

CPUE provides the primary abundance indices for many stock

assessments, it is essential to document changes in fishing gear,

technology, and operational efficiency, which likely have strong

effects on catchability, as well as the timing and rates of these

changes. This basic knowledge can be derived from industry

surveys, if not available from other sources, such as fishery logbooks

or observer records, and provides a basis for further analysis of the

implications of interpreting CPUE trends in relation to abundance.

Gear efficiency/technology effects are often accounted for in the

catch equation C=qEN, where C is the number of fish caught, E is

the amount of effort, N is the biomass or number of fish, and q is a

coefficient of the catchability of fish (Hilborn and Walters, 1992;

King, 2013). For example, if the catchability coefficient (q) increases

by a factor of two over a certain period (perhaps because of

technology uptake), a stock assessment that does not account for

this may conclude that the biomass has doubled. Alternatively,

doubling q may have compensated for the stock declining by half,

such that the CPUE abundance index remained stable, while

catches may have even increased. In this case, information on

production based on the relationship between CPUE and catch is

poor, which can create major problems in accurately estimating

stock biomass.
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Global fishing capacity has more than doubled since 1950 in all

but the most developed regions (Rousseau et al., 2019). In

combination with new technology and the modernization of

fishing fleets, the implications for the sustainability of fisheries are

profound (Rousseau et al., 2019). However, there are limited studies

that considered rapid changes in fishing efficiency during stock

assessments (Carvalho et al., 2014; Matsubara et al., 2022). For

major pelagic fishery species, such as tuna and sardines, advances in

radar and sonar technologies and improved information on ocean

conditions are expected to improve fishing efficiency. However,

catchability is often implicitly assumed to be constant in stock

assessments that are conditioned on catch data and that use fishery-

dependent CPUE as an abundance index. These assessments place

strong faith in the standardized CPUE accounting for catchability

changes, to provide a reliable index of abundance trends. Failure to

adequately account for catchability changes can lead to severe biases

in stock assessments and subsequent poor management advice

(Arreguin-Sanchez, 1996; Hoyle et al., 2024).

Bayesian state-space models that estimate abundance by

appropriately accounting for data uncertainty (observation error)

have recently been developed and used in fisheries stock assessment

and wildlife management (Best and Punt, 2020; Iijima et al., 2013;

Scheuerell et al., 2021; Thorson and Minto, 2015; Yamamura et al.,

2008; Zhou et al., 2011). In fisheries stock assessment, the Bayesian

harvest-based state-space model is suggested as a useful method for

estimating and evaluating population dynamics from fishery-

dependent data records (catches and effort) that continually

accumulate over time, such as fishery log sheets, even in the

absence of detailed data such as size or age structure (Dichmont

et al., 2016; Han et al., 2023). Studies have attempted to use such

models to estimate abundance considering temporal changes in

catchability due to technological development based on information

from field manipulation experiments and existing literatures

(Eigaard et al., 2014; Han et al., 2023; Kleiven et al., 2022). These

studies emphasize the importance of properly estimating

catchability, accounting for technology uptake, and adjusting

CPUE estimates accordingly. Furthermore, a model incorporating

specific catchability change points consistent with rapid

technological uptake has been developed and applied to fishery

stock assessments (Carvalho et al., 2014). However, there are still

two critical issues: (1) many studies extrapolate catchability values

from the existing literature and lack methods to estimate time-

varying catchability, and (2) the statistical framework to explicitly

distinguish between abundance (biomass) and catchability, while

considering technological developments, requires further

exploration (Bishop, 2006).

We hypothesized that these issues could be addressed

simultaneously by integrating information on technology uptake

into a Bayesian state-space model that explicitly addresses time-

varying catchability. Here, information on technology introduction

refers to the timing of introduction obtained through industry

interviews and questionnaires, and Figure 1 shows a conceptual

diagram of this approach. Since the state-space model draws out the
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potential information content of time-series data by considering the

observation errors in the data, we considered that it may be able to

capture changes in catchability before and after technological
Frontiers in Marine Science 03
development. The objective of this study was to develop a

statistical framework for integrating changes in catchability due to

technological innovation into a Bayesian state-space model, and to

test its effectiveness by applying it to long-term time series data

from the Japanese skipjack tuna pole-and-line fishery (Figure 2).

Using Ricker- and Gompertz-type state-space models, which are

widely used as population models, we attempted to estimate the

time-series changes in catchability and biomass from fishery data

(catch and fishing effort). For changes in catchability, we assumed

three scenarios (constant, exponential, and S-shaped increase),

considering exponential and S-shaped increase as the functional

forms used in previous studies (e.g., Kleiven et al., 2022; Han et al.,

2023; Matsubara et al., 2022), in addition to the unlikely constant

scenario assuming no change.

In this study, using skipjack pole-and-line fishery data, Bayesian

estimation using MCMC calculations was performed for each case

for a total of six combinations of two population models and three

catchability scenarios. For each model combination, coefficients of

determination were computed to assess the goodness of fit of the

model, and leave-one-out cross-validation was also performed to

examine prediction accuracy. We examined predictive accuracy in

this study because we wanted to compare the performance of the

two population models within a time constant q scenario or within a

time-varying q scenario. Finally, although we expect q to change

over time in an S-shape (logistic function) based on prior

information on technological uptake in the skipjack pole-and-line
FIGURE 2

Time-series data of catch and effort (product of days and number of fleets) and workflow of this study. Effort is scaled to Effort/10,000. CPUE is the stock
index of skipjack caught by Japanese pole-and-line fishing vessels, indicating the stock trend without considering technological uptake (i.e., when q = 1).
FIGURE 1

Conceptual diagram of a state-space model for estimating time-
varying catchability. Catch and effort data are used to estimate
population dynamics parameters. Utilizing the characteristics of the
state-space model, which is hierarchical, the state and dynamics of
the target species’ population are estimated by assuming a
functional form of catchability based on information on the timing
of technological uptake.
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fishery (Matsubara et al., 2022), the validity of the model for an S-

shaped catchability change scenario is confirmed based on the

results of this study, and a realistic approach for future work

is discussed.
2 Materials and methods

2.1 Species and study area

Skipjack tuna (Katsuwonus pelamis) inhabits warm tropical

waters and is of significant value in marine fisheries worldwide

(Zhang et al., 2023). This species reaches sexual maturity in

approximately 2 years and is known for its high population

growth rate and density dependence (Ashida et al., 2010; Solari

et al., 2003). Skipjack fisheries are conducted using a variety of

fishing methods, although the catches are dominated by pole-and-

line and purse-seine fisheries. In stock assessments of skipjack in the

Western and Central Pacific, data from the Japanese pole-and-line

fleet are used to construct CPUE abundance indices because they

provide the longest time series of fishery-dependent data, dating

back to the early 1970s. However, over such a long period, fishery

operations have become more efficient and dependent on new

technologies, such as bird radar and sonar, which are thought to

have affected catch rate trends by improving catchability (Hamer

et al., 2023; Matsubara et al., 2022). Although the stock status of this

species in the western and central Pacific region has been assessed as

stable and healthy in recent years (Castillo-Jordán et al., 2022), there

is concern that this estimated stability is driven by long-term stable

trends in the pole-and-line CPUE indices, used as the primary long-

term abundance indices for stock assessment. It is possible that a

stable CPUE has been influenced by technological innovations, such

as bird radar and sonar, which have improved catchability and

perhaps masked declines in true abundance. Given these
Frontiers in Marine Science 04
considerations, we identified the Japanese skipjack pole-and-line

fishery (JPPL) as an ideal case study for developing and applying a

method to estimate temporal changes in catchability.
2.2 Data set

JPPL fisheries are mainly conducted in the northern western

Pacific Ocean, predominately within the Japan exclusive economic

zone. The study area focuses on pole-and-line fisheries in the waters

around Japan (Figure 3). Therefore, the target population for this

study was the Northwest Pacific population, that is thought to be

part of a broader stock in the western and central Pacific Ocean.

Long-term fishery data, including catch amount (t) and effort

(vessel days), spanning 38 years from 1972 to 2019, were

obtained from the Japanese logbook data records for analysis. The

JPPL fishery comprises small (coastal), medium (offshore), and

large (distant-water) vessels. Due to the large vessels covering the

equatorial Pacific Ocean and the spatial sparsity and bias in

sampling the target population, data from small and medium

vessels were used in this study. Data from May to November,

representing the season when skipjack are caught in the nearshore

Japan pole-and-line fishery in the study area, were included in

the analysis.

The timing of technological development in this study was

assumed to be similar to that previously determined for large-sized

vessel fishing in distant waters (Matsubara et al., 2022)

(Supplementary Data 2). However, since the introduction of

equipment for medium-size vessels in Japan is thought to have

been slightly later than that for large vessels, the technological

innovations were assumed to have occurred in the 1990s (Hamer

et al., 2024). For simplicity in this study, the inflection point of the

S-shaped function was assumed to be in the middle of the 1972-

2019 data set (i.e., 1996). Information on the timing of technology
FIGURE 3

The study area encompasses the main region of the Japanese nearshore pole-and-line fishery in the northwestern Pacific Ocean. The colored area,
indicated by the 2.5-degree grid in the figure, shows the total skipjack catch of pole-and-line fishing near Japan from 1972 to 2019. Areas with zero
catch data are shown in gray.
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introduction was used only for the S-shaped scenario. Industry

interview surveys, such as the one conducted by Matsubara et al.

(2022), have the advantage of obtaining fishermen’s perceptions

and opinions about the timing of past technology and gear

improvements, which are not often available from logbook

records required by management agencies. Furthermore, vessel

skippers and crew can provide anecdotal support for changes in

fishing effectiveness (i.e., catchability) associated with technological

uptake (Marchal et al., 2007; Marriott et al., 2011).
2.3 Model description and estimation

To estimate the stock dynamics process, we extended the

Bayesian state-space model to consider temporal variation in

catchability. Bayesian state-space models, where the process

model is a population model, are statistical frameworks that allow

estimation of population dynamics while explicitly handling

uncertainty and accounting for observation error and are

commonly used in ecology to analyze nonlinear ecological

processes from time-series data (Hostetler and Chandler, 2015). A

state-space model comprises a state process model representing the

stochastic transition of ecological states xt (t = 1, 2, …, T), and an

observation process model representing the data acquisition

process. For analyzing population dynamics, a first-order Markov

process, xt | xt-1, is applied sequentially, with the initial state defined

by a random variable following a prior distribution. The

observation process involves an observable vector yt related to xt,

fluctuating with observation error. The Bayesian state-space model

is a hierarchical model utilizing a set of three probability density

functions (pdfs):

gt(xt   j   xt−1   ;   x)     state process pdf ;

g1(x1   ;g )     initial state pdf ;

f t(yt   j   xt  ;  y )     observation process pdf ; (1)

where, x, g , and y are vectors of model parameters.

In this study, the relationship between catch tonnage and

population density over a 48-year period, from 1972 to 2019, was

expressed as an observational process. In the t year (t = 1,2,3,…, T),

the median catch Ct can be represented by the following equation,

where qt is the time-varying catchability parameter, Et is the fishing

effort (product of days and number of vessels), and Nt is the

population density (e.g., Eigaard et al., 2014):

Ct = qtEtNt (2)

Because skipjack catches are recorded in the logbooks in

tonnage, which is a continuous value, the observed catch is

assumed to follow the below log-normal distribution with

variance s2 for the observation error:

Ct   e lognormal(log(qtEtNt),  s
2) (3)

In this study, we assumed qt to be represented by three models: a

constant scenario (q = const), an exponential change scenario
Frontiers in Marine Science 05
(qt = aexpbXt  ), and an S-shaped change scenario (qt = a + b
1+e−c*Xt ),

where Xt is discrete-time data (1972,1973,…2019) standardized to

continuous values.

It is recommended to examine both the Gompertz and Ricker

population models, depending on the species and operational mode

being handled, and the assumed functional form of catchability. Hence,

in the process model, following Hostetler and Chandler (2015), we

applied the stochastic Ricker model and modified the stochastic

Gompertz model (hereafter referred to as the Gompertz model),

which accounted for the density dependence of population dynamics

in the state process. The Ricker model is a density-dependent model

that assumes an autoregressive formulation of population density Nt;

moreover, it is more flexible than the discrete-time logistic model,

including the case of overcompensation (where the population density

goes from above carrying capacity K to below K) (Hostetler and

Chandler, 2015). The Gompertz model behaves similarly to the

Ricker model; however, overcompensation occurs only when the

population growth rate is high (Dennis et al., 2006). In this study, we

assumed the harvest-based Ricker model that estimates biomass and

catchability by considering the annual catch amount Ct, and the

dynamics of fish biomass Nt, described as follows:

Nt+1 = (Nt exp r 1 −
Nt

K

� �� �� �
− Ct)*exp(wt)  , (4)

where r is the population growth rate and K is the carrying

capacity. wt indicates the annual variation in the population growth

rate for the stock, state and process errors were assumed to follow a

log-normal distribution.

In the Gompertz model, the dynamics of fish species biomass,

Nt, are described as follows (see Hostetler and Chandler (2015) for

details):

Nt+1 = Nt exp r 1 −
log (Nt + 1)
log (K + 1)

� �� �� �
− Ct

� �
*exp(wt) (5)

For the prior distribution of the initial state, the population

density in the first year follows a zero-truncated normal distribution

with mean 500,000 and variance e2 (e  e  normal(0,   1, 000, 000)) (N1

> 0) to allow for a sufficiently wide range of values:

N1  e  Normal(500, 000,   e2) (6)

For prior distributions, a weakly informative prior was used for

each parameter to ensure that the range of possible parameter

values was adequately covered (Table 1). For the catchability

parameter, we used a lower limit of 0.025 for the S-shaped

change scenario. This prevents N from diverging and becoming

impossible to estimate when q becomes extremely small during the

MCMC random sampling when no lower limit is set in the S-shaped

scenario. To analyze the real catch data, we devised a procedure to

set this lower limit based on the available time series of catch data

(number/volume of catches) and effort. Here, q was estimated once

under the constant scenario using catch data for up to half of the

time period, and then the lower limit of the 95% credible interval of

the estimated q was used as the lower limit for setting parameters

when estimating the S-shaped scenario for the full time period data

(details in Supplementary Data 1).
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In this study, we sampled from the posterior distribution using

Markov Chain Monte Carlo (MCMC) with Stan, employing the

No-U Turn Sampling algorithm which has a good sampling

efficiency (Hoffman and Gelman, 2014). To improve the stability

of sampling using MCMC, scaled-effort data (E/10,000) were used

in the calculations. To eliminate the effects of the initial values and

autocorrelation in the MCMC sample, the results were extracted

every four iterations after discarding the first 5,000 iterations of

25,000 total iterations. This calculation is performed for four chains

with different initial values to obtain the posterior distribution. The

MCMC convergence was evaluated using R-hat with R-hat< 1.01,

which is the convergence criterion (Gelman and Rubin, 1992;

Vehtari et al., 2021). The MCMC method was implemented in

Stan using the R package cmdstanr ver. 2.34.1 (Stan Development

Team, 2021). The goodness of fit of the model was evaluated using

the coefficient of determination, R-squared (R²), with observed and

predicted values. Leave-one-out cross-validation, which examines

out-of-sample pointwise prediction accuracy using log-likelihood

evaluated at the posterior parameter distribution, was performed

using the R package loo (Vehtari et al., 2017).
3 Results

Application of Bayesian state-space models to skipjack JPPL

data for each scenario confirmed convergence of MCMC

calculations for both the Ricker and Gompertz models for the
Frontiers in Marine Science 06
constant scenarios and S-shaped change scenarios in catchability

with Rhat<1.01. However, the exponential change scenario did not

converge for either the Ricker or Gompertz models.

Coefficients of determination were calculated for each of the

scenarios for which convergence was confirmed, and no notable

differences were found among the scenarios, which were generally

comparable (Table 2). Similarly, cross-validation results indicated

that the predictive accuracy of the Ricker and Gompertz models was

comparable across all scenarios, including both the constant and

variable catchability cases (Table 3). The differences between

scenarios were very small, 0.04 at most, no particular scenario

showed consistently higher forecasting accuracy than others.

When incorporating the functional form of catchability into the

state-space model for each scenario, catchability was estimated to

increase over time in S-shape change scenarios (Figure 4). The

range of catchability uncertainty was wider in S-shape change

scenario, and the uncertainty in biomass was also larger in this

scenario. Compared to the time-constant scenario and the observed

CPUE time series data, the S-shaped scenario showed an increase in

catchability and a decreasing trend in biomass in the latter half of

the time-series, resulting in a smaller biomass estimate. For the time

varying scenario Ricker model the estimate of catchability increased

by approximately 4.47 times from the start of the model period to

the end (median value start = 0.058, median value end = 0.259), and

for the Gompertz it increased by approximately 3.36 (median value

start = 0.058, median value end = 0.195) (Figure 4). It should be

noted that in the case of the Ricker model, the estimated change in
TABLE 1 Description of each parameter for the model equations and prior distributions.

Parameters Description Definition

Parameters common across scenarios r growth rate Ricker model: r e  normal(0,   1);   (r > 0)

Gompertz model: r e  normal(0,   2), (r > 0)

K carrying capacity K  e  normal(0,   1000000),   (K > max(C))

Nt biomass Ricker model: Equation 4, (Nt > max(C))
Gompertz model: Equation 5, (Nt > max(C))

N1 initial biomass Equation 6

wt process error wt  e  normal(0,   100),   (wt > 0)

s observation error s  e  normal(0,   100),   (s   >  0)

з standard deviation for initial value N1 з  e  normal(0,   1000000),   (з  >  0)

Constant scenario q constant catchability q e  normal(0,   1);  ð0 < q < 1Þ

Exponential change scenario qt time-varying catchability qt = aebXt ,   (qt >  0)

a scaling parameter a  e  normal(0,   1),   (a   >  0)

b shape parameter b  e  normal(0,   1),   (b   >  0)

S-shape change scenario qt time-varying catchability
qt = a +

b

1 + e−c*Xt
,   (qt > 0:025)

a intercept a e  normal(0,   1),   (a   >  0)

b scaling parameter b e  normal(0,   1),   (b   >  0)

c shape parameter c e  normal(0,   1),   (c   >  0)
The specifications for the biomass and growth rate parameters differ between the Gompertz model and the Ricker model. For growth rate, the Gompertz model tends to have larger values than the
Ricker model.
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median q is notably higher than for the Gompertz model, but

empirically the MCMC convergence of the Ricker model is poor

and the Gompertz model is more likely to be reliable in terms of

reproducibility of the results. Although careful interpretation is

required, we expect the estimation of q by the state-space model can

help provide information on the level of effort creep in this JPPL

skipjack fishery. The estimated median biomass (95% CI, lower–

upper) in the S-shaped catchability scenario was as follows: Ricker:

522,000 tonnes (t) (163,000–1,203,000) and Gompertz: 532,000 t

(167,000–1,207,000) in the first year; and Ricker: 207,000 t

(105,000–1,023,000) and Gompertz: 277,000 t (112,000–

1,119,000) in the latest year. Compared to the constant

catchability scenario (Ricker: 779,000 t, Gompertz: 797,000 t), the

estimated median biomass in the latest year was reduced by

approximately 572,000 t (779,000–207,000) in the Ricker model

and 520,000 t (797,000–277,000) in the Gompertz model.

Applying the approach of estimating the 95% CI lower bound of

catchability in an S-shaped change scenario using the Gompertz

state-space model, Rhat of all parameters converged to less than

1.01, indicating that the time-varying catchability and biomass

could be estimated (Supplementary Data 1, Supplementary

Figure 1). The 95% CI lower bound of the catchability parameter

estimated in the first stage of estimation was 0.033, which is

comparable to the 0.025 set in the same population model

scenario (Table 1), supporting the validity of this approach.

Comparing the prior and posterior distributions for the growth

rate and catchability parameters across scenarios revealed a shift from

a broad prior distribution to a sharply peaked posterior distribution

(Figure 5), indicating substantial information gain from the data in

Bayesian estimation. For the growth rate parameter, the Ricker model

exhibited sharper peaks compared to the Gompertz model. The

catchability parameter showed similar shapes for both models,

though the mode for the Gompertz model was slightly lower.

When comparing time-varying and constant scenarios, the growth

rate parameter in S-shaped scenarios exhibited a lower mode, likely

reflecting population dynamics influenced by increased catchability

and reduced biomass levels over time.
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We developed a method to simultaneously estimate population

dynamics and time-varying catchability related to technological

progress, and tested the validity of this method by applying it to

skipjack catch data from the Japanese pole-and-line fishery using

alternative catchability change scenarios. Our methodology

represents two significant advancements compared to previous

studies. First, it clearly distinguishes between catchability and

abundance (biomass) estimates by considering natural rates of

increase, density dependence, and temporal changes in catchability.

This distinction resolves the confounding issue between population

fluctuations and temporal changes in catchability (Arreguin-Sanchez,

1996; Szuwalski, 2022; Taylor and Methot, 2013), allowing for more

accurate predictions and ecological understanding of population

dynamics. Second, as a hierarchical Bayesian model, it provides a

statistical basis for explicitly incorporating changes in catchability due

to technological progress. These changes in catchability should not be

ignored in long-term fishery catch rate data analysis, as modern

technological progress has no doubt led to increases in catch

efficiency (Eigaard et al., 2014; Marchal et al., 2007; Marriott et al.,

2011; Rousseau et al., 2019).

In long-term fisheries stock assessment, ignoring temporal

changes in catchability due to technological uptake can lead to

overestimation of population abundance and risk-prone

management advice (Eigaard et al., 2014; Kleiven et al., 2022).

Tracking technological development in fisheries over time requires

data on the development history and timing of equipment uptake.

This understanding can provide support for hypothesis on historical

catchability changes (Matsubara et al., 2022). While industry surveys

can provide information on catchability changes (Rousseau et al.,

2019), the data is often qualitative and underutilized in stock

assessments due to a lack of statistical methods for integration. The

state-space model introduced in the present study is flexible due to its

hierarchical Bayesian framework, allowing the explicit incorporation

of technological development timing from industry surveys as data

and prior distributions. For example, future work could allow the

timing of a technological innovation to vary within a range of ±1

standard deviation (SD) years, incorporating this into the prior

distribution as a normal distribution. This approach would utilize

the domain knowledge of fishers and experts, enhancing robustness

of population dynamics estimation and resource management

decision-making (Gorelli et al., 2016; Marriott et al., 2011).

The skipjack population in the northwestern Pacific Ocean is

thought to be part of the broader west Pacific stock which has been

considered healthy and stable in recent years (Castillo-Jordán et al.,

2022; Matsubara et al., 2022). However, our estimations for the

population around Japan indicate a downward trend when there is

consideration of increased catchability due to technological

development. Matsubara et al. (2022) suggested that the functional

form of catchability changes in the JPPL skipjack fishery is likely to be

S-shaped. When we assumed an S-shaped form, the goodness of fit

and prediction accuracy was comparable between the Ricker and

Gompertz models (Tables 2, 3). However, although it bears repeating,

Gompertz estimation is likely to be more reliable in terms of
TABLE 2 R-squared (R²) results for the goodness of fit of the model in
each scenario.

Constant_q Exponential_q Sigmoid_q

Ricker model 0.83 0.82

Gompertz model 0.81 0.81
The closer the value is to 1, the better the model fits. No model convergence was observed in
the scenarios with exponential changes in catchability, thus the results are excluded from
the table.
TABLE 3 Cross validation results for each scenario.

Constant_q Exponential_q Sigmoid_q

Ricker model 10.45 10.41

Gompertz model 10.45 10.42
Leave-one-out cross validation was used in this study. Lower cross-validation values indicate
higher predictive accuracy for the models. No model convergence was observed in the
scenarios with exponential changes in catchability, thus the results are excluded from
the table.
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reproducibility due to the empirically poor convergence of the

MCMC in the Ricker model. This difference in convergence may

be due to the Gompertz model being less prone to overcompensation

than the Ricker model and estimates a smoother functional form

(Certain et al., 2018; Hostetler and Chandler, 2015). In the Gompertz

model, the exponential scenario had lower convergence than the S-

shaped scenario, which may be due to the unrealistic assumption of

an unlimited increase in catchability over time. Therefore, although
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exponential changes are often used in fisheries stock assessments

when assuming a time-series change in catchability, it could be

preferable to use the S-shaped function as presented in this study

or a linear function that assumes a linear increase (Kim et al., 2024).

The functional form of catchability should be carefully determined

through industry surveys or other means. The study cautions against

the constant catchability assumptions that encompasses low

estimation uncertainty in long-term stock assessments. Even before
FIGURE 4

Estimated values of catchability parameter and biomass parameter for different scenarios for (A) Ricker model, (B) Gompertz model. The upper panel
shows the estimated value for the catchability parameter, and the lower panel shows the estimated value for the biomass parameter. The blue solid
line in the figures indicates the median, dark gray shading indicates the 80% CI, light gray shading indicates the 95% CI. Results for the exponential
change scenario are not included because convergence was not observed in either population model.
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conducting industry surveys, it may be useful to tentatively assume a

linear increasing or S-shaped function or to estimate time-varying

catchability as a random effect, if one wishes to mitigate the risk of

overestimation of stock biomass (Kim et al., 2024).
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Our analysis using catch and effort data under a time-varying

catchability scenario showed converged calculations, suggesting a

decreasing trend in abundance in recent years compared to that in

the mid-1990s (Figure 4). The S-shaped scenario of the Gompertz
FIGURE 5

Prior and posterior distributions of the growth rate parameter and catchability parameter for different catchability scenarios for (A) the Ricker model and (B) the
Gompertz model. The blue line shows the prior distribution, and the red line shows the posterior distribution. Results for the exponential change scenario are
not included because convergence was not observed in either population model. The prior distribution in the figure was created by 1000 random numbers.
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model was able to capture an approximately threefold improvement

in catchability from the beginning to the end of the time-series,

indicating that the stock biomass may have been significantly

overestimated, even in the most recent years. It should be noted

that the timing of technology introduction was approximately set in

this study considering previous studies, and this prior information

can be refined by further work incorporating industry knowledge.

In addition, for simplicity, environmental factors that might also

influence sustained catchability changes in regional fisheries off

Japan were not explicitly considered in this study. Because skipjack

respond to water temperature (Kiyofuji et al., 2019), incorporating

environmental factors such as annual minimum and average water

temperatures into future models may improve estimation accuracy.

We presented a statistical framework that explicitly integrates

changes in catchability due to technological uptake into a Bayesian

state-space model. This framework enables the identification of

changes in catchability using information on the timing of

technological development and catch data, and estimates

population dynamics, providing a more reliable representation of

stock abundance trends. Application of the approach to the JPPL

skipjack tuna fishery data showed that although accurate estimation

of abundance is difficult under time-varying scenarios due to the

wide credible intervals, it is likely to reveal trends in stock status

(e.g., stable or declining). These wide credible intervals are primarily

driven by uncertainties in time-varying changes in catchability.

Further investigation of medium-sized vessel fisheries in offshore

areas during periods of technological uptake could reduce the

uncertainty in catchability estimates, improving the accuracy of

skipjack tuna stock assessment in the waters around Japan, and

supporting informed decision-making for sustainable resource

management. The framework developed in this study is highly

flexible and can be applied to various datasets by modifying the

observation model. Therefore, it could be a useful method for

assessing the implications of technology-driven catchability

changes on the stock trends of various fish species.
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