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Introduction: Marine forecasts play a crucial role in ensuring safe navigation,

efficient offshore operations, coastal management, and research, particularly in

regions with challenging conditions like the Arctic Ocean. These forecasts

necessitate precise predictions of ocean currents, wind-driven waves, and

various other oceanic parameters. Although physics-based numerical models

are highly accurate, they come with significant computational requirements.

Therefore, data-driven approaches, which are less computationally intensive,

may present a more effective solution for predicting sea conditions.

Methods: This study introduces a detailed analysis and comparison of three data-

driven models: the newly developed convLSTM-based MariNet, FourCastNet,

and PhydNet, a physics-informed model designed for video prediction. Through

the utilization of metrics such as RMSE, Bias, and Correlation, we illustrate the

areas in which our model outperforms well-known prediction models.

Results: Our model demonstrates enhanced accuracy in forecasting ocean

dynamics when compared to FourCastNet and PhyDNet. Additionally, our

findings reveal that our model demands significantly less training data and

computational resources, ultimately resulting in lower carbon emissions.

Discussion: These findings indicate the potential for further exploration of data-

driven models as a supplement to physics-based models in operational marine

forecasting, as they have the capability to improve prediction accuracy and

efficiency, thereby facilitatingmore responsive and cost-effective forecasting systems.
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1 Introduction

Machine Learning is the process of making computer systems learn

without explicit instructions by analyzing and drawing inferences from

data patterns using algorithms and statistical models. One of the major

limitations of Artificial Intelligence and Machine Learning has always

been computational power, which has been a cause of concern for

researchers. CPUs were not as powerful and efficient a few decades ago

when it came to running large computations for machine learning.

Hardware manufacturers have worked hard to create a processing unit

capable of performing any AI operation.

Though CPUs are no longer viable sources of computational

power, they were the pioneers. Today, those CPUs are rightfully

replaced by GPUs and AI accelerators, specifically designed for

large computing. The main features considered while purchasing an

AI accelerator are cost, energy consumption, and processing speed.

The study of ocean circulation is crucial for many reasons,

including the climate research, determining marine life distribution,

shaping human activity, and more. Accurate prediction of currents

can help forecast weather, estimate energy transfer rates in the

ocean, predict the spread of oil spills and drift of the sea ice and

icebergs. Sediment transport is another important correlated aspect

correlated with the water circulation, affecting marine economic

activities such as fishing, transport, logistics, and tourism.

Therefore, in the seas, especially in the high latitudes, the

prediction of currents is crucial for port, pipeline, and logistics

development, as well as for the analysis of sea ice drift for safe

logistics. In this context, the development of a machine learning

model for the prediction of sea water movement and sea level

variations is essential.

Sea currents and sea surface level prediction have a long history

of development, starting with traditional empirical methods and

evolving into modern AI methodologies. The early efforts held in

the 17th -19th centuries (e.g. Halley, 1686; Maury, 1855) and relied

on accidental in situ observations. With the transition from single

observations to systematic measurements, the emergence of

scientists specializing in hydrodynamics and ocean studies, the

development of a network of observation stations and scientific

equipment, analytical methods of describing observed phenomena

were formed in (Navier, 1822; Stokes, 1845) and numerically solved

in (Bjerknes, 1903, 2023). In the early 20th century, V. Walfrid

Ekman’s research on wind-driven surface currents laid important

groundwork for understanding ocean transport mechanisms. It laid

the foundation of geophysical fluid dynamics and led to the

pioneering work of numerical weather forecasting of (Richardson,

1922). The first numerical forecasts in oceanography were

developed for the wind-driven waves by (Sverdrup and Munk,

1947). Development of numerical methods based on solving the

Navier-Stokes equations continued in the ocean simulations with

the first models (Bryan, 1969) and succeeded in mesoscale ocean

circulation forecasting by 1983 (Robinson, 1983). Over time,

increased computational power and improved mathematical

representations of ocean processes have enabled more

sophisticated forecasting models. The satellite remote sensing era,

that began nearly at the same time, provided massive volume of data

for observing and assimilating sea surface height data into models.
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All it made the global ocean reanalysis and forecasting projects

available. Operational forecasting centers like the European

Centre for Medium-Range Weather Forecasts (ECMWF) and

the National Oceanic and Atmospheric Administration (NOAA)

began running global ocean prediction systems to support

weather, climate and marine applications (Storto et al., 2019),

while regional models with finer resolutions also emerged for

areas like the Arctic (Chen et al., 2009).

With the availability of petabytes of oceanographic and remote

sensing observations, with the outputs of numerical model

simulations, with the growth of computational power, artificial

intelligence (AI) tools are increasingly being leveraged in a variety

of applications in oceanography (Dong et al., 2022). The high

energy efficiency of the AI models (e.g. (Pathak et al., 2022) also

contributes to their spreading.

Various AI algorithms are now being used for the identification

of mesoscale eddies (Franz et al., 2018; Lguensat et al., 2018; Du et al.,

2019; Duo et al., 2019; Xu et al., 2019, 2021; Santana et al., 2020),

forecasting surface waves (Mandal and Prabaharan, 2006; Fan et al.,

2020; Gao et al., 2021; Zhou et al., 2021; Buinyi et al., 2022),

prediction of features, like the Indian Ocean Dipole, with a multi-

task deep learning model in (Ling et al., 2022), that outperformed

traditional numerical multiseasonal prediction.

The topics of sea surface heights and currents forecasting are also

covered with the AI methods. One approach is the use of deep

learning methods such as ConvLSTMP3, which extracts spatial-

temporal features of sea surface heights using convolutional

operations and long short-term memory (LSTM) (Song et al.,

2021). One more paper (Zulfa et al., 2021) uses LSTM to predict

sea surface velocity and direction, achieving good results with low

Mean Absolute Percentage Error (MAPE) values in Labuan Bajo

waters. In the paper (Ning et al., 2021) an optimized Simple Recurrent

Unit (SRU) deep network was developed for short-to-medium-term

sea surface height prediction with AVISO data.

There are a lot of promising results in geosciences now. We

have created MariNet, the ML architecture, and compared its

output with two state-of-art ML models of different architectures

to test their ability in the Arctic region forecasting. In the current

work, we test the algorithms on the surface currents data and sea

surface heights.
2 Materials and methods

In the initial stages of our research, we harnessed PhyDNet and

FourCastNet, two of the most promising machine learning

architectures applicable to the ocean state forecasting available at

the time, for the comparison with MariNet, our Neural Network.

The neural networks are described below.
2.1 MariNet neural network

MariNet is an artificial neural network (ANN) based on the

parallel encoder-decoder architecture within which ConvLSTM

modules are embedded in latent space (Buinyi et al., 2023). The
frontiersin.org
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ConvLSTM itself is introduced by (Shi et al., 2015) and described as

a type of neural network architecture that combines convolutional

and LSTM layers. Because of its successful design, it has been used

for spatiotemporal data analysis and prediction in various

applications, including precipitation nowcasting (Shi et al., 2015),

air temperature forecasting (Lin et al., 2019), flood forecasting

(Moishin et al., 2021), arctic sea ice concentration prediction (Liu

et al., 2021), and seismic events prediction (Fuentes et al., 2021),

with relatively high reliability.

The architecture of our model is shown on the Figure 1.

MariNet consists of several interconnected encoder-decoder

blocks, within which ConvLSTM modules are embedded between

the encoder and the decoder. For this study, we employed four

encoder layers and four decoder layers. Each ConvLSTM module

contains several parallel ConvLSTM cells connected in a manner

that the sum of their outputs forms the resulting forecast of time

series in the latent space. This design enables the neural network to

simultaneously detect temporal dependencies at various frequencies

without assuming any specific frequency distribution and a priori

defined data distributions.

The encoder-decoder blocks are interconnected in such a way

that the input to each subsequent block is the result of subtracting

the original data from the original data passed through the first

convolutional layer in the block, which produces average pooling.

Moreover, the size of the convolution in the first layer of the block
Frontiers in Marine Science 03
varies for each block. This solution facilitates hierarchical pattern

highlighting in images: first, the neural network is trained to work

with larger patterns. Then it analyzes smaller patterns and their

conditional dependencies on larger ones.

During this research, we employed three encoder-decoder

architectures. We settled on using three parallel architectures because

they enabled us to capture different scales of spatial and temporal

variability. The first block learns and captures the largest features,

which can be considered as general sea state variability. The second

block focuses on large-scale patterns, such as global circulation

dynamics. Meanwhile, the third block captures the finest details.

A key feature of the model’s operation is the forecasting

algorithm. Unlike typical recursive algorithms, where the forecast

from the previous step is cyclically fed into the neural network to

form a forecast for the next steps, our neural network sequentially

receives several previous values for the water velocity and sea surface

heights. When predicting the sea state 3 days ahead with a temporal

resolution of 6 hours (i.e., 12 timesteps), we provide the model with

12 consecutive input sequences. Therefore, instead of getting a single

array for one time point, our neural network is initialized by the

dynamics of such arrays, which allows for a more accurate assessment

of the state of the forecasted values, and consequently, ensures a more

precise forecast. To train MariNet, we used a learning rate of 0.001, a

sigmoid activation function, and the Adam optimizer. The number of

training epochs turned out to be 300.
FIGURE 1

The architecture of MariNet.
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2.2 PhyDNet neural network

PhyDNet is a deep learning model introduced in (Le Guen and

Thome, 2020) and designed for unsupervised video prediction. Due

to its architecture, the model integrates physical knowledge into the

learning process, making it effective for tasks such as weather

forecasting, fluid dynamics, and other physical phenomena

prediction. The model leverages physical knowledge on dynamics

and disentangles it from other unknown factors. To achieve this

goal, the authors introduced a PhyDNet disentangling architecture,

and PhyCell physically-constrained recurrent cell. The recurrent

block projects input video frames into a latent space. This

projection is achieved through a deep convolutional encoder,

which transforms the input video into a lower-dimensional

representation. The latent space is where the disentanglement of

physical dynamics and residual information occurs. Two parallel

neural networks are responsible for it: PhyCell and ConvLSTM.

PhyCell is a recurrent cell that models and solves Partial Differential

Equations (PDE) with internal physical predictor computing and

combining partial derivatives with convolutions. PhyCell allows

exploiting prior physical knowledge to improve prediction of a

model, add explainability and leverages physical constraints to limit

the number of model parameters. The ConvLSTM network is

trained to learn the residuals, or errors, of the physical model’s

predictions. By learning these residuals, the network can correct the

physical model’s predictions and improve the overall accuracy of

the system. Learned physical and residual representations are

summed before decoding to predict the future video frame. As a

result, PhyDNet generates one-step-ahead prediction that can be

extended by recursive feeding predicted frame into the model. It’s

important to note that predictions are reinjected as the next input

only for the ConvLSTM branch, and not for PhyCell. This is

because the PhyCell is designed to capture the deterministic

physical dynamics, which should not be influenced by

the predictions.

In (Le Guen and Thome, 2020) PhyDNet has been compared

with PredRNN, ConvLSTM, Causal LSTM, Memory in Memory

(MIM), outperformed them and showed itself as one of the state-of-

the-art model of its time. Therefore, we have chosen PhyDNet to

compare with our model.
2.3 FourCastNet neural network

FourCastNet, or Fourier ForeCasting Neural Network is first

described in (Pathak et al., 2022). It is a data-driven global weather

forecasting model that provides short to medium range predictions.

It is trained with an ERA5 reanalysis from the European Centre for

Medium-Range Weather Forecasts (ECMWF), which has hourly

estimates of atmospheric variables at a 0.25° resolution.

FourCastNet utilizes a Fourier transform-based token-mixing

scheme (Guibas et al., 2021) which is complemented with a vision

transformer (ViT) backbone (Dosovitskiy et al., 2021). This method

is grounded in the recent advancements in the Fourier neural

operator, or Adaptive Fourier Neural Operator (AFNO) that has
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demonstrated success in modeling challenging partial differential

equations (PDE), including fluid dynamics, in a resolution-

invariant manner (Li et al., 2020).

According to (Pathak et al., 2022) the use of ViT backbone is

preferred due to its ability to effectively model long-range

dependencies. The combination of ViT and Fourier-based token

mixing produces a model that effectively resolves fine-grained

features and scales well with the size and resolution of the

dataset, leading to the training of high-fidelity data-driven models

at an unprecedented resolution.

The original version of FourCastNet models 20 variables at five

vertical levels, that are: surface air pressure, mean sea level pressure,

air temperature at 2m from the surface, zonal and meridional wind

velocity 10m from the surface; zonal and meridional wind velocity

at 1000, 850, and 500 hPa; air temperature at 850 and 500 hPa;

geopotential at 1000, 850, 500, and 50hPa; relative humidity at 850

and 500hPa, and Total Column Water Vapor. The authors use the

model to predict such variables as the surface wind speed,

precipitation, and atmospheric water vapor. They propose

FourCastNet to be used for planning wind energy resources,

predicting extreme weather events such as tropical cyclones,

extra-tropical cyclones, and atmospheric rivers. FourCastNet

matches the forecasting accuracy of the ECMWF Integrated

Forecasting System (IFS), a state-of-the-art Numerical Weather

Prediction (NWP) model, at short lead times for large-scale

variables, while outperforming IFS for small-scale variables,

including precipitation.

According to (Pathak et al., 2022), the FourCastNet uses

such metrics as Root Mean Squared Error (RMSE), Anomaly

Correlation Coefficient (ACC) at lead times of up to three days

and gives results comparable to the ECMWF Integrated Forecasting

System (IFS), considered one of the best classical numerical

model used by ECMWF to construct reanalyzes and make

weather forecasts.
2.4 Metrics for the model output
quality estimation

We trained all three networks with the data on the surface water

currents and the sea surface heights, started the inferences and

compared their outputs with several metrics: Root Mean Squares

Error (RMSE), Bias and Correlation. They are defined as:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
No

N
i=1(yi   − xi  )

2

r
,

Bias =  
1
No

N
i=1yi   −  

1
No

N
i=1xi, 

Correlation =
Sxyffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SxxSyy

p , with

Sxy =oN
i=1xi  yi   −

oN
i=1xi  oN

i=1yi  
N

,
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where xi  is the original data value for a given timestep, yi  is a

predicted value for a given timestep, N – the length of

the timeseries.

In scholarly terms, the Root Mean Square Error (RMSE)

quantifies the divergence in magnitude between the model’s

predictions and the actual observations. It is preferable for the

RMSE to be smaller as this signifies a better alignment between

predicted and actual values.

Bias, on the other hand, signifies the systematic deviation of the

approximated quantifier from the real value and can be interpreted

as a consistent overestimation or underestimation of an output. It is

desirable for the bias to be closer to zero, indicating that the

estimates are nearer to the actual data.

The correlation, in contrast, is a statistical measure that sheds

light on the degree to which two variables share a linear relationship.

This relationship is frequently deployed to depict the linear

association between two contingent factors. Greater values of

correlation denote a stronger relationship between the two variables.
3 Data

The Copernicus Marine Environment Monitoring Service

(CMEMS) offers a comprehensive global ocean analysis and

forecast system through its Global Ocean Physics Analysis and

Forecast (CMEMS-GLO-PUM-001-024) product. The system

operates at a resolution of 1/12°, updated daily, and provides global

ocean forecasts for a 10-day period (Operational Mercator Global

Ocean System). The dataset employs a combination of the numerical

ocean model NEMO 3.6 with LIM3 Multi-categories sea ice model,

ECMWF IFS HRES atmospheric forcing, and several data

assimilation techniques, like SAM2 (SEEK Kernel) 4D, allowing for

seamless integration of in-situ and satellite observations.

For our needs we choose the region bounded by 60°N-90°N and

5°E-150°W and obtain the hourly surface data of zonal sea water

velocity (u), meridional sea water velocity (v), and sea surface height

above geoid (zos) for 2019-2022. We interpolate them to the 6-hour

temporal resolution and 0.25°x0.25° spatial resolution with and feed

the data to the ML models.
4 Results and discussion

The MariNet model demonstrates promising performance.

Notably, the figures representing metrics for the FourCastNet

model display artifacts. The average metrics are presented in

Table 1. As shown in the table, the MariNet model demonstrates

minimal RMSE values for sea surface heights and components of

surface sea water velocities. Furthermore, the bias of the MariNet
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model is closest to zero among the mentioned models. Although the

mean correlation between models is not significantly high,

PhyDNet and MariNet display the highest correlation,

approximately 0.5 for sea surface velocities and 0.4 for sea

surface heights.

Figure 2 illustrates the temporal evolution of RMSE for sea

surface velocity and sea surface heights for the selected models

throughout the prediction period. As observed, all RMSE values

monotonically increase over time. Notably, MariNet and PhyDNet

demonstrate comparable results, with their RMSE values growing

from approximately 0.01 m/s and 0.01 m to about 0.04 m/s and

0.045 m for sea water velocity and sea surface heights, respectively.

Figures 3–8 depict maps of RMSE for zonal and meridional

components of surface water velocity within the research area. All

three models exhibit similar spatial distributions of RMSE values,

with high values observed in the Barents Sea, Kara Sea, and coastal

areas of other seas, as well as low values in eastern offshore regions

and the region to the north of the continental shelf. The high RMSE

values may be attributed to two primary factors: (1) the model’s

poor learning quality or (2) the high standard deviation and

variability of the original data. Conversely, the low RMSE values

observed in the eastern and northern parts may be due to the

relatively low variability of the original water velocity data, with the

latter potentially being exacerbated by the presence of sea ice cover

in these areas for a significant portion of the year. On the other

hand, the high RMSE values in coastal areas could be attributed to

the active hydrodynamics in these regions, characterized by larger

values and greater variability of the water velocity data.

Notably, the general patterns of spatial variability for RMSEs are

consistently present across all models’ results; however, MariNet

outperforms the other two neural networks in terms of absolute

error values. Furthermore, FourCastNet is observed to exhibit

artifacts both in zonal and meridional components of surface

water velocity. This could indicate that the FourCastNet model

fails to accurately capture sea water dynamics patterns.
TABLE 1 Metrics of MariNet, FourCastNet and PhyDNet for zonal and
meridional components of surface water velocities and Sea
Surface Heights.

Model RMSE (m/s) Bias (m/s) Correlation

u

MariNet 0.027 -0.001 0.507

FourCastNet 0.051 0.003 0.432

PhyDNet 0.043 0.004 0.519

v

MariNet 0.028 0 0.515

FourCastNet 0.051 0.002 0.428

PhyDNet 0.044 0 0.524

ssh

MariNet 0.027 -0.001 0.430

FourCastNet 0.082 -0.050 0.367

PhyDNet 0.046 0.003 0.451
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4.1 Computational cost of MariNet

With the CodeCarbon software package, we have calculated

the carbon emissions and the energy consumption of the

MariNet, FourCastNet and the PhyDNet for our calculations.
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Results are shown in the Table 2. Training of the MariNet

model has the least carbon emission rate, but, due to the

relatively large time of training, it takes the most energy. At the

same time, PhyDNet wins the energy consumption and the

emission rate challenges.
FIGURE 3

RMSE (in m/s) for zonal component of the surface water velocity for MariNet model.
FIGURE 2

Plots of temporal evolution of RMSE for zonal (upper image), meridional (middle image) components of surface water velocity (m/s), and the sea
surface heights (m) above geoid for MariNet (blue line), PhyDNet (green line), and FourCastNet (orange line).
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FIGURE 4

RMSE (in m/s) for zonal component of the surface water velocity for FourCastNet model.
FIGURE 6

RMSE (in m/s) for meridional component of the surface water velocity for MariNet model.
FIGURE 5

RMSE (in m/s) for zonal component of the surface water velocity for PhyDNet model.
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5 Conclusions

In the study, we proposed a forecast model MariNet model,

based on the encoder-decoder architecture, and compared it with
Frontiers in Marine Science 08
FourCastNet and PhyDNet, the most promising ML models in the

field weather prediction of their time. We have chosen the Arctic

region, one of the hottest spots of the modern climate science

research and obtained the hourly data on zonal and meridional
FIGURE 7

RMSE (in m/s) for meridional component of the surface water velocity for FourCastNet model.
TABLE 2 Comparison of the carbon emissions and energy consumption during the models training and inference.

Model Training Model Inference

Emissions Rate
(g/s)

Energy Consumed
(kW)

Time (hrs)
Emissions Rate
(g/s)

Energy Consumed
(W)

Time (sec)

FourCastNet 0.100 103.356 103.30 0.104 0.431 1.997

PhyDNet 0.116 103.734 119.06 0.02353 0.001097 0.0224

MariNet 0.083 214.788 257.90 0.0908 0.0973 0.515
FIGURE 8

RMSE (in m/s) for meridional component of the surface water velocity for PhyDNet model.
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velocities of the surface sea water and sea surface heights above

geoid from the Copernicus Marine Data Store. We switched

temporal resolution from 1 hour to 6 hours and fed the datasets

to the MariNet model, PhyDNet and FourCastNet.

In comparison with the other mentioned MLmodels, the RMSE

and bias of the MariNet model are significantly lower. At the same

time, the mean correlations of all three models with the original

data are moderate and located between 0.4-0.5.

The above experimental results all show that the MariNet model

has great potential in the mid-term predictions of the ocean

dynamics. The further development of the model incudes

improving the efficiency of computational operations, expanding

the number of parallel running modules of our model to capture

more temporal and spatial features of data variability, and increase

the number of variables used in training.
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