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Ocean observing systems in coastal, shelf and marginal seas collect diverse

oceanographic information supporting a wide range of socioeconomic needs,

but observations are necessarily sparse in space and/or time due to practical

limitations. Ocean analysis and forecast systems capitalize on such observations,

producing data-constrained, four-dimensional oceanographic fields. Here we

review efforts to quantify the impact of ocean observations, observing platforms,

and networks of platforms on model products of the physical ocean state in

coastal regions. Quantitative assessment must consider a variety of

issues including observation operators that sample models, error of

representativeness, and correlated uncertainty in observations. Observing

System Experiments, Observing System Simulation Experiments, representer

functions and array modes, observation impacts, and algorithms based on

artificial intelligence all offer methods to evaluate data-based model

performance improvements according to metrics that characterize

oceanographic features of local interest. Applications from globally distributed
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coastal ocean modeling systems document broad adoption of quantitative

methods, generally meaningful reductions in model-data discrepancies from

observation assimilation, and support for assimilation of complementary data

sets, including subsurface in situ observation platforms, across diverse

coastal environments.
KEYWORDS

coastal ocean circulation modeling, data assimilation, observation impact, observing
system experiment, observing system simulation experiment, array modes
1 https://oceanpredict.org.
1 Introduction

At the interface between the land margin and open ocean,

coastal waters support a wide variety of societal benefits, including

economic, recreational, and ecological services. Local physical and

biogeochemical dynamics result in their sizable contributions to the

Earth System including climate relative to their spatial area. To

support local societal benefits and broader scientific understanding,

regional and coastal ocean observing systems have developed

around the globe, generally consisting of a suite of continuously

operating in situ and remotely sensed ocean observations.

Dynamical and statistical models have been developed to

capitalize on these data streams to provide historical, near real-

time, and forecast information to local and national communities,

resource managers, and scientists. Because specific coastal priorities

and financial constraints vary with region, the type and density of

observing platforms as well as details of ocean model and

configuration are diverse.

Platforms collecting remotely sensed data for physical variables

(temperature, salinity, velocity, and sea level) that are routinely

assimilated in the coastal and regional ocean forecast systems

include satellite observations of sea surface temperature (SST) and

sea surface height (SSH), as well as high frequency radar (HFR)

estimates of surface currents. In addition, satellite observations of

sea surface salinity (SSS) have recently become available. In situ

assets include coastal tide gauges, Argo floats and gliders equipped

with temperature and salinity sensors, as well as moorings that also

may include velocity observations. Unique observational challenges

limit spatial coverage in coastal environments (for example, with

land corruption of the radar reflection used for satellite sea level

anomaly calculations and shallow bathymetry for autonomous in

situ platforms), particularly close to the coast where spatial and

temporal scales decrease.

The challenge of effectively observing coastal waters given the

scales of oceanic variability combined with the large expense of in

situ assets motivates analyses to assess the value of observations,

instrument platforms, and the overall observation system. Routine

monitoring offers direct benefit when particular observations

provide actionable data to stakeholders (e.g., with wave

information). Additional, broader benefits derive from models
02
that yield full four-dimensional representations of the ocean state

whose output can be analyzed for multiple stakeholder needs.

While ocean observations deliver sparse coverage of ocean

conditions relative to spatial scales of natural variability,

dynamical state-of-the-art, coastal models are generally

constructed at O(1-10 km) grid spacing that resolves mesoscale

and a portion of submesoscale motions. Despite limited coverage,

ocean observations provide invaluable information, critical for

initial tuning of the model configuration and ongoing evaluation.

In addition, such observations formally constrain data assimilative

(DA) models that adjust model control parameters (e.g., state

variables and forcing fields) to produce more accurate estimates

of the overall ocean state than occur with free running models

(Edwards et al., 2015). Improved, DA-derived ocean state estimates

supply initial conditions for skillful forecasts, often of greater

interest to key stakeholders.

Methods to quantify the impact of observations on model

solutions have been developed, and it is the subject of this paper

to review these efforts with examples from coastal, shelf, and

marginal sea systems. Following Robinson et al. (2004) and

Kourafalou et al. (2015), we adopt a broad view of these

environments, defined as domains influenced by nearshore, shelf,

or shelf-break processes as well as, potentially, open ocean forcing.

This contribution updates previous accounts (Oke et al., 2015; De

Mey-Frémaux et al., 2019) as numerous investigations have

emerged as well as novel methods. We emphasize projects that

are linked to the Coastal and Shelf Seas Task Team, part of

OceanPredict, an “international network and science programme

that facilitates knowledge exchange between scientists and experts of

operational oceanography from around the world to accelerate,

strengthen and increase the impact of ocean prediction” 1.

Although the ocean state broadly consists of physical and other

information (e.g., related to biogeochemistry, water quality,

fisheries), we focus here on efforts in ocean circulation physics as

many benefits derive exclusively from these fields, and these systems

are generally prerequisites for multi-disciplinary systems. We begin

in Section 2 with a discussion of general issues that arise with
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quantitative observation impact studies, recognizing that they must

be considered in practice, regardless of model domain (open ocean

or smaller). Section 3 then offers specific examples of observation

impact studies spanning a range of complementary methods,

primarily from regional, coastal, and shelf sea modeling systems.

Section 4 concludes with a brief discussion of commonalities,

recommendations, and future opportunities.
2 The observation operator and
general issues with quantitative
assessment activities

In this section, we introduce notation and issues that naturally

arise when quantitatively comparing ocean model output to

observations. We note that these issues are general, applying

equally well to open ocean and coastal environments.
2.1 The observation operator

Data assimilation involves comparing observations measured

by a variety of diverse sensors with their model counterparts. In

most modern data assimilation schemes, such comparison is

performed in observation space, meaning that a function,

potentially non-linear, must be formulated to project the model

state variables onto the observation space. Such a function is

commonly referred to as an “observation operator”, and it is

indicated by H(x), where x represents the ocean state vector.

Projecting the ocean state vector into observation space is

typically much simpler than the reverse, allowing optimal

inversion algorithms (e.g., Lorenc, 1986). Observation operators

are formulated according to our knowledge of the relationship

between the ocean state and the observable measurement.

The formulation of the operatorsH(x) for each observation type

is a common requirement of both sequential (extended and

ensemble Kalman filters and all its variants) and variational

methods, the latter requiring, additionally, the derivation of the

tangent-linear and adjoint versions of H(x), denoted usually by H

andHT respectively (see e.g. Ide et al., 1997), which are required for

efficient minimization in the quadratic cost-function framework

(Talagrand and Courtier, 1987). These operators are derived from

Taylor expansions truncated at the first order, where the derivative

of H(x) is evaluated around the background (prior) ocean state

(Errico, 1997), usually a forecast initialized from a previous

assimilation cycle.

The observation operator can be as simple as a linear

interpolation operator, for instance when the observed variable is

also a model state variable. In other cases, it can be quite complex,

for instance including a radiative transfer model in the case of

satellite observations of sea-ice concentration from passive

microwave sensors in brightness temperature space (Scott et al.,

2012), which relates the oceanic and atmospheric states to the

reflected radiance measured by the satellite. Another notable

example concerns underwater acoustic measurements, which in
Frontiers in Marine Science 03
turn require an underlying acoustic propagation model - with

variable complexity - to provide a relationship between the ocean

state and the observations through the effects that underwater

sound speed (and currents) have on the acoustic propagation

itself (Ngodock et al., 2017; Storto et al., 2020).

During the last few years, with the rise of deep learning

algorithms in geoscientific applications, observation operators

have benefited from these data-driven formulations. Radiative

transfer models (Liang et al., 2023), acoustic observations (Storto

et al., 2021), and, in general, observations that cannot be formulated

analytically from the ocean state, are examples where deep learning

algorithms can improve observation operators and, in turn,

data assimilation.
2.2 Common approximations and
difficulties in construction and
representativeness issues

In the Bayesian approach to data assimilation, the process of

model-data comparison and model update necessitates knowledge

or assumptions about the error characteristics or uncertainty

properties of the observed value and prior estimate. One

challenge encountered is that the discrete geophysical model

cannot capture all spatial and temporal scales of the observed

geophysical state. Consequently, the prior estimate may differ

significantly from the observed value, even in the absence of any

measurement or instrument error, resulting in a perceived error

that must be taken into account to update the prior estimate

accurately. For instance, a perfect (error free measurement)

observation of the temperature gradient across an oceanic front

may be much higher than the forecast value from a numerical

prediction model, resulting in a misfit that must be estimated

somehow. The discrepancy between the modeled representation

of a quantity and its actual observation has traditionally been

addressed by incorporating what is commonly referred to as

representation, representativity, or representativeness errors in

scholarly works (Janjić et al., 2018). Consequently, the

observation error generally comprises two distinct elements, the

measurement error and the representation error.

In variational schemes that rely on the tangent-linear

approximation, an additional component of the representation

error derives from the tangent-linear assumption: the more non-

linear the H(x) function, the larger the error associated with its

tangent-linearization (Errico et al., 1993). While there are several

possible remedies to reduce the impact of the tangent-linear

assumption – for instance increasing the number of outer loops

in variational schemes, and thus linearizing H(x) around an

increasingly improved approximation of the analysis – the

tangent-linear error cannot be eliminated, unless the observation

operator is already linear (e.g. , in the case of linear

interpolation schemes).

Representation errors are in general dominant in the

observation error budget (Oke and Sakov, 2008), and, beyond

possible spatial representativeness issues discussed earlier, may be

relevant when the numerical ocean model is inadequate in
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representing certain processes. For example, if data includes high

frequency information such as tidal processes or inertial oscillations

that are not represented in the model, low-pass filtering can be

applied prior to model-data comparison. Oke et al. (2002) apply a

40-hour half-amplitude filter to observations and model output for

quantitative comparison in a model off the Oregon coast without

tides. Yu et al. (2012), Pasmans et al. (2020) and Hernandez-

Lasheras et al. (2021) assimilated daily mean HFR surface current

estimates into coastal ocean circulation models to focus

improvements on subtidal circulation features.

2.2.1 An example
Given that high-resolution, in-situ measurements are expensive

to deploy and maintain, the best use of remotely sensed data is

crucial (Le Traon, 2011; Oke et al., 2015). Several methods aimed at

enhancing how sea surface measurements from satellite-borne

sensors correct and constrain the sub-surface ocean model

solution have been developed. A significant example is the

assimilation of daytime sea surface temperature (SST) retrievals at

high temporal frequency, which has the potential to correct possible

mixed layer depth biases (Miyazawa et al., 2017; Liu and Fu, 2018),

with obvious benefits for several oceanographic applications (Liu

and Fu, 2018). However, several SST observational products from

infrared or microwave sensors have not been widely used in

operational contexts because surface layer diurnal variability in

OGCMs is difficult to model, with additional difficulties, in turn,

defining H and the observational error. For instance, infrared

sensors (the Advanced Very High Resolution Radiometer,

AVHRR, or the Spinning Enhanced Visible and Infrared Imager,

SEVIRI) measure the skin temperature valid at a depth of

approximately 10 mm. On the other hand, microwave sensors (the

Advanced Microwave Scanning Radiometer 2, AMSR-2) measure

the sub-skin temperature at a depth of around 1 mm.

In contrast, SST analyses such as the Operational Sea Surface

Temperature and Ice Analysis (OSTIA) (Donlon et al., 2012) or

NOAA OIv2 (Optimum Interpolation, version 2, Reynolds et al.,

2002) provide the foundation SST, which is nominally at a depth of

10 m. The 10 m depth is considered as a reference to ensure that the

temperature is not influenced by the diurnal cycle signal, thus

significantly simplifying the formulation of the observation

operator. Between 0.2 m and 1 m depth, where the first level of

most OGCMs is located, the diurnal cycle of SST is damped

compared to that of the skin or sub-skin SST and this

discrepancy has the potential to introduce systematic errors in the

analyses. Common remedies to this discrepancy rely on i) bias-

correcting the skin-SST through the use of a set of bias predictors

(Petrenko et al., 2016; Storto and Oddo, 2019); ii) using statistical

tools, such as canonical correlations, to infer the cool skin and warm

layer amplitudes (e.g., Jansen et al., 2019); or iii) modeling

analytically the skin SST variations through parameterizing their

difference with respect to the foundation SST (While et al., 2017;

Pimentel et al., 2019). Recently, de Toma et al. (2024) successfully

reduced skin temperature biases in a regional model of the

Mediterranean Sea by spatially and temporally varying the depth

of the warm layer, deduced from chlorophyll concentration data.
Frontiers in Marine Science 04
2.3 Issues of correlated errors

For over twenty years, satellite altimetry has significantly advanced

our understanding of ocean dynamics by consistently providing

information on both mesoscale and fine-scale dynamics (Fu et al.,

2010; Morrow et al., 2017) as well as the overall circulation at basin

scales (Stammer, 1997). As a result, global (Verrier et al., 2017) and

regional (Pujol et al., 2010) operational analysis and forecast systems

are profoundly impacted by altimetry observations and serve as a vital

complement to in situ observation profiles (Storto et al., 2013).

However, assimilating altimetry observations presents several

challenges mostly related to the multivariate balances used to

project the altimetry innovations in the subsurface, the spatial scales

and dynamical regime of the study region, and technical

considerations such as the computational costs of the assimilation

scheme. Furthermore, as discussed above, characterizing observation

errors is generally difficult due to the need to assess not only

instrumental errors but also representation errors and those

associated with geophysical corrections (e.g., Storto et al., 2011).

To facilitate the formulation and minimization of the cost

function, most variational data assimilation systems assume that

there is no correlation between errors in pairs of observations. This

assumption allows the observation-error covariance matrix to be

defined as diagonal, simplifying the implementation of the

variational algorithm and the preconditioning step, needed to

improve the speed of convergence in the minimization process.

However, the validity of this assumption may be questioned when

considering high-resolution satellite observations. In fact, satellite

altimetry data undergo various geophysical corrections, such as

tropospheric, ionospheric, and tidal corrections (Chelton et al.,

2001). These corrections, along with instrumental errors, can

support relaxing the assumption of uncorrelated altimetry

observational errors. High-resolution regional scale analysis

systems may be more affected by this assumption compared to

coarse-resolution systems, especially when their resolution exceeds

that of the satellite data. To address this issue, common approaches

include combining satellite data into so-called super observations

(e.g., Oke et al., 2008), data thinning (Cummings, 2005), and

adjusting or inflating observational errors (Liu and Rabier, 2003;

Rainwater et al., 2015).

Previous attempts at incorporating altimetry error correlations

have shown promise. Brankart et al. (2009, 2010) demonstrated that

by applying a linear transformation to the observation vector and

augmenting it with gradient observations, error correlations can be

introduced, resulting in improved ocean circulation in regional

prediction systems. Le Hénaff et al. (2008), Ruggiero et al. (2016)

and Yaremchuk et al. (2018) explored different approaches to

investigate the optimal assimilation of Surface Water and Ocean

Topography (SWOT) simulated altimetry data including

observational error correlation. Furthermore, Storto et al. (2019)

used co-located glider trajectories and altimetry tracks to estimate

the altimetry correlation length scale and used it in the definition of

the off-diagonal elements of the altimetry error covariance matrix,

resulting in significant improvements in forecast skill scores

compared to the case when the matrix is diagonal. In addition to
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https://doi.org/10.3389/fmars.2024.1458036
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Edwards et al. 10.3389/fmars.2024.1458036
confirming the analysis improvement deriving from the

introduction of spatially correlated observational errors, the latest

study also strengthens the relevance of properly designed

observational networks.
3 Applications assessing the impact of
observations on coastal models

How observations impact ocean model estimates must be

defined in terms of metrics that quantify one or several aspects of

the ocean state. Any one specific measure is necessarily subjective,

reflecting ocean qualities that practitioners or, perhaps, stakeholders

deem critical. Sometimes, metrics represent model-data misfit

against independent observations not included in the assimilation

system. In these cases, misfit reduction resulting from inclusion of

particular observations or observation platforms establishes the

positive impact the observations have on model fidelity. In other

cases, metrics represent unobserved features of value in a particular

oceanographic context. In these circumstances, impact is

represented by the magnitude of metric change resulting from

included observations. Examples of metrics used include average

eddy kinetic energy (EKE; Röhrs et al., 2018; Gwyther et al., 2023b),

average sea surface temperature (Moore et al., 2017), measures of

stratification such as the depth of an isopycnal surface (Moore et al.,

2017; Röhrs et al., 2018) or thermocline, available potential energy,

upper ocean heat content (Halliwell et al., 2015; Gwyther et al.,

2023a), and volume transport (Kerry et al., 2018; Siripatana et al.,

2020; Christensen et al., 2018; Levin et al., 2020). Additionally

region specific metrics can be used to ensure important dynamics

are well represented, for example the separation latitude of a

western boundary current (Gwyther et al., 2022). When used by

multiple, independent, analysis systems in a particular

oceanographic context, any reduction in metric spread by

ensemble members when assimilating particular observations

suggests convergence in data-constrained state estimates and a

positive impact of those observations on ocean analyses (Storto

et al., 2013).

We note that observation impact can depend on user choices in

the assimilation system. Liu and Hirose (2022) demonstrate using

model twin experiments in a regional domain of southwest Japan

that while adjustment of surface forcing through assimilation of

satellite altimetry is effective in shallow regions, its impact does not

extend to deep regions off the shelf. They find improvement in

estimates of Kuroshio Current properties result instead by allowing

assimilation-induced updates to the lateral boundary conditions.

A first demonstration of the impact of particular observations

on an ocean state estimate focuses on the Norwegian shelf, set up by

the Norwegian Meteorological Institute (MET Norway) (Röhrs

et al., 2018). The model domain includes the Skagerrak in the

southeast, the northern parts of the North Sea, the Shelf sea off

western Norway including the shelf slope, and parts of the Barents

Sea in the north. The NorShelf model is based on the Regional

Ocean Modeling System (ROMS; Shchepetkin and McWilliams,

2005; Haidvogel et al., 2008) with a physical space 4D Variational

(4D-Var) DA scheme. A horizontal model resolution of 2.4 km was
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chosen to suit the scale of the available observations, and to satisfy

competing needs to resolve high resolution eddy dynamics while

confining nonlinearities that limit the 4D-Var DA capabilities. The

model is used as a forecasting tool for ocean circulation and

hydrography beyond the coastal area, including the entire shelf

sea and the dynamics of the North Atlantic current at the shelf

slope. Some model cycles were found to benefit locally from dense

observation campaigns (e.g., when CTD sections are taken from

research vessels or during glider campaigns). These types of

observation have significant impact on the model trajectory, with

a stronger response in deeper layers compared to periods when only

SST fields are assimilated. All model state variables (i.e.,

temperature, salinity, velocity, and the free surface) are adjusted,

and typically an increase in eddy kinetic energy is seen in the mixed

layer, along with modifications to vorticity that suggests a

repositioning of mesoscale eddies.
3.1 Observing System Experiments (OSEs)

The impact of observations toward improved estimates of the

ocean state may be evaluated through straightforward experiments

that compare DA runs with specific observations removed/denied.

Such Observing System Experiments (OSEs) can range in

configuration from withholding all observations, and thus

evaluating the impact of the overall observing system relative to a

non-DA approach, to withholding only particular sets of

observations or observation platforms, or for comparing DA

schemes themselves. Here we present several examples to

illustrate their application in coastal and shelf seas.

One example illustrates the application of OSEs toward parts of

observational programs. The Korean National Institute of Fisheries

Science (NIFS) operates a regular ocean observation system which

has observed temperature and salinity profiles at standard depths

down to 500 m in the marginal seas around Korea bimonthly since

1961 (Figure 1). Chang et al. (2023) assimilated these in-situ

temperature profiles in the marginal seas around Korea, resulting

in improved accuracy of subsurface temperature and salinity in the

East/Japan Sea (EJS) as well as in the Kuroshio and Kuroshio

Extension regions and illustrating how regional observation

networks can improve ocean prediction accuracy nonlocally, for

example in adjacent open oceans.

An OSE can assess the impact of the Korean NIFS observation

system specifically on predicted hydrography in local shelf seas. For

this experiment, the ocean prediction system was based on ROMS

with a horizontal grid spacing of 5 km and 30 vertical layers. SST

data from the Operational Sea Surface Temperature and Ice

Analysis (OSTIA), temperature and salinity profiles from the

NIFS observation system and the Global Temperature and

Salinity Profile Programme (GTSPP), and surface geostrophic

currents estimated from gridded satellite altimeter data were

assimilated daily in 2019 using the Ensemble Optimal

Interpolation (EnOI) method with 30 ensemble members.

Independent (i.e., unassimilated) T/S profiles were used for

quantitative assessment. A simulation with no data assimilation

(Freerun) was compared to analyses assimilating all observations
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(CTRL) and assimilating all data excluding NIFS observations (NO

NIFS). Free run RMSEs from the upper 100 m are generally larger

than those with data assimilation, and the CTRL run typically

exhibits meaningfully lower RMSEs compared to the NO NIFS

experiment. Though variations occurred between regions, with only

slight changes particularly in the Ulleung Basin, NIFS data

enhanced the accuracy of subsurface temperature and salinity

overall by approximately 18% and 37%, respectively, in the

coastal shelf seas (two examples given in Figure 1), making the

NIFS observation system a valuable asset for the coastal operational

ocean prediction system.

A second example highlights collections of observation types. In

the East Australian Current (EAC) region, OSEs have been used to

compare the impact of assimilating only relatively traditional near

real time observations, such as satellite derived observations and

vertical hydrographic profiles from Argo and eXpendable

BathyThermographs (XBTs) (the TRAD experiment), versus also

including newer observation types such as from HF radar (HFR, to

be described in more detail below), glider and deep and shallow

moorings (the FULL experiment) (Siripatana et al., 2020; Kerry

et al., 2020, 2024). Results showed that while assimilating traditional

data sets alone improved surface and subsurface properties,

including velocities, relative to a free run, newer coastal mooring,
Frontiers in Marine Science 06
radar and glider observations further improved estimates of the

overall ocean state. Mooring observations along the continental

shelf improved estimates of velocity and temperature inshore of the

EAC, and gliders observations were key to constraining estimates of

subsurface structure on the continental shelf and the offshore EAC

eddies. HF radar observations covering the continental shelf and

slope region at 30S were key to representing the cyclonic vorticity

inshore of the EAC, resulting in increased cyclonic vorticity both up

and downstream of the HF radar location and increased vorticity

variance (Siripatana et al., 2020). However, after 5-day forecast

windows the predictive skill for shelf velocities was equivalent to

that of the TRAD experiment (Siripatana et al., 2020; Kerry et al.,

2024a). For these same experiments, Kerry et al. (2020) showed that

downscaling to a higher resolution (1km) coastal/shelf model was

more effective at maintaining the vorticity gradient in the 5-day

forecasts; however, correctly predicting the timing and location of

fine-scale features (specifically cyclonic eddies that form inshore of

the EAC) remains a challenge.

In cases, OSEs can help identify issues with insufficient data

coverage and/or noise, possibly resulting in erroneous variability

associated with over-fitting. An example here shows results from

OSE tests of the West Coast Operational Forecast System (WCOFS;

Xu et al., 2022), specifically related to single or multiple satellite
FIGURE 1

(A) Distribution of in-situ temperature and salinity (T/S) profiles used in data assimilation in February 2019. Dots indicate T/S profiles provided by the
Korean NIFS observation system (yellow) and other observation programs (red) including the Global Temperature and Salinity Profile Programme
(GTSPP). Color shading indicates the bottom depth in meters. (B) Distribution of T/S profiles, in the eastern Yellow Sea (YS), northeastern East China
Sea (ECS), Korea Strait (KS), and Ulleung Basin (UB) in the East/Japan Sea, provided by the Korean NIFS bimonthly since 1961. (C–F) RMSE for
temperature and salinity profiles at the eastern Yellow Sea, and northeastern East China Sea. Freerun, CTRL, and NO NIFS represent numerical
simulations without assimilation, with assimilation of all observed data, and with assimilation of observed data excluding NIFS data, respectively.
‘nobs’ represents the number of independent observation data used for evaluation.
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platforms. Model dynamics are based on ROMS at 4-km horizontal

resolution in a domain centered on the United States west coast

stretching from Mexico to British Columbia, Canada. DA includes

HFR surface current vectors, satellite along-track altimetry, and

SST. Specifically, Level 3 Visible Infrared Imaging Radiometer Suite

(VIIRS) SST from one or two satellites (NPP-Suomi and NOAA-20)

were utilized. In these data, individual swaths are mapped to a

regular 2-km grid, but gaps due to clouds are not filled. The surface

current variability in the forecasts constrained by DA is more

energetic in the broad range of geostrophic scales (20-200 km)

than in the no-DA case (Figures 2A, B), and quantitatively evident

in the 1-dimensional velocity wavenumber spectra (Figure 2C). In

early stages of testing, Level 3 VIIRS SST from just one satellite,

NPP, was utilized. The velocity amplitudes in the geostrophic range

from this estimate (red line) are 2-3 times higher than the no-DA

case (blue). Adding SST data from another satellite increases

coverage and data redundancy leading to reduced posterior model

error. The resulting estimate (green) reduces the spectral amplitude

gain due to the DA by about half, indicating that some part of the

surface eddy variability in the DA-NPP case is in error, and likely

the result of fitting sparse noise. Newly available observational sets,

such as SWOT altimetry, will provide new opportunities to assess

the level of EKE in the coastal transition zone.

The impact of a single particular observation platform can also

be investigated through OSEs. HFR are land-based coastal

observing platforms providing accurate and high-resolution

monitoring (around 1 km in space and hourly in time) of surface

currents from the near-shore to several tens of km offshore. These

measurements are generally accessible in near real-time, providing a

unique dataset to constrain surface ocean currents in coastal

forecasting systems. However, the assimilation of HFR

measurements in numerical models also poses specific challenges.

Several OSEs performed over the last two decades have been
Frontiers in Marine Science 07
insightful, providing an assessment of the impact of these surface

current observations when assimilated in coastal models by means

of different approaches in different regions of the world.

HFR OSEs have used moored current meters and Acoustic

Doppler Profilers (Oke et al., 2002; Paduan and Shulman, 2004;

Shulman and Paduan, 2009; Ren et al., 2016; Wilkin and Hunter,

2013), surface drifter trajectories (Hernandez-Lasheras et al., 2021;

Bendoni et al., 2023) or satellite observations (Yu et al., 2012;

Couvelard et al., 2021) as independent validation datasets. Overall,

the model velocity error reduction achieved by assimilating HFR

observations was found to be between 10 and 50% (Barth et al.,

2008; Gopalakrishnan and Blumberg, 2012; Hernandez-Lasheras

et al., 2021; Couvelard et al., 2021; Bendoni et al., 2023), with an

increase of the correlation with independent observations up to 85%

(Oke et al., 2002).

In addition, more specific issues have been investigated. When

assimilating HFR data, one must choose whether to assimilate raw

radial velocities (i.e., velocity projections directed toward or away

from individual antennae) or reconstructed “total” currents (i.e.,

velocity vectors representing both the meridional and zonal

components in areas covered by two or more antennae). While

total currents generally provide smoother data than radials and are

somewhat easier to compare with model velocities, creating them

discards information provided by radial velocities in areas covered

by only one antenna. Shulman and Paduan (2009) and Hernandez-

Lasheras et al. (2021) compared the assimilation of both radial and

total velocities, reaching the conclusion that the relative

performance was also dependent on other parameters like the

direction of the flow with respect to the radials or the application

of an initialization step after analysis which helps to preserve the

model dynamical balance. In the EAC region, Kerry et al. (2020)

showed that assimilation of radial velocities over the core of

Australia’s western boundary current (the East Australian
FIGURE 2

(A, B) Surface daily averaged current amplitude (m/s) from the 4-km resolution WCOFS, 15 June 2020, (A) no DA, (B) DA, including SST from NPP
and NOAA-20. (C) The amplitude wavenumber spectrum of the surface velocity component across the white line shown in (A, B) The spectra for
each day, 1-30 June 2020, are obtained by applying the Hann window, then Fast Fourier Transform; the plot shows the RMS amplitudes, with
averaging over these dates: (blue) no DA, (red) assimilation includes SST from just one satellite, NPP, (blue) adding the second satellite set (NOAA-
20), which results in a smoother (lower eddy kinetic energy) estimate.
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Current) at 30S produced increased cyclonic vorticity along the

current’s inshore edge in the vicinity of the HF radar array as well as

up and downstream.

A challenge with HFR relates to the highly variable and

energetic characteristic of surface currents, which is generally

associated with relatively large model error variances. Some OSEs

have shown that assimilating these measurements might also have

negative side effects on other model variables, on the correction of

model fields at depth, or outside the HFR observation area (Zhang

et al., 2010; Bendoni et al., 2023).

OSEs have been used also to evaluate the potential of HFR data

assimilation to correct the surface and boundary forcing of the

model rather than correcting the ocean state itself (Barth et al., 2010,

2011; Marmain et al., 2014; Ren et al., 2016). This approach is

particularly useful to minimize short transients appearing during

model re-initialization after analysis in sequential data assimilation

schemes, which is especially critical when dealing with high-

frequency measurements and short assimilation cycles.

Assimilating HFR data in the East Australian Current region,

Kerry et al. (2016, 2020) allow the DA system to adjust the initial

conditions, boundaries and surface forcing. They find that, while

the initial condition adjustments can introduce or enhance cyclonic

features inshore of the current at the beginning of the analysis

window, the features are maintained over the 5-day windows by

adjustments to the wind stress forcing.

Finally, the good performance of HFR data assimilation

highlighted by these OSEs have also allowed validation of

temporal filtering applied on HFR surface currents, for example

when the focus is on the sub-inertial ocean variability (Oke et al.,

2002; Barth et al., 2008; Shulman and Paduan, 2009; Kerry et al.,

2018; Hernandez-Lasheras et al., 2021). Alternatively, when

representing high-frequency processes, specific OSEs have

demonstrated the potential of HFR data to correct tides and

inertial oscillations in the coastal zone (Barth et al., 2010;

Gopalakrishnan and Blumberg, 2012; Vandenbulcke et al., 2017).

A second major platform providing critical observations in

coastal waters is an underwater glider, and OSEs have been used

to evaluate the impact of these observations on coastal modeling

systems. Gliders are highly valuable autonomous observing

platforms providing high-resolution, subsurface sampling of

coastal environments and transition zones toward the open ocean

with horizontal scales of the order of 1 km. Jones et al. (2012)

showed that the assimilation of mooring and glider data

significantly reduced sea surface temperature errors in a coastal

model of south-west of Tasmania. In the New York Bight, Zhang

et al. (2010) found the impact was more pronounced on salinity

than temperature. OSEs have also highlighted the importance of

having complementary surface observations when assimilating

glider temperature and salinity profiles to avoid spurious

velocities (Pasmans et al., 2019), and they have demonstrated the

value of glider observations for assessing the representation of

modeled ocean fronts (Pascual et al., 2017). Assimilating glider

data from deep ocean eddies was shown to significantly improve the

subsurface structure of the water column (Kerry et al., 2018). The

impact of measurements from fleets of gliders in coastal zones was

also assessed in several studies (Shulman et al., 2009; Pan et al.,
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2014; Gangopadhyay et al., 2013; Mourre and Chiggiato, 2014;

Hernandez-Lasheras and Mourre, 2018) leading to valuable

quantifications of the model field improvements both at the

surface and in the pycnocline, and providing comparisons with

more conventional observing strategies. Finally, Mourre and

Alvarez (2012) also applied this approach to evaluate the benefits

of piloting a glider through a real-time operational adaptive

sampling procedure.

Lastly, OSEs have been used to compare the utility and benefit

of different data assimilation schemes themselves. Kerry et al.

(2024a) used OSEs to compare the time-dependent 4-

Dimensional Variational (4D-Var) data assimilation system with

the more computationally-efficient, time-independent Ensemble

Optimal Interpolation (EnOI) system, across a common modeling

and observational framework. They showed that although the 4D-

Var system is more computationally expensive, it outperforms the

EnOI system against both assimilated and independent

observations at the surface and subsurface. The time-dependent

DA method gave a more continuous ocean state, with smaller

discontinuities between subsequent analyses, and improved forecast

skill (after 5 days) for assimilated and independent observations.

This was highlighted to be important for coastal and shelf regions

with highly intermittent flows. In the Ligurian Sea, Mourre and

Chiggiato (2014) compared the performance of the 3D super-

ensemble multi-model fusion approach with that of a more

conventional Ensemble Kalman Filter (EnKF), highlighting the

better skills of the EnKF outside of the area spanned by the

assimilated measurements.
3.2 Observing System Simulation
Experiments (OSSEs)

An alternative to OSEs for evaluating the efficacy of an observing

system is the Observing System Simulation Experiment (OSSE), in

which synthetic observations are extracted from a numerical model

simulation, referred to as a “nature run” (NR) or “truth” (Figure 3).

OSSEs have been widely employed in meteorology (Arnold and Dey,

1986; Atlas, 1997) and more recently in oceanography. OSSEs

provide a relatively straightforward methodology to assess the

impact of new observation types (e.g., Kerry et al., 2024b),

different observing scenarios (e.g., Gwyther et al., 2022, 2023a,

2023b, Barceló-Llull and Pascual, 2023; Alvarez and Mourre, 2014)

and/or satellite constellations and future projects (e.g., Mourre et al.,

2006), the inclusion of tides on mesoscale predictability (Kerry and

Powell, 2022), or even different observation operators and

processing chains of observations. OSSEs can also be used to

inter-compare different data assimilation schemes (e.g., Storto

et al., 2020; Moore et al., 2020). As such, OSSEs have been and

continue to be a valuable method for guiding choices about

extending the capabilities of the ocean observing network and/or

improving existing assimilation strategies.

However, a well-known deficiency of OSSE exercises is that

their outcomes depend, to some extent, on the specificities of the

analysis and forecast system used within the assessment.

Consequently, care must be taken in generalizing the results. The
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way the NR is chosen and, accordingly, the way synthetic

observations are drawn are crucial elements of an OSSE and

generally relies on the use of an alternative model (e.g., Errico

et al., 2013) or the same numerical model but with different

configurations (e.g., Halliwell et al., 2014). It is therefore desirable

that OSSE exercises are performed using multiple analysis

systems, in order to achieve consensus about the impact of a

certain observation type and turn the assessment results onto

probabilistic metrics (e.g., percent of systems benefiting by at least

a certain threshold from the assimilation of a group of observations,

and so on). This approach is, for instance, being followed within the

SynObs project of the United Nations Decade of Ocean Science

(more information available at https://oceanpredict.org/synobs/),

after the encouraging experience in the AtlantOS project (Gasparin

et al., 2019). Alternative methodologies may rely on quantifying the

change in ensemble properties (e.g., ensemble variance) in

forecasting systems when certain synthetic observation types are

assimilated, namely, the decrease in ensemble dispersion quantifies

the impact of the new observing scenario (Storto et al., 2013).

A prototype fraternal twin Observing System Simulation

Experiment (OSSE) system was developed for the Gulf of Mexico

based on the HYCOM ocean model (Halliwell et al., 2014). This

regional application of the OSSE system was rigorously evaluated by
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first demonstrating the realism of the unconstrained NR. Second, it

was determined that realistic differences (errors) existed between an

unconstrained simulation by the data assimilative Forecast Model

(FM) and the NR that closely resembled errors between the NR and

the true ocean. The final evaluation step compared OSEs that

evaluated impacts of existing observing system components to

identical OSSEs that evaluated impacts of synthetic versions of

the same observing system components. Similar impact assessments

were obtained, demonstrating that the OSSE results are realistic.

The OSSE system was then used in Halliwell et al. (2015) to evaluate

the impact of airborne expendable profiler surveys, which have been

used for improving ocean model initialization for coupled hurricane

prediction (e.g., Shay and Uhlhorn, 2008) and for using ocean

models to predict the dispersal of the Deepwater Horizon oil spill

(e.g., Shay et al., 2011). An example impact assessment is presented

in Figure 4 using a Taylor (2001) diagram to quantify error

reduction. This assessment focuses on error reduction in Ocean

Heat Content (OHC) above the 26°C isotherm, an index of the

thermal energy available for hurricane intensification. An

unconstrained experiment and an experiment assimilating

existing ocean observing systems were compared to experiments

that also assimilated synthetic Airborne Expendable Conductivity

Temperature Depth Probe (AXCTD) profiles sampled at the
FIGURE 3

An outline of the steps taken in (top) a realistic prediction system and (bottom) an Observing System Simulation Experiment. (A) In a realistic
prediction system, a forecast simulation over an assimilation cycle of length l provides the prior estimate also called the model background state,
with associated background error estimates (blue). Ocean observations, along with error estimates, are collected using instruments deployed in the
natural system (black). The background and observations are combined using data assimilation to provide an improved posterior estimate, also called
the analysis, along with associated model error (green). The analysis provides data constrained initial conditions for the subsequent assimilation
cycle. The analysis and forecasts are evaluated against assimilated or withheld observations. (B) In an OSSE, a model simulation represents the
Nature Run or model Reference State (red), from which synthetic observations, perturbed by characteristic observation errors, are drawn (black). A
model simulation that is distinct or perturbed from the Reference State serves as the background or Baseline simulation. As in the realistic system,
data assimilation combines observations and the background to yield an analysis whose final state provides an initial condition for the subsequent
assimilation cycle background. The analysis and forecasts are evaluated against the Nature Run. This figure is adapted from Kerry et al., 2024b.
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locations shown in Figure 4 at 1.0- and 0.5-degree horizontal

resolutions. Results clearly illustrate the significant error

reduction achieved by assimilating existing observing systems,

along with the additional error reduction achieved by also

assimilating the airborne observations at progressively higher

horizontal resolution.

A different OSSE conducted in the EuroSea Project evaluated

various configurations of in situ experiments aimed to reconstruct

fine-scale (~20 km) ocean currents in the context of the Surface

Water and Ocean Topography (SWOT) satellite validation

(Barceló-Llull et al., 2023). In this work, the impact of different

sampling strategies on the reconstruction of fine-scale ocean

currents in Mediterranean and Atlantic study regions were

identified, with recommendations for the design of in situ

experiments (Barceló-Llull and Pascual, 2023). This analysis was

carried out with an advanced version of a spatial optimal

interpolation algorithm applied in field experiments. Two

additional reconstruction methods in the Mediterranean were

tested, and a pilot technique based on machine learning showed a

slight improvement with respect to the spatial optimal

interpolation. Another method based on model data assimilation

showed that incorporating CTD simulated-observations in the

experiments yielded better reconstructions of temperature and

salinity compared to scenarios with no data assimilation or those

assimilating only satellite simulated-observations. Lastly, the newly

developed Multiscale Inversion for Ocean Surface Topography

(MIOST) variational tool for mapping nadir altimetry using

current observations obtained from drifters was tested. Maps

generated through this method demonstrated improvements in

energetic regions, such as the Algerian current, making it a

valuable technique for SWOT validation.
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In the East Australian Current System a series of OSSEs have

been used to understand how assimilating different configurations

of temperature data from the surface (satellite) and below the

surface (e.g., vertical temperature profiles from XBTs) contribute

to estimates of upper ocean heat content, mixed layer depth, and the

sub-surface structure of mesoscale eddies (Gwyther et al., 2022,

2023a, 2023b). By exploring the ocean variability spectrum Gwyther

et al. (2023b) showed the potential for aliasing in a region of high

mesoscale variability if sub-surface observations are not of sufficient

spatial or temporal resolution. Additionally, they identified that

systematic errors can be introduced by the data assimilation system

that hinder the ability of the model to produce more accurate

subsurface representation with fortnightly or monthly subsurface

XBT observations (compared to weekly). These errors can only be

mitigated through improvements to the data assimilation system.

Kerry et al. (2024b) conducted a series of OSSEs for the New

Zealand region to assess the impact of subsurface temperature

observations collected from fishing vessels (Jakoboski et al., 2024),

primarily in coastal and shelf regions. The experiments identified a

challenge of assimilating dense coastal and shelf observations into a

model that represented both coastal/shelf dynamics and the deep

oceanic region around New Zealand. The experiments show that

assimilation of the subsurface temperature observations in concert

with surface observations results in significant improvements in

bottom temperature and heat content estimates in coastal and shelf

regions. However, careful specification of the prior observation and

model background uncertainties, which influence the way in which

the observations are projected onto the model estimates, was

required to avoid overfitting to dense coastal observations. The

improvement in ocean heat content estimates were particularly

sensitive to these prior choices (compared to bottom temperature)
FIGURE 4

OSSE evaluation of the impact of airborne AXCTD surveys on initializing Ocean Heat Content (OHC) in ocean models. “Surveys” were conducted by
deploying synthetic AXCTDs simulated from the NR into the FM at locations shown in the upper left at two horizontal resolutions: 0.5 and 1.0
degrees. Error analysis with respect to the NR (the “truth”) is presented in the Taylor diagram for four experiments. The largest errors occurred in the
unconstrained experiment as expected. Large reductions in RMS differences and large increases in correlation coefficients were realized sequentially
in the remaining three experiments: assimilating all observations except the airborne profiles, and then additionally assimilating the profiles at 1.0 and
0.5 degree resolution.
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as heat content represents an integration through the water column.

Significantly, shorter horizontal decorrelation length scales specified

for temperature in the 4D-Var background error covariance

formulation resulted in improved ocean state estimates away from

the dense coastal observations.

Finally, in the Philippine Sea, a region of strong internal tides

and energetic mesoscale ocean circulation, a twin experiment

revealed that including tides improves subtidal prediction (Kerry

and Powell, 2022). The OSSE methodology allowed the authors to

identify that the mechanisms were two-fold: firstly, tidal dynamics

influence the subtidal circulation, and secondly, higher prior errors

must be prescribed for the observations if the model does not

resolve the internal tide signal. Over the shallow shelf region of the

South China Sea, tidal dynamics were crucial to represent tidal

mixing, which modulates the temperature of the SCS and Kuroshio

waters, while in the Philippine Sea deep basin the role of tides in

improving subtidal predictions related to reducing uncertainty

resulting from the inertial tide signal.
3.3 Representers and array modes

The approaches in sections 3.1 and 3.2 provide global

information on the actual or potential contribution of observational

datasets to the estimation of the ocean state by data assimilation. As a

complement, it is often useful to consider the potential contribution

of individual key observations in isolation from the others. This

contribution is not only local, and not only for the observed variable:

as the model’s prior errors are non-local (correlated in space and in

time) and span across variables, the actual influence of observations

will also be non-local. This information can be accessed through

representers, or influence functions: they can be calculated as the prior

error covariances taken between observation points and model grid

points, to within a multiplier coefficient.

Array modes provide similar information, but on the scale of a

complete observational array, and in hierarchized form: among

other uses, the theory can help determine which dominant prior

error patterns (in space-time and multivariate) are detectable by an

observational array within the limits of its observational errors and

can therefore be corrected by assimilation.

Using the notation for the observation operator introduced in

section 2.1, the best linear unbiased posterior state estimate xa (aka

the analysis) resulting from DA can expressed as xa = xb + BHT(H
BHT + R)−1 (y −H(xb)) where xb is the prior estimate (aka the

background), and y is the vector of observations. Uncertainties in xb
and y are described by the background error covariance matrix B

and the observation error covariance matrix R (see section 2),

respectively. The model equivalent of the observations is H(xb) and

H and HTrepresent a linearization of H and its transpose (aka the

adjoint) respectively. Thus, the analysis represents the background

corrected by the weighted sum of the departures of the model from

the observations. The weight matrix K = BHT(HBHT + R)−1 is

referred to as the Kalman gain matrix. The covariance matrix P =

(HBHT + R), the so-called stabilized representer matrix, plays a

central role in assessing the efficacy and impact of the observing

system. The columns of P are called representers and quantify the
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covariance of the total error between the space-time observation

locations. The eigenvectors of P represent the EOFs of the total

error variance, and when mapped back to state-space by BHT are

called array modes (Bennett, 1985) which provide information

about the field-of-view of the observing system. The

corresponding eigenvalues provide information about the degrees

of freedom of the signal (DFS). More specifically, the number of

eigenvalues of the scaled representer matrix ~P = (R−1HBHT + I)

that are greater than 2 provides an estimate of the number of DFS

that can be distinguished from observation errors. Moore et al.

(2018, 2021) have employed these ideas to estimate the effective

DFS of the observing array for the California Current System (CCS)

and Mid-Atlantic Bight (MAB) and retune the data assimilation

system to prevent overfitting to scales that are not resolved by the

observing system. Le Hénaff et al. (2009); Charria et al. (2016) and

Lamouroux et al. (2016) have applied similar ideas to explore the

information provided by the observing system in the Bay of Biscay.

Monte Carlo methods such as the Ensemble Kalman Filter

(EnKF) and its variants can also be used to calculate representers, as

first done for example by Evensen (1994) and many others since

then. Following Echevin et al. (2000), the representer in covariance

form for observation k is the line vector

rTk = hkBH
T (1)

where hk is the observation operator for that observation (a vector

projecting the three-dimensional, multivariate state space onto the

individual space of this observation), and an ensemble approach can

be used to derive an estimate of BHT. Besides the covariance term

(Equation 1), representers can also be presented in correlation form

as illustrated above in the case of ~P and below, or in model

correction form, the latter assuming an observation error

estimate, an innovation value, and an analysis scheme, e.g. an

EnKF analysis step as done in Echevin et al. (2000), also

illustrated below.

3.3.1 Bay of Biscay representers
The Bay of Biscay (BoB) physical-biogeochemical model and

the ensemble generation approach are described in Vervatis et al.

(2021). The configuration is a high-resolution (1/36°) subset of the

Iberia–Biscay–Ireland (IBI) domain (Sotillo et al., 2015), based on

the NEMOv3.6-PISCESv2 platform (Madec and the NEMO team,

2016; Aumont et al., 2015), using a stochastic model of first-order

autoregressive processes for the production of ensembles. Three

simulation experiments of 40-member ensembles were designed to

estimate ocean model errors: Ens-1 perturbing only the physics,

Ens-2 perturbing only the biogeochemistry, and Ens-3 perturbing

both simultaneously.

We showcase the use of model ensemble anomalies (departures

from the Ensemble mean) in the BoB, as a proxy of model

uncertainties, to calculate multivariate representers of single

observations, with the objective of assessing the potential impact

of observations onto unobserved variables, such as other data types,

or subsurface variables (not shown here).

Figure 5 shows examples of multivariate, zero-lag representers

of single SST (sea-surface temperature), SSH (sea-surface height)

and Chl (Chlorophyll a at the surface) observations, onto (A,E,I)
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SST, (B,F,J) SSS (sea-surface salinity), (C,G,K) SSH and (D,H,L)

Chl, at three different BoB locations on April 30 and May 7, 2012:

the Abyssal plain, the Armorican Shelf (AS), and the English

Channel (EC). The representers are in correlation form.

Convolution with a localization function of 3° is applied to

constrain spurious long-distance correlations resulting from the

small size of the ensembles (40 members).

The structures of the representers reveal marked differences

between the abyssal and coastal areas, as well as between variables:
Fron
• On the shelves (AS, EC), the filament-shaped structures for

SST, SSS and Chl (resp. panels (A,E,I), (B,F,J), (D,H,L))

were likely linked to specific fine-scale uncertainty processes

such as wind-influenced river discharges (Loire river plume;

AS), mid-shelf thermal fronts (AS), and tidal fronts (EC).

Due to the mixing conditions on the inner shelf at that time

of year, the SSH response there (panels (C,G)) was found to

be relatively large-scale as it is associated with barotropic

processes at the scale of the external Rossby radius. This

confirms the classic notion that coastal/shelf processes, and

associated uncertainty processes, are multiscale.
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• In the Abyssal plain, scales associated with mesoscale and

submesoscale features could often be detected (e.g., panels

(E,F,J,K)), while SST and SSH appeared as decorrelated

(panel (C)) due to large-scale atmospheric forcings directly

influencing SST in the spring season while SSH is largely

influenced by low-frequency mesoscale variability.

Observations of both variables therefore appear as very

complementary in the abyssal plain.

• In the Abyssal plain and AS, the end of the spring bloom

can be detected by the negative correlation (panels (D,I))

between SST (e.g., heating up) and Chl (plankton depletion

following a bloom). In a similar way, the correlation

between SSH and Chl appears mostly negative (panels (H,

K)). This shows the need for regime-/time-dependent error

covariances between variables on shelves.
3.3.2 Gulf of Tonkin representers
Full details of what follows are contained in the original article

(Nguyen-Duy et al., 2023) and only a few elements will be given

here. The primitive-equation numerical model SYMPHONIE
FIGURE 5

(A–D) Correlations between OSTIA SST observations at 3 locations and surface variables on April 30, 2012. Ensemble covariances are calculated
from Ens-1 40 members. Ens-1 contains physics-only perturbations. The single observation representers are calculated for three different locations
(i.e. cor(SST,SST)~1) as shown. A localization function of 3° is applied to constrain distant spurious correlations. A line marks the 200 m isobath.
(E–H) same for SSH. (I–L) same for Chl on May 07, 2012. Ensemble covariances are calculated from Ens-3 40 members. Ens-3 contains physics and
biogeochemistry perturbations.
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(Marsaleix et al., 2006; 2008) has been set up in the Gulf of Tonkin

(GoT), which is a shallow (shelf) sea. It has a fine horizontal

resolution of 300 m near the Red River mouths and a coarser

resolution of 4.5 km near the open boundary. The vertical

discretization consists of 20 sigma levels, and tides are included.

Two 50-member ensembles are generated by perturbing the

ECMWF wind forcing using pseudorandom combinations of

bivariate wind EOFs – here, we illustrate results obtained by the

authors’ ENS_COAST ensemble2, which is tuned toward the

representation of coastal processes. The perturbations of the wind

fields are meant to represent uncertainties in the ECMWF

wind analyses.

In order to explore the impact of HFR observations to constrain

the model if they were assimilated, the authors calculate

representers in correction form, as in Echevin et al. (2000)

(Figure 6). They set an observed velocity innovation value of +15

cm/s (the direction depends on the case) – this value is based on

comparisons between the simulation and the HFR data, as

explained in the original article. The observational uncertainty

standard deviation is assumed to be 10 cm/s (also explained in

the original article). The HFR observation is located at 19°N, 106°E

within the coastal current (when the current is present). July 10

corresponds to a period of large spread of the current (6-8 cm/s)

and with a southward coastal current at that location, with an

amplitude larger than 20 cm/s (not shown). The representers are

not localized, in order to show the trends in long-distance

covariances, but bearing in mind that these trends may be

artifacts of statistical calculations.

The impact of a meridional (alongshore) velocity observation

on the meridional velocity (Figure 6B) is clear in the coastal current,

showing a broad meridional extension and a narrow zonal

extension. In contrast, the meridional impact of a zonal (cross-

shore) velocity observation (Figure 6A) is weaker but still apparent.

Both results are interesting for the deployment of a HFR site, since

the azimuth of the radar beams will have to be optimized for

alongshore velocity observation.

As noted by the authors, previous results (e.g. Lamouroux, 2006;

Barth et al., 2011) have suggested that while high-frequency dynamics

dominate on the shelf, a correction of the ocean state only may not

last beyond the inertial time scale, and a correction of the surface

atmospheric forcings could be needed as a complement. Figures 6C,

D show the corrections to the zonal and meridional components of

wind stress that would result from assimilating a northward surface

current observation in a data assimilation system capable of

correcting for wind errors. The authors observe an increase in the

northerly component of the wind stress across the basin (Figure 6D),

in agreement with the ensemble variance of the wind stress (shown in

the original paper). The zonal wind stress correction is weaker

(Figure 6C). Of course, one should keep in mind that the

representers are not localized, and some long-distance covariances

might be untrustworthy, but in general it is found that on the open
2 In Nguyen-Duy et al (2023), ENS_COAST is an ensemble where the

contribution of wind EOFs with a significant coastal signature has been

enhanced relative to their reference ensemble.

Frontiers in Marine Science 13
sea the spatial correlation scales of atmospheric errors are larger than

the scales of oceanic error processes.

The authors conclude that the impact of HFR measurements is

clear on the surface coastal current and possibly the wind stress

within their experimental protocol.

3.3.3 Bay of Biscay array modes
Array modes can also be calculated using ensemble methods. In

the ensemble-based category, a full stochastic implementation of

array mode analysis, as in Section 3.2 of Lamouroux et al. (2016),

adopting the nondimensional array-mode definition of Le Hénaff

et al. (2009), seems the most practical. In order to project

information from such array modes onto model variables (state

space), one can use modal representers, as e.g. in Charria et al.

(2016). Also, several techniques can be used to enrich the number of

DFS explained by an ensemble in order to calculate array modes,

such as the so-called chaos polynomials in Oke et al. (2015). Also, it

should be noted that array mode analysis can be conducted with full

covariance matrices, both for the ensemble covariances and the

observational error covariances.

We show an example of array mode analysis in the most

southeasterly area in the Bay of Biscay, on either side of the

French-Spanish border. There, the JERICO-Next European

project (2015-2019) studied the deployment of a third HFR radar

site on the French Landes coast, in addition to two existing sites on

the Spanish Basque coast (Figure 7A), as part of a wide-reaching

endeavor of expanding a European capacity of coastal observatories

(JERICO = Joint European Research Infrastructure Network for

Coastal Observatories). Several model ensembles were available to

investigators. The – as yet unpublished – results shown here used a

500m-resolution 50-member ensemble with the SYMPHONIE

model, itself downscaled from a larger-scale NEMO ensemble

(details in Ghantous et al., 2020). All analyses were carried out

over the period from 15 Jan – 15 Feb, considering radial velocities at

antenna sites. The observational error on radial velocities was set to

a constant 0.03m/s; correlated observation errors were also

considered, and their impact studied, as shown below.

The array mode analysis allows characterizing and visualizing the

model error structures which are detectable by the observations and

which are potentially controllable through data assimilation. This can

be done by means of array mode spectra (Figure 7B, solid lines) and

modal representers in state space (not shown). As can be seen, every

single radar is able to detect the 49 degrees of freedom spanned by the

ensemble above observational noise (represented as 1 since with our

definition of array modes here spectra are nondimensional). The

spectra almost follow the same slope. However, more uncertainty

variance is explained when we consider more radars, and some radars

catch DFS better than some others. Indeed, adding radars improves

the detection of model errors by increasing the quantity and location

of observations that lead to efficient sampling of model error

structures. In particular, the third projected radar site would bring

additional detail at sampling surface velocity errors in the model,

particularly for the zonal component because of its location (detailed

result not shown, but the figure shows this in synthetic form).

Additionally (Figure 7B, dashed lines), we studied the impact of

correlated measurement errors on the array mode analysis. To that
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FIGURE 7

(A) Radial velocity measurement points for 3 HFR sites in the most southeasterly area in the Bay of Biscay including two existing systems (Matxitxako –

blue and Higer – red) and a future system to be deployed (Land1 – green). (B) Array mode spectra for radial velocities from the HFR sites, and
combinations thereof on 15 January 2012, using a downscaled ensemble from Ghantous et al. (2020). Colors as on left panel, with in addition:
combination of both existing sites – pink, and combination of all sites – black. Solid lines: uncorrelated radial velocity error. Dotted lines: correlated
radial velocity error (correlation distance=100km). 49 modes could be calculated from the 50 members of the ensemble. All 49 modes are detectable
above the observational error, set at 0.03m/s, which translates as 1 = 100 in our nondimensional array-space representation.
FIGURE 6

(A) Correction (in cm/s) on the meridional velocity v in response to a 15cm/s innovation in zonal velocity u at 19°N, 106°E (blue point). (B) Correction
on v in response to an innovation in v (15cm/s) at the same point. (C, D) Corrections on tx, ty, respectively, in response to an innovation in v (15cm/s)
at the same point. Adapted from Nguyen-Duy et al. (2023).
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end, we introduced a correlation radius of 100 km on the ensemble-

based uncertainties in data space (radial components of the radars).

As can be seen, correlated observation errors tend to lower most of

the array mode spectrum except for the leading eigenvalues. If/

when observation error is even higher (not the case for this

example), this could have the effect of reducing the dimension of

the detectable subspace (in array mode jargon: bringing eigenvalues

below threshold). However, under our hypotheses here, our

previous conclusions regarding the existing array performance

and the positive impact of a third site were not significantly

jeopardized by such correlated noise contamination.
3.4 Observation Impact studies

Complementing the discussion of Section 3.3, observation

impact studies represent an additional method to quantify the

influence of each assimilated datum on the estimated ocean state.

In this context, observation impact refers to the difference in a

chosen circulation metric that is calculated using the analysis

(posterior) versus that using the background (prior). Because the

assimilation increment (difference between the analysis and

background) equals the product of the Kalman gain matrix

(introduced in Section 3.3) and the so-called innovation vector

(the vector of differences between observations and the observation

operator’s estimate from the background),

xa − xb = K(y −H(xb)) (2)

K provides direct quantitative information about the influence of

the observations on the analysis and ensuing forecast. Specifically,

KT yields the impact of each observation on a given analysis metric

or metric of forecast error (Langland and Baker, 2004), while ∂K
∂ y

quantifies the sensitivity of such metrics to a change in the

observations or observing array (Trémolet, 2008). Stated

differently, changes in a metric resulting from assimilation can be

expressed as a sum of terms, each dependent on a single

observation, and therefore, the impact of each individual

observation on changes to a chosen metric can be calculated

directly. Impacts from subsets of observations can be summed

usefully in various ways (e.g., by observation platform to ascertain

its overall utility or by geographical region to assess complementary,

co-located influences).

Moore et al. (2011, 2017) have used these methods to quantify

the impact of individual components of the observing system on

ROMS ocean state estimates of the CCS. Satellite remote sensing

data make up the lion’s share of available observations and in

aggregate have the largest influence on ocean analyses. However,

when considering a single observation from any particular platform,

the impact of in situ hydrographic observations can be an order of

magnitude greater than a single satellite measurement. The

substantial impact of assimilating in situ hydrographic

information has also been recognized in global ocean data

assimilation systems (e.g., Turpin et al., 2016). The transfer of

information from the observations to various space-time locations

of the state estimate is controlled, in part, by the underlying ocean
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dynamics. Within the CCS, the influence of advection by the

circulation and eddies as well as the alongshore propagation of

coastally-trapped waves is very evident in the spatial distribution of

the observation impacts. Fiechter et al. (2011) have used a similar

approach to quantify the impact of different elements of the

observing system on eddy kinetic energy and primary production

in ROMS configured for the coastal Gulf of Alaska.

In a multiple nested configuration reaching approximately 700 m

resolution on the New England shelf observed intensively by the U.S.

National Science Foundation’s Ocean Observatories Initiative

Pioneer array, Levin et al. (2020, 2021a, b) performed observation

impact calculations to DA analyses of the MAB. Circulation metrics

quantifying cross-isobath mass, heat and salt fluxes, revealed that in

situ temperature and salinity observations offered 2-3 times the

impact of remotely sensed SSH and SST observations, and in situ

velocity observations had greater impact on higher than lower

resolution grids as representation of transient, vigorous,

geostrophically unbalanced submesoscale features increased. These

results are in agreement with Kerry et al. (2018) who used a similar

approach to show that hydrographic profiles from autonomous ocean

gliders, while sparse in space and time, have a disproportionately

large impact, as they provide information on subsurface structure.

Powell (2017) showed that glider observations have a large impact on

the representation of the Hawaiian Lee Counter Current transport as

they constrain the isopycnal tilt across the transport section. Finally,

Christensen et al. (2018) calculated that, though relatively few in

number, in situ temperature and salinity observations deriving from

multiple sources dominated satellite and HFR in terms of impact on

the estimated transport of the Norwegian Coastal Current when

calculated on a per datum basis

Both sequential and variational schemes have been successfully

used for HFR impact assessment. In particular, the capability of the

4D-Var approach to evaluate the contribution of individual

observations to specific index increments, where the index is a

specific measure of interest of the ocean circulation has been

exploited in several studies (Kerry et al., 2018; Levin et al., 2020;

Bendoni et al., 2023).

In the meteorological community, the impact of observations on

forecast skill based on KT is referred to as Forecast Sensitivity to

Observation Impacts (FSOI). FSOI was applied by Moore et al. (2011)

and Drake et al. (2023) to quantify the impact of different observing

platforms on forecast skill in the CCS. Drake et al. (2023) found that in

general only ~50% of all observations lead to an improvement in

forecast skill. The remaining observations degrade the forecast or have

little or no impact on forecast skill. This finding is in line with

experience in operational numerical weather prediction. In this case

also, a single in situ observation of temperature or salinity is generally

an order ofmagnitudemore impactful than a singlemeasurement from

a remote sensing platform.
4 Discussion

Though small in geographical area, coastal, shelf, and marginal

sea environments reside adjacent to population centers and
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experience heightened relevance due to regional societal, industrial,

and other management interests. In response, many coastal ocean

observing systems have developed across the globe, including the

U.S. Integrated Ocean Observing System, Australia’s Integrated

Marine Observing System, the Mediterranean Ocean Observing

System for the Environment, and the Korea Ocean Observing

Network, to name a few. Coastal, shelf, and marginal seas are

challenging to comprehensively observe and accurately model due

to their broad range of time and space scales from submesoscale and

super-inertial motions of plumes and filaments to more slowly

evolving mesoscale eddies and, in places, basin-scale features like

western boundary currents. Data assimilation offers a valuable

approach to interpolate and extrapolate sparse observations using

ocean dynamics to produce four-dimensional estimates of the

physical ocean state with improved fidelity.

This review highlights an extensive and expanding collection of

studies rigorously assessing the impact of ocean observations on

improving coastal ocean state estimates through data assimilation.

Multiple approaches (OSE, array modes, and observation impacts)

have repeatedly demonstrated positive impacts on important

physical properties (e.g., transport, heat content, bottom

temperature, and eddy kinetic energy) in analysis or forecast

fields constrained by satellite, HFR, glider, Argo, drifter, and

shipboard data platforms in terms of reduced model error against

assimilated or independent data. Such outcomes support a

recommendation to maintain existing, diverse observation

systems. Results have also shown that limited data sets can yield

erroneous circulation features, and thus we encourage analysis and

forecast systems to assimilate varied, complementary data sets.

Several studies emphasized the outsized contribution of

subsurface hydrographic observations on data assimilative

systems, supporting routine deployments of gliders and floats

offshore of coastal environments and newer observation types

such as widespread fishing vessel based observations of

temperature in shelf seas (e.g., Jakoboski et al., 2024). The

assimilation of localized subsurface observations, such as those

collected from fishing vessels that can be concentrated on coastal

regions, requires careful specification of prior observation and

background error covariances to optimize the way in which the

observations inform the numerical model (e.g., Kerry et al., 2024b).

OSSEs provide cost-effective guidance toward efficient sampling

strategies and data assimilation configurations to constrain desired

features in model analyses, offering roadmaps toward observing

system design expansion.

Accompanying these real advances, opportunities exist for

continued improvement at both technical and scientific levels.

Proper specification of prior and observational errors and

covariances, including error of representativeness, are critical and

challenging elements of effective data assimilation systems (e.g.,

Kerry et al., 2024b). Checks of posterior errors can ensure

consistency with prior error assumptions (e.g., Desroziers et al.,

2005). Computational costs of current operational 4D-Var systems

remain high; future efficiency gains may occur through application

of multi-precision, multi-resolution, and saddle-point algorithms

(Moore et al., 2023) or using high-accuracy emulators of full-

physics models. While local observations improve regional ocean
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state estimates, these data are not necessarily assimilated by global

systems, leaving room to improve representation of coastal

circulations in global analyses. The impact of directly assimilating

these observations in global models or upscaling by providing more

accurate fluxes from high resolution regional analysis systems to

global systems could be investigated. Finally, new observational

platforms, such as the Surface Water and Ocean Topography

(SWOT) mission that resolves instantaneous sea level at 20 km

(Fu et al., 2024), offer promising resources to further constrain

coastal models in the future, though issues described above such as

error correlations must be considered carefully.

In addition, the rise in popularity of data-driven techniques for

regression and classification problems in complex dynamical

systems, such as machine and deep learning, has led to an

increasing diversity of algorithms that can be tailored to address

specific challenges in DA. For instance, notable initial attempts

involve the utilization of neural networks to rectify biases in dust

observations within an analysis system (Jin et al., 2019), as well as

the application of relevance vector machines to correct biases in sea

surface temperature data (Storto and Oddo, 2019). Furthermore,

machine learning algorithms have been employed to explore the

subsampling and quality control of Earth observations (Lary et al.,

2016, 2018). Lastly, in certain applications, the intricate coding of

observation operators can be replaced by data-driven algorithms

(e.g., Xue and Forman, 2017; Fang and Li, 2019; Kwon et al., 2019).

Artificial intelligence algorithms can be used also to build

observational operators in cases where the exact physics relating

observables and model state variables is still unknown and/or its

strong nonlinearity limits its applicability. Storto et al. (2021) used a

neural network (NN) built observation operator to project and

assimilate acoustic transmission loss data into temperature

profiles. Results from the authors highlight two crucial aspects

of the data-driven operator: i) expand the network of observables

that can be used in data assimilation exercises; ii) improve

the accuracy of the linear physics/statistics-based observation

operator. These advancements have the potential to optimize the

assimilation of high-resolution observing networks and significantly

facilitate the integration of novel observation types into regional

assimilation systems.

This review has focused on observations of physical properties

and their impact improving ocean circulation models because

accurate estimates of the physical ocean state are generally a

valuable precursor for coupled model systems and because

physical data assimilation approaches and observation platforms

are quite mature. Yet many needs in coastal, shelf, and marginal

seas stretch beyond ocean physics, including for example estimates

of primary production, phytoplankton community structure, ocean

pH, probability of harmful algal blooms or hypoxia, and air-sea

carbon fluxes, as well as estimates to help manage fished marine

species or reducing bycatch. Some approaches involve data

assimilation into coupled physical/biogeochemical dynamical

models that is analogous to the systems discussed above (e.g.,

Song et al., 2016; Ciavatta et al., 2018), whereas others apply

statistical models given physical ocean properties (Carter et al.,

2021; Brodie et al., 2018). Though not usually calculated explicitly,

and exceptions occur (e.g., Raghukumar et al., 2015), improvements
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to physical properties through data assimilation generally extend

benefits to subsequent, non-physical predictions. Thus, the

extensive, positive impact of ocean observations on model

solutions described above reaches well beyond the physical

metrics alone. We encourage efforts to quantify these impacts in

multidisciplinary modeling systems.
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Ghantous, M., Ayoub, N., De Mey-Frémaux, P., Vervatis, V., and Marsaleix, P.
(2020). Ensemble downscaling of a regional ocean model. Ocean Model. 145, 101511.
doi: 10.1016/j.ocemod.2019.101511

Gopalakrishnan, G., and Blumberg, A. F. (2012). Assimilation of HF radar-derived
surface currents on tidal-timescales. J. Operational Oceanography 5, 75–87.
doi: 10.1080/1755876X.2012.11020133

Gwyther, D. E., Keating, S. R., Kerry, C., and Roughan, M. (2023a). How does 4DVar
data assimilation affect the vertical representation of mesoscale eddies? A case study
with observing system simulation experiments (OSSEs) using ROMS v3.9. Geosci.
Model. Dev. 16, 157–178. doi: 10.5194/gmd-16-157-2023

Gwyther, D. E., Kerry, C., Roughan, M., and Keating, S. R. (2022). Observing system
simulation experiments reveal that subsurface temperature observations improve
estimates of circulation and heat content in a dynamic western boundary current.
Geosci. Model. Dev. 15, 6541–6565. doi: 10.5194/gmd-15-6541-2022

Gwyther, D. E., Roughan, M., Kerry, C., and Keating, S. R. (2023b). Impact of
assimilating repeated subsurface temperature transects on state estimates of a western
boundary current. Front. Mar. Sci. 9. doi: 10.3389/fmars.2022.1084784

Haidvogel, D. B., Arango, H., Budgell, W. P., Cornuelle, B. D., Curchitser, E., Di
Lorenzo, E., et al. (2008). Ocean forecasting in terrain-following coordinates:
Formulation and skill assessment of the Regional Ocean Modeling System. J.
Comput. Phys. 227, 3595–3624. doi: 10.1016/j.jcp.2007.06.016
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