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Ormaza-González FI, Castro-Rendón RD,
Maridueña-Bravo A, Bobadilla-Cordova N,
Ramos-Castañeda I and Statham PJ (2024)
Hg, Cd, As, and Pb in surface sediments from
the tropical coastal lagoon Estero Salado,
Gulf of Guayaquil-Ecuador.
Front. Mar. Sci. 11:1457548.
doi: 10.3389/fmars.2024.1457548

COPYRIGHT
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The Gulf of Guayaquil (GG) is the most important tropical estuarine system of the

eastern coast of South America, receiving an average water flow of about 1 650

m3 s-1 from a river basin of approximately 33 700 km2. The city of Guayaquil

surrounds the inner coastal lagoon of the Estero Salado (ES) that empties into the

GG. This coastal lagoon is of high social, food production, and environmental

importance for the city and the GG. However, there is limited high quality data on

metal pollution in this zone, no recent information on Hg, and the extent to

which sediment metal pollution extends into the GG is presently unknown. As,

Cd, Pb, and Hgwere analysed in surface sediments from the urban zone and gave

average concentrations of 32.3, 2.08, 41.9, and 0.12 mg kg-1 (dry weight),

respectively. Additionally, data were obtained for the first time for the El Morro

Channel, south of the ES in the GG, which is expected to be a relatively pristine

zone; average As, Cd, Pb and Hg concentrations were 6.6, 0.22, 7.9 and 0.02 mg

kg-1 (dry weight), well below concentrations seen in the urban ES zone. Estimates

of the geo-accumulation index for metal pollution, using the El Morro data as

background values, were 1.7 (As), 2.7 (Cd), 1.8 (Pb) and 2.0 (Hg), making the ES

class II and a moderately polluted estuary for As, Hg and Pb, but class III and

“moderately to heavily polluted” for Cd. If the lowest concentrations of the EM

samples are taken the ES is class III for As, IV for Hg and Pb, and V for Cd; id est,

the ES would classify as a heavily to extremely polluted estuary regarding these

metals. These data show the metal concentrations increase significantly as the

main conurbation of Guayaquil is approached from offshore, indicating a strong

anthropogenic source of metals from the city, with anticipated negative

environmental impacts.
KEYWORDS

Pb, Cd, As, Hg, sediments, coastal lagoon, Estero Salado, Gulf of Guayaquil
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fmars.2024.1457548/full
https://www.frontiersin.org/articles/10.3389/fmars.2024.1457548/full
https://www.frontiersin.org/articles/10.3389/fmars.2024.1457548/full
https://www.frontiersin.org/articles/10.3389/fmars.2024.1457548/full
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2024.1457548&domain=pdf&date_stamp=2024-12-20
mailto:formaza@espol.edu.ec
https://doi.org/10.3389/fmars.2024.1457548
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/marine-science#editorial-board
https://www.frontiersin.org/marine-science#editorial-board
https://doi.org/10.3389/fmars.2024.1457548
https://www.frontiersin.org/journals/marine-science
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Introduction

There is an extensive scientific literature that shows the

importance of estuaries and near-shore waters in providing

natural resources, with associated significant impacts on local

economies, and ecosystems (e.g., Barbier et al., 2011; Birch, 2017).

Estuarine environments nurture large numbers of species at all life

stages, and help to sustain and protect them from predators (Dantas

et al., 2016). Additionally, estuaries sustain environmental

conditions in adjacent coastal waters (Thrush et al., 2013).

Nonetheless, these ecosystem services have generally been

undetermined (Pinto et al., 2010), and their benefits are not

understood or used properly. Lack of planning and infrastructure

investment can also lead to pollution and ecosystem damage

(Chapman and Wang, 2001; Wang et al., 2014; Yi et al., 2021).

Estuaries also sustain a variety of industries, ranging from

aquaculture, fisheries, commerce and recreation to port infra-

structure (e.g., Niemi et al., 2004; Oi et al., 2011; Yi et al., 2021).

Wang et al. (2014) reported that Chinese estuaries had been

damaged by both direct and indirect inputs of untreated or

partially treated industrial and domestic waste water. Such

pollution inputs can negatively impact flora and fauna in pelagic

systems as well as migratory species (Birch and Hutson, 2009; Birch

et al., 2013). It is well known that the health of residents adjacent to

urbanized estuaries and water bodies can be impacted by metal

pollution, e.g., Meneses et al. (2022) has reported impacts from

Hg contamination.

Particles that form sediments are transported into estuarine and

near shore waters through erosion of upstream deposits (Birch et al.,

2013; Burton, 2013), surface run off from cities, agriculture, and

aquaculture activities. The sediments in either completely or

partially urbanized estuaries are effectively a filtering ecosystem

for waters going into coastal areas (Larrose et al., 2010; Martin et al.,

2012), and may be both sinks and sources of metals from land

activities (Barletta et al., 2019; Yi et al., 2021). The inputs of a wide

range of anthropogenic chemical elements and compounds have

been increasing over recent decades in estuaries (Fan et al., 2020),

and their biogeochemistry will change in response to variations in,

e.g., dissolved oxygen, redox potential, and pH.

Heavy metals such as Hg, Pb, Cd and the metalloid As, are not

required for metabolic processes and so the risk of toxicity is higher

than those used in life processes (US EPA, 1999). All these metals

are toxic to organisms at elevated concentrations, and are

characterized by long residence times, and being bioaccumulated

through the food chain (Zhang et al., 2009; Zhao et al., 2019;

Ormaza-González et al., 2020). The As is inherent part of

agricultural (pesticides), metallurgy, medicine, electronics, etc.

industries (e.g., Cheng et al., 2019; Liu et al., 2022) and it is

becoming a concern for human health (Zheng et al., 2020) since

few years; chronic exposure could lead to risky hearth, ling, kidney

ailments as it goes through the food trophic chain (see, Rehman

et al., 2021). Because of this potential toxicity they are often studied

in estuarine sediments (e.g. Wang et al., 2022), and are under

constant scrutiny due to the well-known potentially toxic impact on

fauna and flora, as well as on the health of people consuming these

organisms (Järup, 2003; Worakhunpiset, 2018; Kolarova and
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Napiórkowski, 2021). Navarrete-Forero et al. (2019) have

reported Hg concentrations in black clams (Anadara spp) and

red crabs (Ucides occidentalis) from the Gulf of Guayaquil, that are

>1000 times the safe limit for human consumption. Sites included

near-shore environments close to or within urban catchments

(Martıńez and Poleto, 2014), and artisanal gold mining sites

(Acquavita et al., 2021).

The Estero Salado (ES) is part of the tropical estuarine system of

the Gulf of Guayaquil, which is the largest estuary in the eastern

Pacific (Stevenson, 1981; Jiménez, 1983; Montaño-Armijos and

Montolıó, 2008; Delgado, 2013; Navarrete-Forero et al., 2019;

Ormaza-González and Martillo-Bustamante, 2021). It extends

over 13 701 km2, of which 11 711 km2 is water and the rest are

islands and islets (Stevenson, 1981; CAAM, 1996), and nestled

within it is the City of Guayaquil. Over the last 60 years, the ES has

accumulated sediments and become heavily contaminated

(pes t i c ides , heavy meta l s , hydrocarbons , o i l s , f a t s ,

pharmaceuticals, etc.), resulting in local fisheries within the

urbanized zone disappearing. Ayarza et al. (1993) reported that as

early as 1985 most of the commercial species had declined.

Recently, Ormaza-González et al. (2022, 2024) have reported the

ES is in perennial anoxia, overloaded with fecal coliforms, and is

hyper eutrophic, due mainly to unregulated urbanization (Arroyo

et al., 2015) and unplanned and unmonitored industrial

development (Chalén-Medina et al., 2017) with more than 190

industries discharging their liquid and solid residues (Ministerio del

Ambiente, 2012) into the ES. Understanding the impact of metals

on mangroves is also required (Kulkarni et al., 2018) as the ES is

basically a mangrove system on which important local fisheries have

depended in the past, including the red crab (Ucides occidentalis),

black-shell clams (Anadara tuberculosa, Anadara similis), black

mussel (Mytella strigata), cat fish (Ariopsis guatemalensis), and

chame (Dormitator latifrons). Amongst the pollutants present, an

improved knowledge of heavy metals in sediments is required.

To assess what sediment metal data may already be available for

the ES, an extensive on line and in situ (institutional libraries)

literature research was carried out which resulted in 6 820 results.

However, there is no peer-reviewed work reported before 2010,

although works reviewed within parent Institutes from Arriaga

(1976), and Solórzano and Viteri (1993) exist, and Ayarza et al.

(1993), gave information from a survey carried out in 1985 and can

be considered the first work to provide some data on metals. Ayarza

et al. (1993) reported Cd and Hg concentrations at sampling

stations close to those used the present work, of up to 0.01 mg

kg-1 for Cd and 1.13 to 2.98 mg kg-1 for Hg and these values can be

considered the first reported in sediments and fauna for the ES. Post

2010 reports and BSc theses, e.g., Alcıv́ar-Tenorio et al. (2011);

Jiménez (2012); Chalén-Medina et al. (2017); Pernıá et al. (2018)

and Navarrete-Forero et al. (2019), do show high metal

concentrations, but varied techniques were applied with very

limited quality control and so their accuracy remains unclear.

Careful work by Fernández-Cadena et al. (2014), indicated that

the surface sediments of the central city part of the Estero Salado are

polluted with potentially toxic metals.

Here we provide new high-quality data on the metals Pb, Cd,

As, and Hg (not measured by Fernández-Cadena et al., 2014), in
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sediments from a wider range of sites around the city, as well as in

the most southern zone of the ES, the El Morro (EM) Channel. This

latter zone includes a wildlife refuge and is expected to be much less

polluted than within the city, and the metal data given here are the

first for this area. These new data are used to help assess the level of

pollution in the city zone and thus provide the evidential

background needed to stimulate improved environmental

management of this major coastal population centre of the

eastern tropical Pacific Ocean.
Materials and methods

Study area

The geographical limits of the ES have not officially been

defined, but many authors (e.g., Stevenson (1981); Cruz (1992);

Peñafiel et al. (2017)) have proposed, that its boundaries are from

the core of the city (Figure 1A) to the southwest as far as the Canal

del Morro (hereafter El Morro (EM), Figure 1B). In the present

work the ES water body is considered to extend from 2°8.97’ S, 79°

54.33’W in the north, to the El Morro channel in the south (2°
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39.5’S, 80°10.5’W); i.e., about 49km. The Estero Salado has no

important natural input of fresh water, and for that reason it is a

salty ecosystem (hence the name: “Salado” which in Spanish means

“salty”). Rain and legal/illegal discharges of industrial and domestic

waters are the only source of freshwater. Average annual rainfall

(1961-2017) in Guayaquil is 1755 mm (http://hikersbay.com/

climate-conditions/ecuador/guayaquil/), whilst Morales-Estupiñan

et al. (2020), reported around 1000 mm. Whatever the average, 60-

70% of this rain occurs in January to April. It is possible that

groundwater inputs may add to freshwater inflow but no

information on this potential input could be found. The water

within the ES is primarily replenished by large semidiurnal tidal

cycles of up to 4 m in height (Ormaza-González et al., 2022); the ES

and Gulf of Guayaquil has the largest tidal regime in the eastern

south Pacific (Reynaud et al., 2018). The estimated residence time of

water in the Gulf of Guayaquil is over 21 days (Stevenson, 1981),

but for the ES this should be much longer. Here we consider the ES

as a coastal lagoon (Pérez-Ruzafa et al., 2011; Marques-Figueiredo

and Rockwell, 2022) as its natural fresh water input is only that

from the city, and water turnover is primarily tidally driven.

Major factors leading to the general pollution of the ES are 1)

Guayaquil is the economic center of Ecuador (Delgado, 2013) with
FIGURE 1

Ecuador (A). The Gulf of Guayaquil, the Estero Salado (ES) and El Morro (EM) shown in panel (B). Sampling sites in the urbanized Estero Salado
(yellow dots panel (C)) and El Morro sites (D). Exact locations of sampling sites for the current work are given in Table 1. Figure modified from
Google Earth maps.
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major growth of a wide range of industries and a large population

(2.7 million inhabitants, INEC, 2022). 2) the southern part of the

Estero Salado is the navigation channel to the port of Guayaquil

(Figure 1), which is the largest in the country and the second busiest

container port in the west coast of South America (Wilmsmeier

et al., 2021). 3) The generally unplanned growth in population

settlements (legal or illegal) has led to overload and collapse of

sewage systems, wastewater treatment and disposal of solid waste.

Cimentaciones (2000) found that 60% of the discharges to the

estuary were domestic and the remaining 40% of industrial origin,

and all types of wastewaters have been dumped into the ES without

any or only minimal treatment. The city of Guayaquil has >190

registered industries (beverages, food, glass, car batteries,

workshops, metallurgy, plastic, textile production, agriculture, etc.,

MAE, 2023) of which many are sources of polluting agents

(Fernández-Cadena et al., 2014). According to the Ministry of

Environment (MAE, 2023) only 54 comply with Ecuadorian

environmental norms.
Sampling

Figure 1 shows the sampling sites used here, where the four sites

within the narrow and urbanized ES (Figure 1C) give a good

coverage of the city. Ten sediments samples were taken from the

Canal El Morro to the south (Table 1; Figure 1D), including two

from active shrimp ponds and mangrove banks. Samples from El

Morro are generally considered reference points because of their

distance from known contamination sources and they are within a
Frontiers in Marine Science 04
protected wildlife refuge zone. No metal analyses have been

reported for sediments from this area.

Surface sediments (depth 10-15 cm) were collected using a

hand-operated portable stainless-steel grab (Van Veen, 250 cm2).

These surface sediments were kept in clear low-density polyethylene

bags (zipper-top). Then, samples were dried at ~35°C for 72 hours

and finely ground (see, Skilbeck et al., 2017).
Metal analysis

For the determination of total Hg concentrations, around 0.25 (±

0.0001) g dry sediment wasmicrowave digested in 10 ml of 65% nitric

acid using a Mars Xpress™ system (CEM). After that, samples were

diluted into 100 ml with acid solution (HNO3 and H2SO4, 65% and

95-97% strength respectively. Stannous chloride solution was used as

the reductant. Cold vapor atomic absorption spectroscopy, with a

Varian SpectrAA (model 220FS) coupled to a VGA 77 vapor

generation was used. The laboratory is ISO/IEC 17025 certified.

Sample analysis for total Pb, Cd and As in sediment consisted of

weighing accurately about 0.30 g dry sample into Teflon vessels, 6

ml of 65% nitric acid were added and samples digested in a

microwave system (Mars Xpress™, CEM), samples were diluted

to a final volume of 25 ml with ultrapure water. The final solutions

were filtered through cellulose filter (Macherey Nagel, 4-12 μm pore

size) pre-washed with 1% nitric acid solution. Atomic absorption

spectrophotometry by graphite furnace (GFAAS) Varian (model

SpectrAA 220Z) and Agilent (model 280Z) with Zeeman

background correction were used. Analytical grade reagents were

employed throughout analytical procedures.

Calibrations were run for each set of analyses. Hg calibration

plot (0.2, 1, 2, 3, 5 and 7 mg [Hg] dm-3), Cd calibration plot (0.2, 0.4,

0.8, 1.6 and 3.2 μg [Cd]. dm-3), Pb calibration plot (1, 5, 9, 14 and 18

mg [Pb] dm-3) and the As calibration plot (10, 20, 30, 40, 50 mg [As]
dm-3). Analyte range using cold vapor for Hg is 0.069 to 2.85 mg

kg−1, and using GFAAS for Pb, 0.035 to 1.50 mg kg−1: As, 0.20 to

2.80 mg kg−1 and Cd, 0.014 to 2.12 mg kg−1.

Manufacturer’s recommended wavelengths and calibration

ranges were used. Reagent blanks and certified reference materials

BCR-277R estuarine sediment (CRM-JRC) for Cd, Hg, As and fresh

water sediment 016 (Sigma-Aldrich) for Pb were used. Limits of

quantification and detection limits are shown in Table 2, and

recoveries for CRMs are shown in Table 3. Blanks were run for

all sets of analyses.
The enrichment factor and the geo-
accumulation index

An indication of relative contamination can be obtained from the

Enrichment Factor (EF, Li et al., 2014, Equation 1) and Geo-

Accumulation Index (Igeo, Zhang et al., 2017, Equation 2) which are

amply used since the 60s by Europeanmetal studies in urban sediments

(Martıńez and Poleto, 2014; Barbieri, 2016). Here the average of these

metal concentration from the EM is used as the Reference metal.
TABLE 1 Geographical positions of the stations in Figure 1.

Station Latitude (S) Longitude (W)

Miraflores Bridge 2° 09.7´ 79° 55.1´

Portete Bridge 2° 10.3´ 79° 54.8´

5 de Junio Bridge 2° 10.9´ 79° 53.9´

Policentro Bridge 2° 10.1´ 79° 54.1’

1 2° 36.0´ 80° 17.5’

2 2° 37.0´ 80° 16.6’

3 2° 37.2´ 80° 15.8’

4 2° 37.8´ 80° 15.3’

5 2° 38.4´ 80° 15.6’

6 2° 39.1´ 80° 15.3’

7 2° 38.8´ 80° 11.7’

8 2° 39.5´ 80° 10.5’

9 2° 39.2´ 80° 11.5’

10 2° 39.5´ 80° 10.9’
The stations at the bridges were sampled in February 2020 and the rest from El Morro Chanel,
in October 2021. The extended sampling time gap was due to the Covid-19 pandemic.
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EF =  (Metal concentration)=(Reference Metal) (1)

Igeo  =  log2Ci(1 : 5 �  Bi)
−1 (2)

Where Ci is the actual concentration of the heavy metal i, and Bi
is the geological background or the lowest concentration of the heavy

metal i. The constant factor of 1.5 is used to account for variation in

background values for metals (Muller, 1969: Zhang et al., 2017). For

Geo-accumulation Igeo index, class, and classification for metal in

estuarine sediments. see Barbieri (2016) and Zhang et al. (2017).
Metal bioavailability

The Reference index ISQG (see, Sediment Quality Guidelines

(SQGs): A Review and Their Use in Practice | Geoengineer.org)

were used. The concentration is normalized against the empirical

threshold level; <1 the adverse effect is very low, whilst >1 would

mean metal bioavailability (Krampah et al., 2019). Values for

Threshold Effect Levels are: 0.6, 35, 0.17 and 7.3 for Cd, Pb, Hg

and As mg kg-1 respectively.
Environmental quality standard – Ecuador

Ecuador has an Environmental quality standard (see TULAS,

2022 or MAE, 2023), which gives upper accepted concentrations of

a healthy estuarine sediment.
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Sediment grain size

Sediment grain size was measured because of its reported

correspondence with trace metal concentrations (e.g. Martincic

et al., 1990, Özs ̧eker et al., 2022). Here, size ranges were

determined using analytical certified sieves ASTM- E11 (ISO 3310/

BS 410), and following recommendations in Blott and Pye (2012).
Results and discussion

Metals in surface sediments

Estero Salado
The present work (Table 4) found averages of 32.3, 0.12, 2.08,

and 41.9 mg kg-1 for As, Hg, Cd and Pb respectively. The Canadian

International Sediment Quality Guidelines (ISQG) use a strong

acid/peroxide leach to determine metal concentrations, and thus

their values provide a useful comparator for ES samples here.

Average ratios of ES metal concentrations to ISQG values were

4.4, 0.7, 3.5 and 1.2 for As, Hg, Cd and Pb respectively, indicating

elevated metal concentrations at the ES bridge sites in the order

As>Cd>Pb>Hg. Of particular note is the extremely high

concentration of Cd (6.08 mg kg-1) and ISQG ratio of 10 at the

Miraflores Bridge station, and a high concentration of As (36.7 mg

kg-1), also at this site suggesting a nearby source. Hg and Pb are

similar to the ISQG reference values.

The Miraflores and 5 de Junio bridges have highest metal

concentrations, with the Policentro and Portete Bridges being lower.

Even though the four sampling sites are relatively close, the Miraflores

and 5 Junio bridges are closest to an industrial and urban area of

Guayaquil city, where waste inputs since the 1960s have had minimal

treatment. Around these two bridges water circulation is restricted, and

water volumes small, and so higher levels of metals in sediments might

be expected, and water quality generally to be poorer. Recently

Ormaza-González et al. (2024) found hyper-eutrophicated and

anoxic conditions here. The Portete and Kennedy bridges have a

stronger water circulation and greater volume.

The metal measurements reported here generally agree with the

careful measurements of Fernández-Cadena et al. (2014) in showing

high concentrations of As, Cd and Pb (no Hg measurements

reported) around the Miraflores and 5 Junio bridges part of the ES.
TABLE 3 Trace elements concentration determined in certified reference materials (estuarine sediment BCR – 277R (https://
crm.irmm.jrc.ec.europa.eu/p/40455/40459/By-material-matrix/Soils-sludges-sediment-dust/BCR-277R-ESTUARINE-SEDIMENT/BCR-277R) and fresh
water sediment 3 CRM016 [Trace Metals - Fresh Water Sediment 3 certified reference material, pkg of 50 gSigma-Aldrich (sigmaaldrich.com)].

Certified
material

Element
Certified concentration (mg

kg-1)

Concentration
obtained
(mg kg-1)

Variation coeffi-
cient
(%)

Recovery
ranges (%)

BCR - 277R

As 18.3 16.0 ± 0.91 6 83-97

Cd 0.61 0.57 ± 0.041 7 85-102

Hg 0.128 0.138 ± 0.017 13 90-123

3 CRM016-50G Pb 14.1 ± 0.657 16.6 ± 1.07 6 107-129
n=7.
TABLE 2 Analytical parameters, calibration conditions of the analysis.

Metal LOQ (mg kg-1) DL (mg kg-1)

Hg 0.069 0.047

Cd 0.014 0.009

Pb 0.035 0.011

As 0.200 0.059
LOQ: Limit of quantification (the minimum concentration of an analyte that can be measured
within specified limits of precision and accuracy; typically, 3 x standard deviation of the
blank). DL: Detection Limit (minimum concentration of an analyte that can be detected in a
sample; typically, 2 x standard deviation of the blank). Reference: The European Commission
Regulation No 333/2007 ((https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX
%3A32007R0333).
frontiersin.org

https://crm.irmm.jrc.ec.europa.eu/p/40455/40459/By-material-matrix/Soils-sludges-sediment-dust/BCR-277R-ESTUARINE-SEDIMENT/BCR-277R
https://crm.irmm.jrc.ec.europa.eu/p/40455/40459/By-material-matrix/Soils-sludges-sediment-dust/BCR-277R-ESTUARINE-SEDIMENT/BCR-277R
http://www.sigmaaldrich.com
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32007R0333
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32007R0333
https://doi.org/10.3389/fmars.2024.1457548
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
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In a more regional context, at a pristine estuary (north of

Ecuador), which is within a mangrove natural reserve, the Cd

sediment concentrations were very high (2.14 mg kg-1) whilst Pb

was a low 12.4 mg kg-1 (Romero-Estévez et al., 2020). The high and

low concentrations of Cd and Pb respectively are difficult to explain

in terms of evident anthropogenic inputs as there is no important

population settlement, or any industrial activity close by, as is the case

of the ES, and details of the drainage basin are not given. Additional

natural and anthropogenic non-point or diffuse inputs (Abessa et al.,

2018; Spencer, 2017) including from the atmosphere (e.g., Muñoz

and Salamanca, 2003) and groundwater (Li et al., 2024) may have

impacted these values, as well as analytical procedures.

The earliest measurements of metals in surface sediments of the

ES were in 1985 in the same areas (Figure 1) as examined here by

Ayarza et al. (1993). Using similar techniques to those used here,

they found Cd and Hg concentration ranges of 0.01-0.03 and 0.1-

2.98 mg kg-1 respectively. Cd concentrations were 20-250 times

lower than those reported at that time in some other estuaries and

coasts (e.g., Katz and Kaplan, 1981) whilst Hg was higher. In

relation to 1985 data, Cd has notably increased (138 times), while

Hg shows an important decrease (24 times).The most likely reasons

for differences in Cd between then and now is the substantial

industrial development in Guayaquil with associated discharges.

The lower mercury values may reflect a reduction in alluvial gold

extraction (Mestanza-Ramón et al., 2021), and the lower quality

gasoline and diesel (Won et al., 2007; Jiang et al., 2014) used at that

time. Differences in analytical procedures and sampling could also

play a role in the variations found, but the data suggests substantial

changes in concentrations of Cd and Hg.
El Morro
The sampling sites included two active aquaculture shrimp

ponds and the surrounding banks which are fully covered by

mangrove. El Morro and part of the surrounding area is a

mangrove reserve (Figure 1). Table 5 gives concentration data for

all El Morro samples with ISQG ratios, and Figure 2 shows the

geographical pattern of metal distributions. There is no previous

work in the El Morro channel with which to compare the data

shown here.

The average values of ratios against ISQG limits are for As, Hg,

Cd and Pb respectively, 0.91, 0.12, 0.37 and 0.23. The shrimp ponds
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ratios were similar or even lower (0.9, 0.16, 0.34 and 0.28 in the

same order), and the samples from the mangrove area ISQG ratios

were correspondingly even lower, 0.71, 0.0, 0.14 and 0.11. These low

values support the view of the EM zone being a relatively metal

uncontaminated area.
Grain size and organic carbon content
of sediments

The sediments from the ES are mainly sandy silts (see data and

curves in SM). The silt fraction is highest at the Miraflores site,

whilst the silt is less significant in the other sites. Ayarza et al. (1993)

reported that sediments from the ES are mainly fine sand, silt-clay.

whilst in the data reported here, they are slightly coarser. Miraflores

has more fine fractions than the other sites. Overall, the grain size

distribution is quite similar between the ES and EM sites, which is

not surprising given the similar Guayas drainage basin source.

The Organic Carbon (OC) content of the ES sediments at the

Bridge stations 5 de Junio, Miraflores, Portete (Ayarza et al., 1993);

and at the EM stations (Bobadilla-Cordova, 2024) are given in

Table 6. Stations closest to the town of El Morro (1-3, Figure 1),

have the highest OC content (5.1-6.3%) of the EM stations, which is

anticipated as the town has no sewage treatment prior to discharge.

Towards the mouth of EM, concentrations were down to 0.7-1.8%,

and even lower in the mangrove (<0.3%). At the shrimp farm OC

was 0.9-2.0%. Waters at the ES Miraflores bridge site have recently

been reported as hyper-eutrophication, frequently anoxic and with

low pH (Ormaza-González et al., 2024), and therefore high OC in

sediments here is expected. This site also has elevated Cd, Hg and

Pb as well as finer sediments, associations that have been found in

earlier studies (e.g. Özs ̧eker et al., 2022).
Estimates of metal pollution

Obtaining a measure of pollutant metal content of a sediment

relative to background values is very important in assessing

potential biological impact (Barbieri, 2016), and assigning a level

of pollution to a site. An indication of the magnitude of metal

contamination can be obtained using Enrichment Factors (EF)

relative to a reference element (RE), but this cannot be applied
TABLE 4 Sediment metal measurements at the ES bridges (see Figure 1).

Bridges As Ratio ISQG Hg Ratio ISQG Cd Ratio ISQG Pb Ratio ISQG

Portete 30.3 4.2 0.08 0.5 1.07 1.8 29.7 0.8

Miraflores 36.7 5.0 0.16 0.9 6.08 10 53.2 1.5

5 de Junio 35.5 4.9 0.16 0.9 0.9 1.5 56.4 1.6

Policentro 26.6 3.7 0.08 0.5 0.28 0.5 28.4 0.8

Range 26.6-36.7 0.08-0.16 0.28-6.08 28.4-56.4

Average 32.3 4.4 0.12 0.7 2.08 3.5 41.9 1.2
Sampling Feb/2020. Concentrations in mg kg-1. Reference ISQG (Sediment Quality Guidelines (SQGs): A Review and Their Use in Practice | Geoengineer.org) values for Threshold Effect Level
are: 0.6, 35, 0.17 and 7.3 for Cd, Pb, Hg and As mg kg-1 respectively. The coefficients of variation in Table 3 can be applied to the data here.
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here as no RE measurements were made. However, if the average

values from EM are assumed to be the original concentrations of ES,

the average EF for As, Hg, Cd and Pb would be 4.88, 6.00, 9.45, and

5.18 respectively. The four elements are in general enriched at least

5 times, which categorize the EM as extremely enriched according

to Li et al. (2014).
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Geo-accumulation index

This index is frequently used (Birch, 2017; Barbieri, 2016)

and provides a classification of sediment pollution, where the

index varies from 0 to >5 with level of pollution increasing

with value.
FIGURE 2

Total As, Cd, Hg and Pb surface distribution in the El Morro Channel. Sampling Oct 2021. Concentration in mg kg-1. Exact positions for the Stations
are given in Table 1.
TABLE 5 Concentration (mg kg-1) of metals in surface sediment of El Morro channel (1-7), shrimp (9-10) pond and mangrove sites (7-8).

Sampling
site

As Ratio ISQG Hg Ratio ISQG Cd Ratio ISQG Pb Ratio ISQG

1 6.69 0.92 0.07 0.392 0.22 0.37 7.94 0.23

2 5.46 0.75 <DL 0.000 0.44 0.73 8.96 0.26

3 7.34 1.01 0.04 0.206 0.62 1.03 7.37 0.21

4 7.52 1.04 0.04 0.204 0.04 0.07 9.92 0.28

5 8.16 1.13 0.04 0.206 0.26 0.43 8.84 0.25

6 6.99 0.96 <DL 0.000 0.12 0.20 6.03 0.17

7 5.88 0.81 <DL 0.000 0.08 0.14 4.71 0.13

8 4.35 0.60 <DL 0.000 0.09 0.15 3.19 0.09

9 6.55 0.90 <DL 0.000 0.15 0.25 10.3 0.29

10 7.23 0.99 0.03 0.201 0.19 0.32 11.9 0.34

Range 4.34-8.16 <DL-0.07 0.04-0.62 3.19-11.9

Average 6.62 0.91 0.02 0.12 0.22 0.37 7.92 0.23
Samples taken September 2021, and sites are shown in Figure 2. <DL means below detection limit. Sampling sites in brackets equate to sites in Figure 1. The coefficients of variation in Table 3 can
be applied to the data here.
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In the original work of Muller (1969) it is reported (Barbieri,

2016; Birch, 2017) that sieved sediment (<2μm) was used and a total

measure of metal obtained, and compared to global shale values.

Since this pioneering work there have been a multitude of variations

used in determining Igeo (Birch, 2017; Barbieri, 2016). Here we do

have metal data from a polluted zone (ES surrounded by City), and

background sites (El Morro), and thus an estimate of Igeo can be

obtained using the ratio-to-reference (RTR) approach (Birch, 2017),

or the so-called direct method (Yan et al., 2020), using metal

concentrations from a nearby pristine area.

For this Igeo approach to be used, it is important to show that

the two sites are not biased by particle size differences. It has been

long established that generally finer grained components in

sediments contain higher concentrations of metals than coarser

fractions as a result of increased surface to volume ratio, and the

presence of more adsorptive and absorptive phases (e.g. Martincic

et al., 1990; Özs ̧eker et al., 2022). Results of grain-size analysis of

samples are shown in Supplementary Material. The sediment grain

sizes are similar in both sites, thus making general comparisons

between sites in terms of metal concentrations valid and allowing

identification of polluted zones easier. Also, it can be assumed that

the geological origin of the sediments in the El Morro channel are

the same as the urbanized ES, as the whole ES is within the same

geological basin of the Gulf of Guayaquil (Ormaza-González and

Martillo-Bustamante, 2021), and the origin of the sediments in this

coastal lagoon includes the outer Gulf of Guayaquil (Benites, 1975;

Barrera Crespo et al., 2019). Therefore, the El Morro Channel and

its vicinity can be considered as a suitable site for reference values

for sediments closer to anthropogenic sources. Simple ratios of

metal concentrations in the urbanized ES to those in El Morro show

significant positive values of 4.88 (As), 5.84 (Hg), 9.42 (Cd) and 5.30

(Pb), indicating the ES is highly polluted by these metals.

The geological background Bi used in Igeo calculations was the

average values of the 10 samples of the El Morro channel (Table 5),

from which the Igeo indexes obtained were 1.7, 1.96, 2.65, and 1.82
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for As, Hg, Cd and Pb respectively. Using these values and the

categorization in Zhang et al. (2017) the urban ES is class II and

moderately polluted zone for As, Hg and Pb, but class III and

“moderately to heavily polluted” regarding Cd. However, if we take

the lowest Bi of the EM samples (excluding the first 3 values close to

the town and its pollution source), the ES is class III for As, IV for

Hg and Pb, and V for Cd. These indexes would mainly classify the

ES as a heavily to extremely polluted estuary regarding these metals.
Conclusions

The concentrations of As, Hg, Cd and Pb in sediments of the

urban ES are high, and when compared to the Canadian interim

sediment quality guidelines (ISQG), all except Hg have values

greater than 1 indicating contamination and potential for impacts

on the environment and its biota. Of particular note is Cd at

Miraflores Bridge with an ISQG value of 10. The EF results classify

the ES as extremely enriched and above upper limits of National

standards. Using the Igeo index approach as applied here, the ES is

class II and a moderately polluted estuary for As, Hg and Pb, but

class III and “moderately to heavily polluted” for Cd. These

approaches therefore overall classify the urbanized ES as a

polluted lagoon system for these metals, in agreement for As, Cd

and Pb with Fernández-Cadena et al. (2014). The work here shows

the ES system is also contaminated with Hg.

High As, Hg, Cd and Pb concentrations lead to concerns over

bioaccumulation of metals in benthic organisms with associated

reduction in biodiversity and possible toxicity to humans where

such species are consumed. In particular demersal and benthic

seafood species such as the clam (Anadara spp.) and red crab

(Ucides occidentalis) appear to bioaccumulate these metals. The

fauna in the upper ES has practically disappeared.

The limited past sediment metal data for the ES from Ayarza

et al. (1993), indicate an increase in Cd and decrease in Hg

contamination over the past 3 decades in this zone because of

changes in industrial activity and, e.g., alluvial gold extraction and

gasoline contamination, respectively.

To the south of the ES in the El Morro channel region, the

concentrations of the above sediment metals decrease relative to the

polluted ES and give ISQG values below 1.0. Even lower ISQG

values are found for the mangrove areas. The EM region can

therefore be regarded as an overall non-polluted zone for the

studied sediment metals.

Whilst the present and some other work indicate significant

metal contamination in the ES, further research is needed on their

sources, impacts on biota and the local population. Work is also

needed on potential remediation methods that have been applied to

temperate but not yet tropical estuaries (Oliveira et al., 2024;

Patmont and Healy, 2024). The Estero Salado and the less

contaminated El Morro zones fall under objectives in the UN

initiative launched in 2019 (“Decade on Ecosystem Restoration”)

that provides a framework for Sustainable Development.
TABLE 6 Organic carbon content of sediment samples from ES bridge
stations (Ayarza et al., 1993) and EM (Bobadilla-Cordova, 2024) sites.

EM Stations OC (%) ES Stations OC (%)

1 6.35 5 de Junio 4.54

2 6.07 Miraflores 10.5

3 5.08 Portete 4.60

4 1.75

5 0.72

6 1.81

7 Mangrove 0.3

8 Mangrove 0.17

9 0.87

10 2.05
Data for stations 1-3 and bridges are expected to be influenced by local pollution.
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Ormaza-González, F. I., Caiza-Quinga, R., Cárdenas-Condoy, J., Intriago-Basurto,
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Ormaza-González, F. I., and Martillo-Bustamante, C. (2021). “The Gulf of Guayaquil
the largest tropical estuary in the western Americas. Reviewing its geological and
oceanographic transcendence,” in Conference: ECSA 58 - EMECS 13 Estuaries and
coastal seas in the Anthropocene: Structure, functions, services and management. Hull-
UK. ECSA 58 - EMECS 13. Available online at: https://allatlanticocean.org/events/ecsa-
58-emecs-13-estuaries-and-coastal-seas-in-the-anthropocene/.
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