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The study of oceanic internal waves remains a critical area of research within

oceanography. With the rapid advancements in oceanic remote sensing and

deep learning, it is now possible to extract valuable insights from vast datasets. In

this context, by building datasets using deep learningmodels, we propose a novel

stripe segmentation algorithm for oceanic internal waves, leveraging synthetic

aperture radar (SAR) images based on the SegFormer architecture. Initially, a

hierarchical transformer encoder transforms the image into multilevel feature

maps. Subsequently, information from various layers is aggregated through a

multilayer perceptron (MLP) decoder, effectively merging local and global

contexts. Finally, a layer of MLP is utilized to facilitate the segmentation of

oceanic internal waves. Comparative experimental results demonstrated that

SegFormer outperformed other models, including U-Net, Fast-SCNN (Fast

Segmentation Convolutional Neural Network), ORCNet (Ocular Region

Context Network), and PSPNet (Pyramid Scene Parsing Network), efficiently

and accurately segmenting marine internal wave stripes in SAR images. In

addition, we discuss the results of oceanic internal wave detection under

varying settings, further underscoring the effectiveness of the algorithm.
KEYWORDS
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1 Introduction

Oceanic internal waves comprise a wave phenomenon that extensively exists in the

ocean. They contain vast energy, which could seriously threaten offshore engineering

structures (Lavrova et al., 2014). Just as sea surface temperature (SST) is an essential

parameter in studying ocean dynamics and climate change, the study by Gao et al. (2024a)

provides new research ideas and technical means for predicting and analyzing SST related

to marine meteorology. The effect of oceanic internal waves on the design of oil platforms
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fmars.2024.1456294/full
https://www.frontiersin.org/articles/10.3389/fmars.2024.1456294/full
https://www.frontiersin.org/articles/10.3389/fmars.2024.1456294/full
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2024.1456294&domain=pdf&date_stamp=2025-01-17
mailto:hszhang@shmtu.edu.cn
mailto:ingopro@qq.com
https://doi.org/10.3389/fmars.2024.1456294
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/marine-science#editorial-board
https://www.frontiersin.org/marine-science#editorial-board
https://doi.org/10.3389/fmars.2024.1456294
https://www.frontiersin.org/journals/marine-science


Zhang et al. 10.3389/fmars.2024.1456294
and on ocean operations cannot be ignored, which makes accurately

determining the locations of oceanic internal waves necessary.

With the rapid development of remote sensing, visible

spectrum, altimeter, and synthetic aperture radar (SAR) have

gradually become the main approaches for the observation of the

inner ocean waves. The advantages of all-weather observations and

high-resolution imaging lie mainly in microwave band SAR

(Moreira et al., 2013). In addition, Gao et al. (2023b) proposed

that spaceborne SAR satellites have a higher data rate, larger

processing capacity, and more complex imaging algorithms than

optical remote sensing satellites. SAR images contain a wealth of

information and can observe various physical phenomena such as

oceanic internal waves, wind waves, and ship vortex waves. These

features of SAR are well reflected in ship target detection. Cao et al.

(2024) proposed a deep learning model of ocean wave spectrum

SAR 2 WV based on Pix2Pix by constructing a nonlinear mapping

relationship between the SAR cross-spectrum and the ocean wave

spectrum, which can significantly improve the inversion accuracy of

the ocean wave spectrum and ocean wave parameters.

Oceanic internal waves appear as irregular streaks in SAR images,

and this feature can easily be confused with features similar to other

ocean phenomena. The amount of satellite remote sensing data is

ever increasing; however, the traditional manual method of

identifying the streaks of oceanic inland waves is error-prone and

time-consuming. Therefore, to accurately determine the positions of

oceanic internal waves, it is necessary to develop an automated

segmentation method for oceanic internal waves in SAR images.

Many scientists have studied the detection of oceanic internal waves.

The detection and the feature description of oceanic internal waves in

SAR images were realized based on wavelet transform (Rodenas and

Garello, 1997). The two-dimensional wavelet transform was also used

in a multi-scale gradient detection method to detect and locate

oceanic internal waves (Ródenas and Garello, 1998). Li et al. (2020)

used the optimized U-Net to obtain the stripes of oceanic internal

waves from Himawari satellite images. A total of 120 of these images

were randomly selected for training, and good results were achieved.

Zhang et al. (2020) extracted 26 compact polarimetric (CP) features

from fully polarimetric Advanced Land Observing Satellite-Phased

Array-Type L-Band Synthetic Aperture Radar (ALOS-PALSAR)

images to analyze the identification degree of internal waves using

Jeffries and Euclidean distances and realized internal wave detection

through the k-means clustering algorithm. Zheng et al. (2021c)

classified SAR images and obtained oceanic internal waves based

on support vector machine (SVM) and feature fusion. They then

utilized Canny edges to detect the locations of the oceanic internal

wave stripes. Moreover, Zheng et al. (2021b) proposed a

segmentation algorithm for oceanic internal wave stripes in SAR

images based on SegNet, which can be used to obtain the positions of

the stripes and the relative positions of the light and dark stripes.

Most recently, Zhang et al. (2024b) introduced a new SAR

polarization measurement method that can detect man-made

objects and ocean ice and indicate the motion of ship targets and

ocean currents.

With the continuous development of deep learning technology,

more and more scientists are attempting its use for the extraction of
Frontiers in Marine Science 02
information from ocean remote sensing images. For example, in

2012, Hinton et al. (2006) adopted a deep learning model (AlexNet),

which won the ImageNet competition; consequently, the deep

learning algorithm gradually attracted the attention of the

academic community. Subsequently, in 2020, Professor Li

proposed the use of deep learning models to classify, segment,

and align preprocessed remote sensing images to extract useful

information. For ship detection at sea, Zhang et al. (2024c)

summarized the existing ship detection and classification dataset

resources and proposed the problems and challenges faced in ship

datasets. Gao et al. (2023a) designed a scatter-sensing fully polarized

SAR ship detection network (SCANet) based on the differences in

the ship scattering characteristics and the powerful feature

extraction capability of convolutional neural networks (CNNs).

However, due to the inability of CNNs to effectively process

sparse-labeled samples and unbalanced categories, Gao et al.

(2023e) proposed a new attentional-intensive CycleGAN method,

which enables attention-dense CycleGAN (ADCG) to solve the

problems that CNNs cannot effectively process, i.e., sparse-labeled

samples and unbalanced categories. To overcome the shortage of

fully polarized SAR-labeled data, Gao et al. (2023d) proposed a

polarization-driven binary cascade CNN (dualistic cascade CNN,

DCCNN) algorithm for ship detection of fully polarized SAR data.

For the problem of object classification in optical images, Gao et al.

(2023c) proposed the lightweight adaptive task attention bi-

prototype Brownian distance covariance (LATA-BP-BDC) to

address the shortcomings of the current feature extraction and

image discrimination capabilities. In 2024, Gao et al. (2024b)

applied SAR in detecting ships at sea due to the ships in the SAR

images having the characteristics of dense arrangement, arbitrary

orientation, and diverse scale. The existing detection algorithms

cannot effectively solve these problems. Therefore, a ship detection

and classification method for SAR images based on YOLOV 8 was

proposed. In addition, various detectors based on deep learning

have also been applied for ship detection in SAR images. Zhang

et al. (2024a) proposed a SAR image-directed ship detection

network based on soft threshold and context information, which

effectively suppressed ground noise interference and showed strong

detection capability for offshore ships and small targets.

Semantic segmentation is an essential area of image processing

that separates different semantic categories within images. Thanks

to advances in natural language processing (NLP), a number of

scientists have recently been using transformers in visual tasks.

Dosovitskiy et al. (2020) achieved successful image classification

with their proposed visual converter (vision transformer, ViT).

Regarding semantic partitioning, Zheng et al. (2021a) proposed

the segmentation transformer (SETR) model to demonstrate the

functionality of transformers in image segmentation. Wang et al.

(2021) developed a pyramid visual converter (PVT) suitable for the

prediction of intensive tasks. The PVT is a pyramid structure made

of ViT. This approach ignores the development of the decoder and

instead mainly improves the transformer encoder. Following a

previous work, Xie et al. (2021), the encoder and decoder,

proposed a semantic segmentation framework (SegFormer) and

provided satisfactory results.
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This study proposed an algorithm for the segmentation of

oceanic internal wave stripes based on SegFormer. Firstly, features

with different resolutions were extracted using a hierarchical

transformer encoder. Subsequently, a lightweight multilayer

perceptron (MLP) encoder was employed to combine the

multilevel features. Finally, a layer of MLP was utilized to

segment the oceanic internal wave stripes, obtaining the locations

of the oceanic internal waves in SAR images. The paper is divided

into five sections. Section 2 introduces the datasets and the model

used in this study. Sections 3 and 4 present the experimental results

and provide the analysis and discussions. Section 5 presents

the conclusions.
2 Data and methods

2.1 Data

2.1.1 Data sources
The study selected SAR image data from the Environmental

Satellite (Envisat), Sentinel-1, the First European Remote Sensing

Satellite (ERS-1), the Second European Remote Sensing Satellite

(ERS-2), and the Advanced Land Observing Satellite (ALOS). The

area of the downloaded data is depicted in the red polygon

in Figure 1.

2.1.2 Dataset and annotation
The SAR image dataset with the oceanic internal waves and the

corresponding label datasets were obtained through the

following processes:
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1. The SAR image corresponding to the red area was

downloaded from the official website. The downloaded

image is unprocessed and needs to be pre-processed.

2. The pre-processing of the original image data, including

multi-view processing, can be used to improve the quality

of the image and suppress the speckle noise in the picture.

Filtering and geocoding can also be used for pre-processing.

3. To obtain the corresponding geographic information and

the intensity value of the image, the image data were

converted into the TIFF format.

4. All TIFF image data were randomly cropped for the

purpose of data enhancement and were converted into

the JPG format.

5. Labelme (Russell et al., 2007) software was used to

manually mark the dataset in the JPG format and to

generate JSON files in order to regenerate the label data

in the PNG format.
Figure 2 shows a flowchart of the image data processing.

Labelme software was used in this study to label each image pixel

in the dataset. The labels were divided into two classes: internal

wave and sea level. A total of 973 image labels were produced.
2.2 Method

Xie et al. (2021) proposed the SegFormer algorithm for

semantic segmentation, a lightweight and efficient transformer

framework. Compared with that in ViT (Dosovitskiy et al., 2020),

SETR (Zheng et al., 2021), and Swin-Transforme (Liu et al., 2021),
FIGURE 1

The four synthetic aperture radar (SAR) image regions that made up the dataset.
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in SegFormer, the encoder was improved and the decoder

redesigned. The structure diagram of the SegFormer model is

shown in Figure 3. On one hand, the encoder in this study is a
Frontiers in Marine Science 04
hierarchical transformer that does not require positional encoding.

This allows handling images with arbitrary resolutions effectively.

In addition, the hierarchical transformer can generate multilevel

resolution features and make the extracted image feature richer. On

the other hand, the lightweight MLP decoder fuses these multilevel

features to produce the final optimization result. The decoder

combines local and global attention by aggregating information

from different layers. Therefore, the decoder is simple in structure

and is powerful in performance.

2.2.1 Hierarchical transformer encoder
The SegFormer designed a series of MiT (mix transformer)

encoders, including MiT-B0 to MiT-B5, which have the same

architecture but different depths to facilitate training data of

different scales. The hierarchical transformer encoder was

designed to generate multilevel features. Given an input image

resolution with a size of H × W × 3, the image is divided into

patches of 4 × 4, and then the patches are merged into multilevel

features by patch merging.

The encoder in the SegFormer network structure consists of

four transformer blocks, as shown in Figure 4. Firstly, to reduce the

computational cost, the efficient attention mechanism (Efficient

Self-Attn) in the transformer block uses the sequence reduction

process in the PVT (Xie et al., 2021). Subsequently, to alleviate the

impact of positional encoding on accuracy, a mix feed-forward

network (Mix-FFN) is introduced. It utilizes zero padding to record

the location information (Islam et al., 2020) and a 3 × 3 convolution

layer in the FFN. The 3 × 3 convolution can provide positional

information for the transformer, reduce the number of parameters,

and improve the computational efficiency. Finally, the patches are
FIGURE 2

Steps for the collection of the oceanic internal wave synthetic
aperture radar (SAR) datasets.
FIGURE 3

SegFormer framework (H、W represent the number of vertical and horizontal pixels of the image, while C denotes dimension. Ncls——Split the
number of categories).
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merged with overlap using the Overlapped Patch Merging to obtain

the multilevel image features.

2.2.2 Lightweight all-MLP decoder
Xie et al. (2021) proposed a decoder architecture that consists of

lightweight all-MLPs, as shown in Figure 5. Firstly, the multilevel

features from the encoder use the MLP layer to unify the

dimensions. Secondly, the feature maps are up-sampled to a

uniform size and then merged. Thirdly, an MLP layer is used to

fuse the combined features in order to obtain the feature F. Finally,

another MLP layer is used to predict the segmentation mask M. A

detailed structure of the MLP layer is shown in Figure 5.

2.2.3 Loss function
The loss function of SegFormer is the cross-entropy loss

function, which is mainly used to evaluate the difference between

the probability distribution obtained by the current training and the

actual distribution. The formula is defined as follows:

H(p, q) = −o
n

i=1
p(xi)log(q(xi))

where p(xi) is the actual probability distribution, q(xi) is the

predicted probability distribution, and n is the total number of

pixel samples.
3 Results and discussion

3.1 Implementation details

The image datasets were divided into the training, validation,

and testing sets. The training set was utilized to train the model, the

validation set was employed to configure the model parameters, and

the test set was used to evaluate the generalization ability of the
Frontiers in Marine Science 05
model. All experiments were trained using a single Nvidia RTX

3060 GPU. The operating system used was Windows, and the

algorithm was implemented based on the MMSegmentation

codebase and the Python platform, with Python version 3.7.11.

The deep learning framework used was SegFormer. CUDA version

11.0 and cuDNN version 8.0.4 were utilized.

The input image size was 512 × 512. During the training

process, data augmentation was performed, as follows: random

resize (ratio, 0.5–2.0), random horizontal flip, and random cropping

to a size of 128 × 128. For the basic network model, the Adam

optimizer with a learning rate of 0.00006 and a weight decay of 0.01

was used for training. Table 1 shows the model training

performance under different proportional datasets. It can be

observed from the table that, when the ratio was 6:2:2, the cross-

entropy of the testing set dropped to the lowest level, indicating the

best performance of the model during testing.
3.2 Model evaluation

Based on the SegFormer model, the default patch size was 4 and

the default number of training epochs was 16,000. The SegFormer
FIGURE 4

Transformer block structure.
 FIGURE 5

Multilayer perceptron (MLP) structure.
TABLE 1 Model training performance under different
proportional datasets.

Rate Test MIoU (%) Test accuracy (%)

6:2:2 69.95 96.1

7:1.5:1.5 69.33 95.75

8:1:1 68.54 95.66

9:0.5:0.5 64.87 94.08
MIoU, mean intersection over union.
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model has six types of design, from MiT-B0 to MiT-B5, where the

main change of the encoder is reflected in the deepening of the

transformer layer, and the channel dimension in the MLP

represents the changes in the decoder. When the C (channel) is

256, the model has better performance and lower computational

cost. When C is more significant than 768, this can lead to a

reduction in the model efficiency. The channel dimension of B0 and

B1 was 256, while that of the others was 768. The detailed

parameters are shown in Table 2.

This study analyzed the effect of encoder size on performance.

Table 3 shows the performance analysis of the different models. As

shown in the table, the parameters of the encoder increased with the

scale, while the parameters of the decoder only accounted for a small

part.With regard to the performance, the accuracy gradually increased

with the rise of the encoder scale, and the calculation time also

increased. For example, B5 took more than six times as long as B0.

Therefore, it can be found that the lightweight MiT-B0 had high

computational efficiency and good performance. In this study, the

performance from MIT-B0 to MIT-B5 gradually increased. When

there is a large amount of data, it is recommended to choose B5, which

had the best performance. When there is a small amount of data, it is

suggested to choose a lightweight model, such as MiT-B1, for

prediction according to the demand in order to make more efficient

use of the data resources and to achieve better prediction results.
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3.3 Visual analysis

Four images with small scales were randomly selected from the

testing set for prediction to evaluate the segmentation effect. The

results were compared with those of U-Net, Fast Segmentation

Convolutional Neural Network (Fast-SCNN), Ocular Region

Context Network (ORCNet), and Pyramid Scene Parsing

Network (PSPNet), as shown in Figures 6, 7. It can be observed

from Figure 6II that the stripes of the oceanic internal waves

segmented based on U-Net may fracture, and the stripe edges

were too rough. In Figures 7V–VII, it can be observed that the

oceanic internal wave stripes divided using the Fast-SCNN,

ORCNet, and PSPNet frameworks were still connected and fuzzy.

In Figures 6III, IV, however, it is indicated that the stripes of the

oceanic internal waves segmented based on SegFormer were

relatively complete and that the edge part was more refined,

meaning that the superiority of the transformer in connecting

global information was brought into full play. There were only a

few lightweight MiT parameters, and the calculation efficiency was

high. As mentioned above, it was demonstrated that SegFormer had

the advantages of efficiency and accuracy in the stripe segmentation

of oceanic internal waves.

By observing the stripe segmentation of oceanic internal waves

of a small area, as shown in Figures 6, 7, the accurate locations and
TABLE 2 Details of the MiT (mix transformer) series.

Layer name
Mix transformer

B0 B1 B2 B3 B4 B5

Stage 1

Overlapping
Patch embedding

K1 = 7; S1 = 4; P1 = 3

C1 = 32 C1 = 64

Transformer
Encoder

R1 = 8 N1 = 1
E1 = 8 L1 = 2

R1 = 8 N1 = 1
E1 = 8
L1 = 2

R1 = 8 N1 = 1
E1 = 8
L1 = 3

R1 = 8
N1 = 1
E1 = 8
L1 = 3

R1 = 8
N1 = 1
E1 = 8
L1 = 3

R1 = 8
N1 = 1
E1 = 4
L1 = 3

Stage 2

Overlapping
Patch embedding

K2 = 3; S2 = 2; P2 = 1

C2 = 64 C2 = 128

Transformer
Encoder

R2 = 4 N2 = 2
E2 = 8 L2 = 2

R2 = 4 N2 = 2
E2 = 8
L2 = 2

R2 = 4 N2 = 2
E2 = 8
L2 = 3

R2 = 4
N2 = 2
E2 = 8
L2 = 3

R2 = 4
N2 = 2
E2 = 8
L2 = 8

R2 = 4
N2 = 2
E2 = 4
L2 = 6

Stage 3

Overlapping
Patch embedding

K3 = 3; S3 = 2; P3 = 1

C3 = 160 C3 = 320

Transformer
Encoder

R3 = 2 N3 = 5
E3 = 4 L3 = 2

R3 = 2 N3 = 5
E3 = 4
L3 = 2

R3 = 2 N3 = 5
E3 = 4
L3 = 6

R3 = 2
N3 = 5

E3 = 4 L3 = 18

R3 = 2
N3 = 5

E3 = 4 L3 = 27

R3 = 2
N3 = 5

E3 = 4 L3 = 40

Stage 4

Overlapping
Patch embedding

K4 = 3; S4 = 2; P4 = 1

C4 = 256 C4 = 512

Transformer
Encoder

R4 = 1 N4 = 8
E4 = 4 L4 = 2

R4 = 1 N4 = 8
E4 = 4
L4 = 2

R4 = 1 N4 = 8
E4 = 4
L4 = 3

R4 = 1
N4 = 8
E4 = 4
L4 = 3

R4 = 1
N4 = 8
E4 = 4
L4 = 3

R4 = 1
N4 = 8
E4 = 4
L4 = 3
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the approximate shape of the oceanic internal waves in SAR images

can be obtained. However, it can be observed from Figures 6III, IV

that a number of mis-segmentations were encountered when using

MiT-B1 and MiT-B5, partly due to manual errors during labeling.

For MiT-B5, in addition to the above, a small amount of data or too

large a scale of the model could also a possible reason. These issues

can be solved by expanding the amount of training sets or by using

smaller models.
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Table 4 analyzes the training performance of the U-Net,

SegFormer-B1, SegFormer-B5, Fast-SCNN, ORCNet, and PSPNet

models. It is shown in the table that the mean intersection over

union (mIoU) of SegFormer-B1 was 25.57% higher than that of U-

Net. The mIoU of SegFormer-B5 was 27.24% higher than that of U-

Net, while the mIoU values of Fast-SCNN, ORCNet, and PSPNet

were all lower than that of SegFormer. Tables 5–8 respectively

represent the evaluation indicators of the different images under
TABLE 3 Model performance analysis.

Encoder
Model size

Params
Encoder (MB)

Params
Decoder (MB)

Test MIoU (%) Test accuracy (%)

MiT-B0 3.4 0.4 69.51 96.01

MiT-B1 13.1 0.6 69.95 96.1

MiT-B2 24.2 3.3 70.38 96.09

MiT-B3 44.0 3.3 70.1 96.1

MiT-B4 60.8 3.3 70.86 96.25

MiT-B5 81.4 3.3 71.62 96.4
MIoU, mean intersection over union.
FIGURE 6

Stripes segmentation of oceanic internal wave of a small area (the four images (A–D) are the images of small-scale ocean internal waves. I. Original
images; II. U-net segmentation results; III. Mit-B1 segmentation results; IV. Mit-B5 segmentation results).
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different models. On the whole, SegFormer-B5 showed certain

superiority in the segmentation of marine internal wave stripes in

small areas.

The U-Net model is a CNN model used for image

segmentation. Compared with that of the SegFormer series

models, the model segmentation effect of U-Net was not as good,

mainly due to its performance being largely dependent on the
Frontiers in Marine Science 08
quality and the quantity of the training data, and the number of

marine internal wave stripe images used in small areas cannot meet

the number of U-Net training. Secondly, U-Net requires a lot of

computing resources, and the computer parameters used here

cannot fully meet its requirements; therefore, the final

segmentation effect was affected. Fast-SCNN is a semantic

segmentation algorithm suitable for high-resolution images. The

resolution of the constructed images of the marine internal wave

stripes in small areas was too low, or the labeled data cannot meet

the training effect and cannot segment the marine internal wave

stripes well. As a network model for semantic image segmentation,

the performance of PSPNet largely depends on high-quality

annotation data, parameter tuning, and the training difficulty. Its

generalization ability may be challenged in complex scenarios, and

the diversity of oceanic internal wave stripes makes it difficult for

the model to obtain the necessary information, thus affecting the

segmentation results. ORCNet uses high-resolution network

(HRNet) as the backbone network. With limited resources and

the environment, it may be difficult for ORCNet to achieve the ideal

segmentation effect. At the same time, it is affected by several

parameters, including the learning rate, the batch size, and the

convolution kernel size. The optimization of these parameters
FIGURE 7

Stripes segmentation of oceanic internal wave of a small area (the four images (A–D) are the images of small area ocean internal waves. I. Original
images; V. Fast-SCNN segmentation results; VI. OCRnet segmentation results; VII. PSPnet segmentation results).
TABLE 4 Performance analysis of U-Net, SegFormer-B1, and
SegFormer-B5.

Method Encoder MIoU (%)
Accuracy

(%)

U-Net CNN 44.38 91.20

SegFormer MiT-B1 69.95 96.1

SegFormer MiT-B5 71.62 96.4

Fast-SCNN Fast-SCNN 65.22 95.85

ORCNet HRNet 64.32 95.92

PSPNet ResNetV1c 65.87 95.76
MIoU, mean intersection over union.
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TABLE 5 Evaluative indices of small-area oceanic internal wave stripe segmentation under different models.

Figure 6 or Figure 7 position Method Encoder MIoU (%) Accuracy (%)

AII U-Net CNN 98.26 98.33

AIII SegFormer MiT-B1 98.47 98.56

AIV SegFormer MiT-B5 98.97 99.02

AV Fast-SCNN Fast-SCNN 98.56 98.63

AVI ORCNet HRNet 98.61 98.68

AVII PSPNet ResNetV1c 98.49 98.56
F
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Bold emphasis indicates better performance.
MIoU, mean intersection over union.
TABLE 6 Evaluative indices of small area oceanic internal wave stripe segmentation under different models.

Figure 6 or Figure 7 position Method Encoder MIoU (%) Accuracy (%)

BII U-Net CNN 97.69 97.74

BIII SegFormer MiT-B1 98.50 98.56

BIV SegFormer MiT-B5 98.21 98.26

BV Fast-SCNN Fast-SCNN 97.78 97.86

BVI ORCNet HRNet 97.77 97.85

BVII PSPNet ResNetV1c 98.15 98.22
Bold emphasis indicates better performance.
MIoU, mean intersection over union.
TABLE 8 Evaluative indices of small-area oceanic internal wave stripe segmentation under different models.

Figure 6 or Figure 7 position Method Encoder MIoU (%) Accuracy (%)

DII U-Net CNN 89.61 91.29

DIII SegFormer MiT-B1 83.7 87.26

DIV SegFormer MiT-B5 89.20 91.51

DV Fast-SCNN Fast-SCNN 86.48 88.28

DVI ORCNet HRNet 88.13 90.37

DVII PSPNet ResNetV1c 86.74 89.21
Bold emphasis indicates better performance.
MIoU, mean intersection over union.
TABLE 7 Evaluative indices of small-area oceanic internal wave stripe segmentation under different models.

Figure 6 or Figure 7 position Method Encoder MIoU (%) Accuracy (%)

CII U-Net CNN 90.99 92.02

CIII SegFormer MiT-B1 90.48 91.54

CIV SegFormer MiT-B5 91.34 92.43

CV Fast-SCNN Fast-SCNN 86.34 87.25

CVI ORCNet HRNet 91.14 92.29

CVII PSPNet ResNetV1c 90.71 91.72
Bold emphasis indicates better performance.
MIoU, mean intersection over union.
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requires a certain amount of experience, and an improper setting of

parameters will lead to a degradation of the model performance.

The six groups of images above were compared and established.

It is indicated that the predicted effect when using MiT-B5 with the

more robust performance is better if large-scale data are available

for training, while the lightweight model, such as MiT-B1, should be

selected in order to use the data resources more efficiently and to

obtain better prediction results if the amount of data is small. The

results indicated that SegFormer is accurate in the segmentation of

oceanic internal wave stripes.

The oceanic internal wave stripe segmentation of a large area is

shown in Figure 8. The image in Figure 8E was taken on December

2, 2010, with central coordinates of 17°50′N, 85°21′ E. The image in

Figure 8F was taken on September 13, 2010, with central

coordinates of 19°20′ N, 86°5′ E, Figure 8G was taken on

February 8, 2007, with central coordinates of 7°29′ N, 96°23′ E,
and the image in Figure 8H was taken on December 10, 2007, with

central coordinates of 6°29′ N, 96°23′ E. All four images used the

HH (horizontal–horizontal) polarization mode.
Frontiers in Marine Science 10
It can be seen from the segmentation of oceanic internal wave

stripes in small areas that SegFormer had high segmentation

accuracy. Here, MiT-B1 and MiT-B5 were selected for the

comparative experiments. Compared with the four sets of images,

it can be observed that the use of MiT-B1 to segment the stripes

resulted in a better segmentation effect for the stripes on the right

side, while some subtle stripes on the left side cannot be accurately

segmented. However, when MiT-B5 was used to segment the

stripes, although the segmentation effect for the stripes on the

right side was better, the segmentation accuracy was lower than that

when using MiT-B1. Therefore, the segmentation effect using MiT-

B1 was better than that of MiT-B5 when oceanic internal wave

stripes of a large area are segmented. Moreover, for SAR images

with a large area, the influence of image quality and the error caused

by the use of the naked eye, which cannot accurately distinguish the

fragmented internal wave stripes, can lead to the oceanic internal

waves being identified inaccurately. Although some errors were

encountered when using the method proposed in this study, these

were acceptable. Suppose a more powerful computer is used to train
FIGURE 8

Oceanic internal wave stripes segmentation of a large area (the four images (E–H) are the images of large area ocean internal waves. I. Original
images; III. Mit-B1 segmentation results; IV. Mit-B5 segmentation results).
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the SAR images on a large scale. In this case, the segmentation

accuracy will be greatly improved, which will be more beneficial to

obtaining geographical information about oceanic internal waves.
4 Discussion

The development of deep learning has brought with it many

opportunities for marine internal wave recognition in SAR images.

Deep learning can extract SAR marine internal wave features based

on manual labeling training of the dataset. For example, Yue et al.

(2023) proposed a fast coastline detection algorithm for SAR images

based on the seed point growth idea. Ma et al. (2023) proposed a

two-stage segmentation algorithm of oceanic internal wave features

for SAR images. The algorithm includes the classification stage of

oceanic internal waves based on the fusion of bureau and decision

and the stripe segmentation stage based on pixel attention U-Net.

The algorithm can effectively extract the performance of oceanic

internal wave signs from SAR images. Divya et al. (2020)

preliminarily proposed an automatic internal wave detection

system based on a particle swarm optimization algorithm, which

combined image processing with machine learning to create an

automatic internal wave detection method. Kang et al. (2008) used a
Frontiers in Marine Science 11
two-dimensional empirical mode decomposition (2D-EMD)

algorithm to identify oceanic internal waves in SAR images. Bao

et al. (2019) used faster regions with convolutional neural network

(Faster R-CNN) to detect oceanic internal waves in SAR images;

however, the obtained results can only show approximate regions of

oceanic internal waves. Zheng et al. (2021) proposed that the SETR

model uses ViT as the encoder and multiple CNNs as the decoder.

Although the SETR performs well, it still has disadvantages: 1) ViT

produces single-scale feature maps as an output, and 2) there are too

many ViT parameters, resulting in much computation.

The proposed model based on the effectiveness of SegFormer in

segmenting oceanic internal wave stripes was evaluated. For the

stripe segmentation of oceanic internal waves of a small scale,

SegFormer can obtain the accurate locations and the approximate

shape of the oceanic internal waves in SAR images, while for the

stripe segmentation of oceanic internal waves of a large scale,

SegFormer can segment the apparent stripes of oceanic internal

waves, but cannot identify the subtle internal wave stripes. As can be

seen in Figures 9 (I III), (I IV), 10 (L III), (L IV), the SegFormer

model still has room for improvement with regard to the

segmentation of oceanic internal wave stripes in large areas. In

contrast, the segmentation effect for oceanic internal wave stripes in

small areas was better. The training dataset in this paper comprised
FIGURE 9

Oceanic internal wave stripes segmentation (the image (I) is a large area ocean internal waves; the two images (J, K) are the images of small area
ocean internal waves. I. Original images; III. Mit-B1 segmentation results; IV. Mit-B5 segmentation results).
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small-scale data. For the training of a large-scale training set, the

computer performance needs to be improved, which is one of the

directions for future research.

Compared with the U-Net framework, SegFormer has the

following advantages:
Fron
1. It uses the lightweight MiT model, which has the advantage

of high computational efficiency, particularly for large-

scale datasets.

2. The SegFormer encoder introduces a hierarchical

transformer structure, which can thus effectively utilize

global information, and the segmented stripe results are

completed without breaking. This optimization strategy

dramatically improves the segmentation accuracy and

robustness of the model.

3. SegFormer has a series of encoders, which means that the

appropriate model can be selected to predict datasets of

different scales. This type of diversified strategy for the

selection of a model indicates that SegFormer has

excellent potential in the stripe segmentation of oceanic

internal waves.
In summary, the SegFormer model exhibits numerous benefits

and holds great potential for the stripe segmentation of oceanic
tiers in Marine Science 12
internal waves. Thus, it is expected to have wide-ranging

applications in future research related to this field.
5 Conclusion

In this study, we proposed an oceanic internal wave stripe

segmentation algorithm based on SegFormer and generated two

different oceanic internal wave datasets. For the stripe segmentation

of oceanic internal waves in a small area, if the amount of data is large,

the MiT-B5 model, which is the more powerful model, is

recommended for prediction. If the amount of data is small, the

MiT-B1 model, which is lightweight, is then recommended for

prediction to utilize the data resources more efficiently and obtain

better prediction results. However, for the stripe segmentation of

oceanic internal waves in a large area, the effect of using the MiT-B1

is significantly better than that of MiT-B5. In summary, a suitable

model should be selected based on the actual scenario to take advantage

of SegFormer for the stripe segmentation of oceanic internal waves to

the maximum extent. As this method can obtain the specific position

information of each oceanic internal wave in the image, it is beneficial

for a more in-depth study of the oceanic internal waves in SAR images.

With the further development of remote sensing imaging technology,

the segmentation effect will be even better.
FIGURE 10

Oceanic internal wave stripes segmentation (the image (L) is a large area ocean internal waves; the two images (M, N) are the images of small area
ocean internal waves. I. Original images; III. Mit-B1 segmentation results; IV. Mit-B5 segmentation results).
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