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Ports are of great significance in processing cargo containers and facilitating

global marine logistics. Nevertheless, the susceptibility of the container shipping

network for hazardous cargo is likely to intensify in the event of a significant

disruption at a major port, such as adverse weather conditions, inadequate

management practices, or unforeseen catastrophes. Such situations require

the deployment of port protection emergency response and prevention in

advance. This study proposes a digital twin (DT) model that employs extensive

and trajectory data within containers to comprehensively analyze the occurrence

of hazardous cargo failures within the port storage process. The virtual models of

physical entities in the port are created through a data-driven approach, and the

behavior of these entities in a port environment with big data is then simulated. A

combination of a convolutional neural network (CNN) and a long short-term

memory (LSTM) algorithm is employed to provide predictions for the service

layer of the DT system. The predicted correlation coefficients of temperature and

humidity in the container reach 0.9855 and 0.9181, respectively. The developed

system driven by DT models integrated with a CNN and the LSTM algorithm can

more effectively assist the safety manager in achieving prevention in port

operations. This study enables marine authorities and decision-makers to

optimize emergency procedures, thereby reducing the probability of accidents

in port operations and logistics.
KEYWORDS

hazardous cargo container, port operation, safety management, digital twin model,
marine logistics
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fmars.2024.1455522/full
https://www.frontiersin.org/articles/10.3389/fmars.2024.1455522/full
https://www.frontiersin.org/articles/10.3389/fmars.2024.1455522/full
https://www.frontiersin.org/articles/10.3389/fmars.2024.1455522/full
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2024.1455522&domain=pdf&date_stamp=2024-09-30
mailto:xiaoleiliu@shmtu.edu.cn
https://doi.org/10.3389/fmars.2024.1455522
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/marine-science#editorial-board
https://www.frontiersin.org/marine-science#editorial-board
https://doi.org/10.3389/fmars.2024.1455522
https://www.frontiersin.org/journals/marine-science


Wang et al. 10.3389/fmars.2024.1455522
1 Introduction

The global containership fleet is set to exceed the 30 million

twenty-feet equivalent unit (TEU) mark for the first time in history in

2024, as the ships larger than 15,000 TEU are dominating deliveries

in ports. The ports of China have officially solidified their position as

premiere builders of containerships, accounting for approximately

55% of capacity delivered in 2023. The increase of shipping container

throughput continues to break through an innovative pattern, which

puts forward new requirements for port operation capacity and safety

management efficiency. Moreover, the intelligent unmanned

operation mode, gradually implemented in large ports, has

emerged as the mainstream mode of new-type port operation and

management (Alimam et al., 2023). Under the port operation mode,

monitoring and control of status of dangerous cargoes in the process

of shipping container operation and storage have become an

important direction of smart port safety management. There are

still many deficiencies in traditional monitoring, early warning, and

disposal methods of the marine container storage process, which are

highlighted by poor real-time monitoring system, failure to integrate

multi-source data, imperfect digital early warning system, and failure

to match the prediction results to the requirements of rapid

emergency response (Lim et al., 2019). Meanwhile, the use of

digital technology to assist accurate safety management in the

current development of smart ports remains to be improved (Yang

et al., 2023). With the rapid development in the Yangtze River basin

and delta region of China, the trend of industrial agglomeration with

petrochemical parks as the carrier appears obvious and the demand

for chemical materials in Shanghai have increased by more than 10%

in recent years. Nearly 90% of dangerous chemical cargoes are loaded,

unloaded, stored, and circulated through the Shanghai Port by

marine transportation. The import and export of dangerous

cargoes at the Shanghai Port account for approximately 50% of the

country’s total. More than 6,600 business units of various types have

declared the import of dangerous cargoes at the Shanghai Port, and

the annual throughput of dangerous cargoes in port storage has

reached 42.62 million tons. The safety problems of dangerous cargoes

with inflammable and explosive properties are becoming increasingly

prominent in the container storage process. Because of the large-

cluster, large-scale, and large-circulation characteristics of the marine

industry, an accidental explosion of dangerous cargoes in containers

may lead to massive casualties and major property losses (Chang and

Zhang, 2023). In recent years, fire and explosion accidents caused by

container operation and logistics in ports have frequently occurred

across the globe, such as the 12 August 2015 Tianjin Port fire and

explosion, the 21March 2019 Xiangshui explosion, the 4 August 2020

Beirut Port explosion (Boeck and Mahan, 2022), and the 2022 Jeddah

Port fire and explosion. The abovementioned accidents occur in the

operation and storage process of dangerous cargoes, which gives a

warning to the safety management of containers in developing port.

Moreover, the emergency response to accidents caused by dangerous

cargoes is difficult, and the emergency response force may result in

further damage. In this context, it is imperative to formulate targeted

accident emergency countermeasures based on intelligent methods.

As an emerging technology, digital twin (DT) technology helps

to promote high integration of digital technology and real economy
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(Grieves and Vickers, 2017). In the Industry 5.0 era, most studies on

marine logistics management came from China and the United

States, where marine logistics was developing towards

informatization (Zhou et al., 2024). DT-driven management is

devoted to enhancing the operational efficiency, safety, and

sustainability of the marine transportation sector through

integration of data intelligence and Internet of Things (IoT). The

safety performance of DT in the marine transportation system

based on IoTs was explored, providing an extraordinary basis for

intelligent and secure marine transportation towards intelligence

(Liu J. et al., 2023). The innovation of DT technology was used to

promote the change of elements, organization, innovation system,

and business mode of the shipping industry and the marine logistics

industry chain. Kinaci et al. have established a ship DT concept in

terms of navigation autonomy (Liu et al., 2024), representing the

physical ship by a mathematical model in one computer and control

algorithms on the other. Meanwhile, automatic data integration

between these two computers ensured the DT (Kinaci, 2023). A DT-

driven fault diagnosis approach was developed based on a graphical

model and an extended Kalman filter algorithm, which successfully

provided evidence of the reliability in detecting actuator faults for

autonomous surface vehicles (Bhagavathi et al., 2023). In the

marine sector, the DT failed to offer a wide selection of standards

to support interoperability of systems, undermining the ship

managers’ ability to create a cohesive DT that combines multiple

data sources (Aragao et al., 2023). The challenges anticipated in

scaling the DT framework toward marine industrial applications

were discussed in terms of standards’ capabilities, compatibility,

and data governance (Wang et al., 2022; Yang and Lin, 2023). The

DT framework for autonomous marine surface ships had four

layers, and the system platform for DT application was equipped

with trolling electric motor, camera, LiDAR (Chen et al., 2023),

inertial navigation system, and GPS, providing a proof of DT-based

concept (Raza et al., 2022). To improve the performance of DT’s

prediction, future work could focus on developing a more robust

parameter model by employing interpretable machine learning

methods (Hasan et al., 2023). DT can be regarded as an analog

technology integrating multiple physical quantities and scales. A

DT was proposed for fuel consumption and carbon footprint, aimed

to predict the hybrid propulsion system of ocean-going patrol ships

under the aggregate effect of operational and environmental

uncertainty. This work developed a method for the evaluation of

alternative design options for ships with a similar operating profile

(Vasilikis et al., 2023). DT-driven safety management creates virtual

models of physical entities in the port in a digital way and simulates

the behavior of physical entities in the real environment with big

data. DT for the decision support system of real-port application

has two modules (recovery and resilience), and this approach

enabled the inclusion of operational uncertainties within smart

port resilience evaluation (Zhou et al., 2021). The DT-driven

decision support approach serves the life cycle of physical entities

through virtual and real interactive feedback, data fusion analysis,

decision iterative optimization, and other means. A DT model was

presented based on data structure and backbone scheduling

algorithm for the Busan New Port, and the DT port improved

the predictions of ships’ arrival time and carbon emission
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(Eomet al., 2023). The process of developing a DT-based numerical

tool was designed for shipboard cranes, based on co-simulation

using the Functional Mock-up Interface standard. This tool was

validated by data from a real-time monitoring sensor. It was worth

noting that the data acquisition benefited to some extent from the

offshore state (Liu Z. et al., 2024). The operation and storage

processes of containers in ports have always been crucial in real-

time monitoring due to various risk factors.

Although the abovementioned works offered insights into the

potential benefits arising from the DT applications to optimize the

management strategy in the marine industry under the port

mechanical operation and vessel navigation monitoring, some

expanded aspects remained unexplored and should be investigated in

depth. In particular, the current research only established virtual

models and addressed adjusting some parameters of the

management policy among risk value or range, and they did not

consider to develop an integrated DT platform related to port

operations (e.g., hazardous cargo status, container storage status, and

marine environment). This study attempts to combine the DT concept

with the safety management of the dangerous cargo container storage

process in ports, and integrate the system platform for the safety

management of port operation and logistics in terms of demand

analysis, three-dimensional modeling, data fusion, data-driven

models, algorithm iteration, and result prediction. The DT-driven

management platform uses information technology to monitor data

flow inside dangerous cargo containers, builds a high-precision

synchronous model with real scenes, and obtains prediction results

through optimization algorithms to assist on-site decision-making. The

main contributions of this study are twofold: (1) It proposes a novel

implementation of the five-layer DT model that combines a dynamic

model with a data-driven model fitted on real-world shipping port

operation data. This significantly differentiates from previous works in

the domain of numerical models that often used simulation data.

Previous scaled experiments did not complete synchronization over

time-varying real input. (2) The developed DT-driven platform

outperforms state-of-the-art approaches in predicting the accuracy of

marine container behavior and yields significantly improved

predictions for the hazardous cargoes in the port. This study

effectively combines the virtual and real interactive feedback and

decision iteration functions of DT to gradually transform the

approach of traditional ports from having an emergency response

after accidents to planning ahead and implementing prevention

measures, and reduces the likelihood of accidents during port

operation and logistics from source. With an effort to improve the

accuracy of risk assessment in the operation and storage of dangerous

cargoes in containers in ports, this study hopes to improve the safety

management of smart ports and provide accurate emergency work.
2 Literature review

2.1 Safety management in port operations

To generate a smart port, port authorities exert significant effort

on modernizing infrastructure and optimizing operations with a

reliable network. The container ports are constantly faced by forces
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of change, uncertainty, and stiff competition (Cuong et al., 2021).

Thus, managing these operations is a complex task for port

management, as they require an estimate for future container

throughput to be handled in ports (Sanguri et al., 2022). Overall

container throughput data of a port can be arranged into diverse

hierarchical dimensions. The container drayage operators play an

important role in port drayage operations. The target of container

port operators is to efficiently manage operations in the terminal,

thereby alleviating traffic problems and preventing yard congestion

(Chen et al., 2022). A quantitative analysis is implemented (Wang

et al., 2022), where the data are collected through evidence-based

practice techniques with the participation of safety management

experts. It indicates that the low safety management ability of labor

service enterprises causes frequent unsafe incidents. The above

theoretical and practical research shows that the risk factors

affecting the whole process of port operation mainly involve four

aspects: personnel, equipment, environment, and management. The

risks include accidents during lifting and transportation, collisions,

falls, and risks associated with working at heights. In terms of routing

decision, the existing efficiency-oriented approaches tend to neglect

the risk objectives associated with the transportation network

conditions (Tarhan et al., 2023). In related literatures and accident

reports, the decision-making panel determines a group of 20 risk

factors involving environment, human, management, and cargo

aspects. One major cause of significant losses is accidents from

fires, explosions, and the resultant adverse impacts from dangerous

cargoes (Tseng and Pilcher, 2023). The main causes of human factors

might be complex, such as the lack of risk perception, the lack of

occupation safety education training, unsafe working behavior, and

personal physical or psychological factors, which can then result in

port accidents (Liou and Tseng, 2024). Therefore, the port operation

requires project planning. It is essential for the operators to provide

education and training for accident prevention, evacuation, disaster

relief, and danger reporting for port operating processes (Lin and Lu,

2023). The application of risk management in daily operations of

ports is becoming increasingly widespread. Construction of smart

ports requires a large amount of capital and manpower support;

however, it is subject to deficiencies due to the limited development

time and the immature technology of the safety management system

(Cui et al., 2023). Tools are directly applicable in ports with forecast

weather variables as input and will support operational decision-

making based on risks that stakeholders assume. It can also be

enhanced by extending the database for both downtime and

weather variables or by including new data such as the period of

container ship movements (Costas et al., 2023). Since the

development of industrial trade has led to large-scale hazardous

cargo operations in ports, it is essential to conduct management of

port safety and prevent the occurrence of accidents (Ma et al., 2024).

To ensure port safety, the related requirements and guidelines

regarding operations of hazardous cargo in ports have been issued

by the International Maritime Organization (IMO). Meanwhile,

the rapid development of shipping trade should inspire automated

container terminals to become smart and safe ports. The efficiency

of smart container ports primarily depends on the synchronization

of an automated guided vehicle (AGV) (Chen et al., 2024) and an

automated crane (Chen et al., 2020). The interaction process between
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the AGV and the yard crane in the side-loading block differs from

that in the end-loading block, as illustrated by a case in the Yangshan

Port in China (Yue et al., 2023). The optimization of the AGV path is

a key step for promoting container terminals, which ensures the

safety of the AGV path and the necessary conditions for efficient

operation of ports (Chen et al., 2024a). In Cai et al.’s (2024a) research,

a novel U-shaped layout and double-cycling operation mode have

been developed, and they indicate that it is capable of generating a

robust pre-scheduling plan with a reduced makespan, along with a

higher number of gap time slots between operations and a more

uniform distribution of these gap time slots. Moreover, Cai et al.

(2024b) propose a novel multi-objective solution algorithm, featured

with a dynamic fitness evaluation method that incorporates two

operators (crowding distance operator and fuzzy correlation entropy

coefficient operator). For the operators of a port, providing suitable

port facilities, flexible support decisions, and contingency plans are

also critical. A port represents an interchange node between land and

maritime transport systems. Gattuso et al. address the problem by

using optimization algorithms to support the decision-making

approach, such as advanced metaheuristics and DT (Gattuso and

Pellicanò, 2023; Almeida and Okon, 2024). It is evident that the safety

of containers in port areas cannot be overlooked. This study examines

a multitude of potential risk factors that could contribute to accidents

in these marine environments, as well as the potential benefits of

adopting the new intelligent digital technologies to enhance the

management and control of the container operations in port areas.
2.2 Safety management in port logistics

There are many barriers in port logistics that restrict the

effective operation of port logistics (Shen et al., 2022).

Subsequently processing and managing the data is a difficult task,

yet it is necessary to do so since it has a significant impact on port

logistics (Kuakoski et al., 2023; Rajak et al., 2024). In smart ports,

safety domain within the logistics sector refers to traditional safety

and cybersecurity problems that involve ports (Pu et al., 2023; Liu

M. et al., 2024). The domain to act on is identified, including safety,

mobility, environment, economy, telecommunications,

government, and community. Sustainable development and

digitalization are designated as the purposes for smart logistics in

ports (Belmoukari et al., 2023; Yang et al., 2023). By analyzing the

storage and risk factors of the port container yard for dangerous

cargo and evaluating the hidden danger of accidents and their

impact scope (Wang andWang, 2023), it is found that the main risk

factors of dangerous goods involve seven aspects: inherent

dangerous characteristics of dangerous cargoes, improper storage

methods, unqualified packaging, inadequate implementation of

port operators’ main responsibilities, weak safety awareness of

practitioners, inadequate safety supervision, and inadequate

emergency response (Verschuur et al., 2023). The aforementioned

results demonstrate that the risk factors associated with the

shipping container storage process are inextricably linked to the

safety awareness and behavior of personnel, the safe operation of

equipment, the enhancement of management systems, and the
Frontiers in Marine Science 04
stability of the surrounding environment. The underlying cause of

this maladministration appears to be a dearth of regulatory

oversight from the government, as there is a lack of legislation

that provides guidance on best practices or minimum requirements

to be met. The government is reticent about sharing information,

which presents a transparency barrier that hinders the development

of a unified information system for all entities to expedite

nationalization processes and negatively impacts transparency

country indicators (Numa-Navarro et al., 2023). Sarantakos et al.

(2024) propose a model that ensures feasible port logistics operation

for all uncertainty realizations defined by robust optimization, while

minimizing operational costs. The findings of their study indicate

that the likelihood of a network constraint violation may reach as

high as 70% in the context of an electrified port, in the absence of

consideration for uncertainty in port logistics. This poses a

significant risk of disruption to port activities, which is

unacceptable. A three-stage digital maturity model has been

developed, which effectively measures digital readiness in port

logistics (Hamidi et al., 2024). The technology, leadership, and

operations dimensions are in the best state, respectively. The results

indicate the need for an office and process automation in the

logistics supply chain of port. The field of port logistics has

enabled a reduction in transportation costs, which, in turn, has

facilitated the growth of the shipping industry through the

ut i l izat ion of logist ics networks and plat forms. The

implementation of blockchain platforms in port logistics domains

(such as port logistics and mobility) has led to the development of

more efficient systems based on digital automation (Pesquera,

2024). In the conventional port, video surveillance is employed to

ensure the security of the container storage area. This entails the

deployment of multiple monitoring probes within the port

premises, with the safety of container stacking operations being

overseen through manual observation and monitoring (Park et al.,

2023). The monitoring method in question is limited in its

capabilities, as it can only query the basic information, quantity,

and location of dangerous cargo containers. Furthermore, it relies

on an administrator to monitor the process, which not only is single

and inefficient, but also lacks the capacity for real-time monitoring

(Ding et al., 2023). The monitoring method in question is limited in

its capabilities, for it can only query the basic information, quantity,

and location of dangerous cargo containers. Concurrently, incidents

resulting from administrator negligence underscore the constraints

of these approaches. Furthermore, the storage requirements of all-

weather surveillance video can be considerable, leading to data

accumulation and increased difficulty in performing queries (Chen

et al., 2024b). In the context of logistics management and intelligent

construction in ports, the introduction of the IoT is a key aspect of

Industry 4.0, as discussed by Zhang Z. et al. (2024). The utilization

of IoT data for real-time interactive chains, particularly in the

domains of logistics, safety, technology, and the economy, is a

significant and invaluable application. Presently, port surveillance

video is primarily utilized for post-accident investigation, lacking

the capacity to facilitate functions such as prevention and auxiliary

decision-making in advance. In light of such deficiencies, the

deployment of cutting-edge digital technologies to bolster the

management of shipping containers has been repeatedly advocated.
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2.3 Real-time monitor for port activity

The development of global ports is predicated on the

integration of information technology, automation, and artificial

intelligence, which collectively facilitate the transformation of port

operations into a more intelligent and efficient system. The Port of

Rotterdam in the Netherlands (Nadi et al., 2021), the Port of

Hamburg in Germany (Molavi et al., 2020), and the modern

ports represented by the United Kingdom, the United States, and

Japan (Wang et al., 2021) are gradually promoting intelligent

monitoring systems. Researchers from various countries actively

explore new methods to assist in monitoring the status of

containers. Merino et al. (2022) conducted a project involving an

ongoing trial applied to monitor the condition of quay cranes using

IoT sensors communicating via 5G technology and employ artificial

intelligence to identify pre-incident trigger conditions in the port.

Without a time tamp reference, data lose its meaning because they

cannot be matched with the real operation of monitored asset in

ports. An algorithm framework for real-time tracking and berthing

aid system using three-dimensional LiDAR data was established in

Chen C. et al.’s (2023) study. An on-site monitoring experiment of

the “Yukun” training ship in Dalian Port was conducted, and the

results demonstrated the feasibility and effectiveness of the method

in the application of ship dynamic target tracking and safe ship

berthing. Nadales et al. (2023) presented a proposed monitoring

strategy for the observation of vessel movement in the Guadalquivir

River. The monitoring system employs a real-time trajectory

comparison with the actual trajectory provided by the AIS

system. This comparison considers a range of parameters,

including position, arrival delay, and vessel speed, to identify

potential incidents (Trujillo-González et al., 2022; Liu Z. et al.,

2023; Bi et al., 2024). There is an increasingly internal requirement

to pursue large-scale power projects that incorporate physical

systems in order to investigate the potential of wide-area

monitoring, protection, and control strategies. It is necessary to

transfer physical power systems from the offline software

environment to a real-time port environment. Thanks to AIS

data, a real-time monitoring system for port container operations

is established (Chen W. et al., 2023), which can effectively monitor

and evaluate port status and support decision-making efforts of all

parties on the shipping supply chain (port, ship enterprise, cargo

owner, shipping agent, etc.). A case study was conducted for the

ultralarge Yangshan Deepwater Automated Container Terminal

Phase IV in Shanghai, China. The experimental results

demonstrated that the proposed DT-based monitoring tool can

assist port operators in evaluating vessel service through optimized

resource allocation plans and operations (Wang et al., 2022). A case

study of the Shenzhen port was then presented, with the objective of

conducting a regional collision risk analysis and developing a safety

management plan for ports. The findings demonstrated that a real-

time monitoring and risk assessment system, which integrates data

on accidents and traffic patterns, can effectively identify high-risk

areas and facilitate improvements in the safety of vessel traffic in

these locations (Li et al., 2023). As Hydro-Québec is engaged in the

development of simulation tools, the potential for software-related
Frontiers in Marine Science 05
issues and challenges is inherent to the process. The specifics of the

activities required for wide-area control explorations at a large-scale

port were outlined in this document (Le-Huy et al., 2023) to further

strengthen the link between big data of environmental contributors

and human factors, as well as to establish a more integrated model

for ports. Commercial sensor networks can be found in Muuga

Port, Townsville Port, Freemantle Port, Hedland Port, Bilbao Port,

Balearian Port, and Tianjin Port (López et al., 2024). The

digitalization system for port management integrates traditional

operational processes with data, algorithms, and computing,

thereby enhancing the comprehensive capacity for innovation in

port management. Moreover, the digitalization system enables the

investigation of novel models and the restructuring of the ecosystem

(Xu et al., 2024). Shanghai Port is intensifying its endeavors to

facilitate an intelligent transformation, having successfully

completed the construction of an ultra-long-distance intelligent

command and control center (Zhang D. et al., 2024). Real-time

monitoring networks of non-conventional container storage require

high-end instrumentation, typically designed for short-term

monitoring, and able to provide high-quality real-time data at

high temporal resolution (Zhang Z. et al., 2024). Real-time

monitors tend to be applied to renewable or alternative cargoes,

including lithium batteries and their associated accessories.

Consequently, ports engaged in international trade are confronted

with intricate complexities and challenges pertaining to compliance.
2.4 Literature summary

The literature review above reveals that the risk factors associated

with shipping container storage are inextricably linked to the safety

awareness and behavior of personnel, the safe operation of

equipment, the improvement of management systems, and the

stability of the surrounding environment. In traditional ports, video

surveillance is used to monitor container storage area, and the safety

management of container stacking operations is carried out by

manual viewing and monitoring. The storage of certain dangerous

cargoes is contingent upon the maintenance of specific temperature

and humidity conditions. Failure to do so may result in chemical

reactions and the potential for explosion accidents. In the event of

elevated temperatures, failure to implement cooling measures in a

timely and efficacious manner can result in the expansion and

rupture of dangerous cargoes within a tank in a container,

ultimately leading to leakage. The conventional monitoring

techniques employed at ports are unable to provide real-time

observation of the changes occurring within the container and its

surrounding environment. The packaging of dangerous cargo may be

compromised as a result of impact during the shipping process. The

exposed dangerous cargoes may spontaneously ignite during storage

in containers, resulting in large-scale fire and explosion accidents.

The tragedies caused by the 12 August 2015 explosion at Tianjin Port

and the explosion at Beirut Port are still fresh in our memories. The

reasons can be attributed to outdated on-site monitoring methods,

inadequate safety management, and inaccurate on-site emergency

response methods. As port scale and complexity of business
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operations increase, large ports should strive to become smart ports.

This is occurring concurrently with an increasingly advanced

demand for port security management. The rapid development of

Industry 4.0 technology represented by a cyber physical system (CPS)

and DT technology, the continuous improvement of port equipment

automation, and the popularity of data sensing methods have

catalyzed the application of DT technology to build intelligent port

auxiliary emergency response. The DT technology facilitates the

fusion of information and physical processes, thereby enabling the

implementation of a holographic visual management and control

mode. This, in turn, serves to advance the transformation of port

operations towards an intelligent operational framework. Table 1
Frontiers in Marine Science 06
highlights some frameworks and relevant models based on DT

technology by various researchers.

Extensive literature reviews above provided various approaches for

safety management in port operation, logistics, and monitoring, based

on specific tools and models. It identified that DT can be used for

demand forecasting and the creation of port virtual models. However,

as all the literatures described show, there are few relevant works in the

dynamical DT model for shipping containers and their hazardous

cargo. Moreover, most of the published works refer to specific high-risk

scenarios in ports and aim to evaluate impacts rather than proposing

DT platform for a systematic risk analysis. Based on this, the current

study is conducted to improve the application of DT-driven safety
TABLE 1 Existing DT theory models and frameworks in the process management.

Category Characteristic Model Framework Advantage Disadvantage
Representative
references

Product
life cycle

Address the human
interactions that lead to

normal accidents.

Three-
layer model

Physical entity,
virtual entity,

and connection.

Core premise for the
model is that information

is a replacement for
wasted physical resources.

Organizational
siloing, knowledge of
physical world, and

number of
possible states.

Grieves and
Vickers, 2017

Physical-to-
virtual

connection

Physical components via
high-level model that is
used for data exchange.

AutomationML
model

Device, user
interface, web service,

query, and
data repository.

A new methodology for
designing a DT system by

the
AutomationML model.

Dynamical addition of
new features onto DT
for updating on its
model structure that

mirrors
physical device.

Schroeder et al.,
2016, 2021

Virtual-to-
physical

connection

A virtual machine tool
for cyber-

physical manufacturing.
CPS 5C

Intelligent connection
layer, data analysis
layer, information
layer, system service

layer, and
feedback layer.

Sensory data and
information are used as
one of the key building

blocks for cyber-
physical manufacturing.

Database using local
PC has limited
computation
capability.

Cai et al., 2017

Parameter

Capacity variables,
system configuration
parameters, control

scheme parameters, and
execution algorithm
primary parameters.

Three-
layer model

Perception layer,
transport layer, and
application layer.

Proposed DT prototype
can provide design with
an intelligent simulation
and optimization engine.

Big data analytics are
not introduced to

identify whether there
is a difference and
find out the cause.

Liu et al., 2018

Twinning rate
DT shop-floor realizes
data integration and
fusion of all factors.

Five-
layer model

Physical entity,
virtual entity, digital
twin data, service,
and connection.

Comprehensive DT
framework that focuses
on connecting physical

product and
virtual product.

Visualization of useful
data into intuitive
expressions in DT

is unproven.

Tao et al., 2018.;
Cheng et al., 2018

Technical
implementation

Augmented reality (AR)
and virtual reality (VR)
are the technologies that

can benefit from
DT implementations.

Four-layer
reference model

Process industrial
physical space,
communication

system, digital twin,
and user space.

The proposed model will
be able to create virtual
modeling of maintenance
processes, preventing

high-risk events
for operators.

Real case studies and
verification is lacking.

Bevilacqua et al., 2020

Perceived
benefit

Cost–benefit ratio of DT
implementing by

incorporating advanced
models and data.

C2PS

Physical entities,
information, point-
to-point relationship,
intelligent service,

and
system application.

Offering a step-by-step
direction for

implementing DT in
apparel

manufacturing industries.

There is a lack of
instruction on

addressing missing
methodology steps
or components.

Alam et al., 2023

Use case
Each case has concurrent
benefit and opportunity

for improvement.

Multi-physical
and AI model

Classification
framework with
seven criteria.

Integrating and
generalizing the different
collected DT use cases.

Cases are collected
over 2 years within

the industrial
community only

in France.

Abisset-Chavanne
et al., 2024
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management and a decision support approach for hazardous cargo

container operations and logistics in ports. The operation and storage

process of containers in ports has consistently been a primary area of

monitoring due to its inherent risk factors. Information technology is

employed to monitor the data flow within the body of dangerous cargo

containers, construct a high-precision synchronousmodel based on the

actual scene, and obtain predictions through optimization algorithms

to facilitate on-site decision-making. The effective combination of

virtual and real-time interactive feedback and decision-making

functions of DT technology will assist ports in transitioning from a

reactive approach to an emergency response following incidents to a

proactive strategy of prevention and preparedness. In addition, it serves

to diminish the likelihood of mishaps during the handling and storage

of hazardous materials in containers at the source, while enhancing the

precision of risk assessment for the operation and storage of such

materials in ports. To this end, the objective is to provide more

scientific means for improving the safety management of smart ports

and provide accurate emergency planning.
3 Methodology and functional
description of digital twin

3.1 Proposed digital twin framework

The necessity for specific DT frameworks arises from the need

to address the unique needs or challenges of particular scenarios or
Frontiers in Marine Science 07
objects in ports. It thus follows that a comprehensive DT framework

for onshore spaces must encompass five critical elements. In order

to reflect the complex dynamic process of a variety of integrated

technologies, this study proposes a five-layer DT model to divide

digital intelligence emergency platform into hierarchical structures:

the physical entity, virtual model, twin data, information

transmission and application services, and realized data

information interaction by connecting each layer for iterative

mapping. The novel implementation of the five-layer DT model

structure combines a dynamic model with a data-driven model

fitted on real-world shipping port data. This significantly

differentiates from previous works in the domain of numerical

models that often used simulation data. The proposed DT

framework for port operations and logistics is illustrated in Figure 1.

This study has constructed a DT-driven framework system,

enabling the creation of a five-layer model structure of DT for

container storage safety in ports. Meanwhile, this study presents

expressions for the model, as illustrated in Equation 1. The DT-

driven frame model is suitable for analyzing safety problems in port

container operation. Meanwhile, the framework is easy to improve

and promote the application to solve safety problems of other port

equipment, such as ship docking operation, yard crane/quay crane

operation, and container transport vehicles.

DT = (Cpr,Cve,Ctd,Cin,Cse) (1)

where Cpr is the physical entity model, Cve is the DT virtual

model, Ctd is the twin data center, Cin is the information transmission

and interaction, and Cse is the application service system.
FIGURE 1

The five-layer model of dangerous cargo container operations and logistics in the port. Source: Models created with Unity, by the authors.
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The physical layer encompasses the entirety of the marine

operation, and the tangible physical model serves as the foundation

for the DT system. The foundation of DT is the physical model of

reality, and the objective is to facilitate the interaction between physical

and informational entities. It is essential that the physical model

incorporates a temporal and spatial decomposition, allowing for the

adaptation of the model according to varying requirements and

management granularity. For this purpose, a mathematical statement

is shown in Equation 2. In order to ensure the safety of marine ports

from a physical operation standpoint, it is essential to consider the

varying time periods of the day and different seasons of the year in the

temporal dimension. Furthermore, it is crucial to prepare for

the importation of the DT model as pre-data. Based on it, the life

cycle and the whole process of the call are realized. In the process of

operational unit decomposition, the container port places particular

emphasis on a number of items that are considered to be high risk,

including dangerous cargo containers, container transport ships, lifting

machinery, and transport vehicles. The interaction and coupling

between each sub-unit collectively constitute a comprehensive,

DT-driven physical model of the port operation process.

Cpr =

C11

C21

C12

C22

⋯
C1m

C23

⋮ ⋱ ⋮

Cn1 Cn2 ⋯ Cnm

0
BBBB@

1
CCCCA (2)

where Cnm represents the different temporal dimensions and

operational units of container ports.

The data layer is founded upon the aggregation of real-time

sensor data and historical data, which are then utilized to construct

a DT model within the model layer. As the fundamental driving

force of the DT system, the virtual twin model represents a basic

core component that enables the realization of a multitude of DT

functions. Its mathematical expression is shown in Equation 3.

Geometric models are used to represent a variety of geometric

parameters and relationships in physical reality, including, but not

limited to, location, size, shape, model, appearance, and connection.

The container serves as an illustrative example, delineating the

positioning of each component, the dimensions of each section, and

the mode of connection. Furthermore, the CAD drawings of the

standard container provide information that describes the

geometric model. In DTs, the Autodesk Maya platform is used

for geometric modeling to transform 2D relationships into three-

dimensional visualizations. Vp is built by combining geometric

models and adding various physical properties, boundary

conditions, load action, environmental information, and so on in

physical reality. The combination of the physical model and the

finite element theory can facilitate the generation of a substantial

corpus of simulation data for analytical purposes. This includes the

thermal response of the dangerous cargo tanks, temperature

distribution in containers, and port wind field analysis. The

accuracy of the DT model can be improved by comparing the

data collected by the simulation and sensor system in real physics,

the dynamic response and behavioral change of the behavioral

model to real physical processes under the influence of external

random factors, and the action of internal operating mechanisms in
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different time and space contexts. The process of container storage

is subject to the influence of the port environment, which may

include conditions such as high temperatures, strong winds, and

heavy precipitation. These external factors can affect the parameters

of a hazardous cargo container, leading to observable changes in its

behavior. The rule model is composed of the historical data and

industry standards involved in the container operation process in

the port and is implemented on the basis of machine learning

algorithms. As a result, the DT continues to intelligently analyze,

predict, and self-update the rule model over time.

Cve = (Vg,Vp,Vb,Vr) (3)

where Vg denotes the parameters and relationships of related

geometric models in physical reality; Vp indicates the various

physical properties, boundary conditions, and environmental

information; Vb is the behavior model; and Vr is the rule model.

The twin data layer is an important driving force of the DT-

driven system, and it is also the data concentration, storage, and

backup center of the whole system. The twin data layer is tasked with

making decisions regarding the data fusion and regression prediction

for all datasets, and is responsible for providing data support for

application function services, as shown in Equation 4. The data

generated by the physical entity is collected by sensors that have been

installed in the hazardous cargo container. This study encompasses

an examination of the temperature, humidity, wind velocity, and the

gas concentration of chemical reaction products. The data are utilized

as the fundamental dataset for the DT-driven system, and the

requisite sample size is contingent upon specific criteria. The data

pertaining to DT are derived from a virtual model that has been

constructed based on the results of numerical simulations. While the

sample size is adequate for the DT data, it is necessary to confirm the

accuracy of the results through comparison with data obtained from

physical entities’ data. The experiential knowledge data are based on

the historical statistics of marine industry in which the port is located,

as well as executive data of industry experts and managers. The fusion

of decision data and regression prediction data constitutes the

comprehensive derived data, which are formed after the deep

learning of basic data using an optimization algorithm. The

accuracy of the data is contingent upon the selection of the

algorithm and the model training, and the data shared in the

system are utilized for the port operations.

Ctd = (Dg,Dp,Dk,Df ,Dr) (4)

where Dg is the data on physical entities in reality, Dp is the data

from the DT model, Dk is the empirical knowledge data, Df is the

fusion decision data, and Dr is the regression prediction data.

The information transport layer functions to realize the real-time

sharing and effective feedback of data and information among

subsystems in the DT system. The efficacy of the information

transmission layer is contingent upon the configuration of the

perception system, network system, and protocol system arranged

in the port. The sensing system consists of the radio frequency

identification (RFID) on the container surface, the sensor inside the

container, and the positioning system. The network system comprises

a wireless local area network (LAN), a 5G communication network,
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and mobile internet. The communication protocol system is based on

application programming interfaces (APIs) and ASCII code

standards. The equation of information transfer layer can be shown

in Equation 5.

Cin = (Cpr ∩ Cve,Cpr ∩ Ctd,Cve ∩ Ctd,Cpr ∩ Cse,Cve ∩ Cse) (5)

The application services layer encompasses the provision of the

cloud-based services offered by DT, including the monitoring of

operational status pertaining to vessels and ports, the classification

and risk classification of accident types, the issuance of accident risk

warnings, and the formulation of accident handling recommendations.

The applications and services represent the primary drivers of DT,

providing a foundational guidance for the remainder of the DT system.

The ultimate value of the DT system is reflected through functional

application, which can be classified into two principal aspects: the

function-oriented service and the application-oriented service. The

function-oriented services tend to fall into three categories: the basic

services, model services, and data services. As a highly effective

instrument within the DT ecosystem, a single application-oriented

servicemay necessitate the involvement of numerous function-oriented

services to ensure its optimal functioning. The application-oriented

services are classified into four distinct categories, each designed to

cater to the specific needs of different computer users. The categories

include the process visualization, key component intelligent

identification, structural behavior intelligent prediction, and random

influence factor analysis.
3.2 Embedded algorithm based on the
combination of CNN and LSTM

The advent of deep learning has precipitated a revolutionary

transformation in the domain of artificial intelligence, culminating in

the attainment of cutting-edge performance on an array of tasks,

encompassing image classification and natural language processing,

among others (Al-Selwi et al., 2024). In the DT-driven system, a

fusion algorithm is embedded in the DT management platform of

port dangerous cargo containers. This study selects seven models,

namely, convolutional neural network (CNN), long short-term

memory (LSTM), bidirectional LSTM (BiLSTM), recurrent neural

network (RNN), gated recurrent unit (GRU), the combination of

CNN and BiLSTM, and the combination of CNN and LSTM. The

experimental tests of different models have yielded discernible

discrepancies in the temperature predictions of each model for the

hazardous cargo container. The evaluation of these models is based

on a comprehensive assessment of various statistical metrics,

including the mean squared error (MSE), root mean squared error

(RMSE), and mean absolute error (MAE). Additionally, the mean

absolute percentage error (MAPE) and coefficient of determination

(R2) are also considered. The results of the evaluation demonstrate

that the predictions of the combination of CNN and LSTM algorithm

for the temperature within a hazardous cargo container exhibit an

MSE of 19.37%, an RMSE of 4.4%, an MAE of 2.58%, and an MAPE

of 7.3%. These values indicate the lowest values in the comparison

results for the selected models. In addition, the R² demonstrates a

value of 0.981, which reveals the highest level of predictive accuracy
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among the models under consideration. The results demonstrate the

superior predictive capability and high precision of the combination

of a CNN and the LSTM algorithm in estimating the parameters

required for this study. Based on the comparison, the combination of

a CNN and the LSTM algorithm is ultimately identified as the

embedded deep learning model of the DT-driven system in the

current study.
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where sc
t-1 is the state of the tuple received by the Inputgate and

Forgetgate at the previous time instant and sc
t is the current status of

the tuple as received by the Outputgate. Upon receipt of the

requisite input data, each gate proceeds to perform the necessary

computations. The activation function determines whether to

initiate the activation process and simultaneously generates the

corresponding output; bc
t is the sc

t memorized output of cell tuples

after combining nonlinear computation with output gate

morphology at time t; at is the input of each unit structure; bt is

the output of each unit structure; W is the weight matrix; Wi is the

weight matrix that connects input signals; Wj is the weight matrix

that connects output signals of hidden layer; and Wk is the

connection tuple activation function that outputs the vector sc
t-1,

the diagonal matrix sc
t, and gate functions.

The LSTM has been specifically designed to address the issue of

vanishing gradients, which renders vanilla CNN unsuitable for

learning long-term dependencies. The output of a traditional

CNN node is determined by the weight, bias, and activation

function. The input to a CNN is a set of related sequence data

that are recursively calculated in the direction of sequence

progression and all neurons are linked by a chain. The LSTM is a

temporal recurrent neural network that has an ability to remember

information over a certain length of time. Concurrently, the

incorporation of the prediction performance into the design of a

DT-driven system for port operation has become a pivotal aspect

that is taken into account. The combination of a CNN and the

LSTM algorithm, with its sensitivity to marine environmental

response characteristics and the ability to generalize hazardous

cargo properties, represents a promising tool for risk assessment.

The main reason why the LSTM neural network can solve the long-

term dependence problem is that the Gate mechanism is added on

the basis of the CNN, which controls the flow and loss of

parameters. Each memory unit consists of a tuple (Cell) and three

gates, ensuring that the gradient can go through many time steps
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without disappearing. For each time t, the state accepted by the

memory unit consists of xi
t at the current time and bh

t-1 at the

hidden unit at the previous time. The expressions of the tuple of

three gate control units are shown in Equations 6-9.

In this study, the Softmax function is selected for normalization

processing; therefore, the output value Yn of the LSTM neural

network is statistically significant, and its probability value

expression can be presented by Equation 10. Determining the

number of Softmax classifiers depends on the specific application

scenario and the characteristics of the dataset. In the neural network

classifiers, the Softmax function is used as an activation function for

the output layer. The number of classifiers depends on the number

of output categories required for the task. In the classification task of

parameters affecting hazardous cargo container operations in the

port, it is necessary to recognize the multiple different object

categories. Consequently, the number of output nodes of the

Softmax layer is equal to the number of categories.

Softmax(Yi) = Y
0
i =

eYi

on
j=1e

Yj
  (10)

where Yi is the input vector, given by (Y0, Y1,…, Yn); n is the

number of classes for the multi-class classifier, and the range of

values for n is from 0 to 20.

The basic LSTM network model framework is updated, and a

prediction model for the dangerous cargo container built by the

combination of a CNN and the LSTM unit is proposed in the

current study. The framework includes five modules, namely,

the input module, the dangerous cargo status identification

module, the encoder, the decoder, and the output module, as

shown in Figure 2.
3.3 Functional description

Safety management is important for the operation of shipping

containers carrying dangerous cargoes. The primary factors influencing

the safety of operations at ports include the personnel, equipment
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(goods), environment, and management. To guarantee operational

safety, it is imperative to implement real-time monitoring and early

warning systems for the operational processes in ports. The digital

intelligence emergency platform, developed with these objectives in

mind, encompasses a comprehensive range of monitoring

components, including the equipment status within the port,

operational data, personnel supervision, container yard observation,

internal container status monitoring, and environmental information

surrounding the port.

The implementation of this digital intelligence emergency

platform, however, presents a number of challenges, which can be

broadly classified into the following aspects:
i. It is necessary to construct a physical entity image model.

The operational process of a marine dangerous cargo

container encompasses a range of activities, including

the loading and unloading of containers, the lifting of

mechanical equipment, the horizontal transportation of

vehicles, and other related behaviors. It is essential to

construct a highly accurate virtual model of the port in a

digital three-dimensional space. In order to achieve three-

dimensional visualization of the container operation

process, it is consistent with the real port in terms of

equipment operating status data.

ii. A compilation of distinctive parameters is assembled

within the shipping container. The status of dangerous

cargoes may undergo alteration during the course of their

operation and storage. The temperature and humidity

sensors are installed in containers to collect relevant

parameter data and facilitate a synchronous display on

the monitoring platform, which enables administrators to

ascertain the status of the hazardous cargo containers at

any given moment.

iii. The system is designed to facilitate the integration of

disparate systems. The monitoring process of the

automatic container loading and unloading in ports is

the primary focus. The real-time monitoring of the
FIGURE 2

Framework of the hazardous cargo status prediction model based on the CNN and LSTM neural network.
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Fron
operating status of port operating equipment and the

synchronous characterization of status information

inside containers are realized in digital three-dimensional

space through scene visualization, data processing, data

analysis, and data fusion. Furthermore, a deep learning

algorithm is developed to predict the status of containers

based on the historical and real-time data, thereby

facilitating digital intelligent monitoring and assisting

port safety managers in promptly identifying and

responding to abnormal conditions.
4 Results and discussion

4.1 Digital twin-based model construction

The DT virtual model is a high-fidelity dynamic model of

physical entity in information space, simulating the real port in

the physical space to achieve a multi-area, multi-equipment, multi-

type of work environment. The system can facilitate a dynamic

simulation environment for operational and storage processes

within a real port container, thereby enabling the monitoring and

management of the container’s internal status and aiding the

operator in making emergency decisions. A virtual model of the

entire port area scene has been constructed using modeling

technology. The model has been developed from four levels:

geometry, physics, behavior, and rules. The geometric shape,

material texture, and behavior rules of the physical entities such

as containers, quay cranes, and yard cranes should be considered in

the modeling process. The hazardous cargo container is transported

horizontally from the hands of the cargo owner to the site, where it

is then lifted by a center dispatching yard crane and conveyed to the

storage yard. This action completes the establishment of a three-

dimensional model and movement trajectory of the entire lifting

process, thereby ensuring consistency with a real port and

facilitating the integration of virtual and real elements. In this

study, the physical entity model is drawn in Maya and 3dMax,

and after exporting fbx files, each model is built in Unity 3D to

completely describe the container handling process. The

construction of a virtual scene is composed of three primary

processes: the creation of a geometric model, the development of

the scene, and the mapping of real-time data. The geometric model

is the foundation of virtual scene construction, and scene

construction is the improvement of the geometric model. The

construction of an entire port scene can be completed by

establishing a single geometric model of the port, comprising the

relevant equipment and facilities. It includes the yard cranes, quay

cranes, containers, container trucks, forklifts, storage yards, berths,

street lamps, gates, and other facilities. The scene construction

includes adding the physical attributes, colliders, scene lights, and

actual materials to the geometric model to make the virtual port

scene more real. Real-time data mapping is carried out to realize the

container operation process of a physical port in a virtual scene by

collecting the operation data, equipment information, container

status, and other information corresponding to the physical port on
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the basis of completion of port scene construction. The objective of

this study is to collate and present a visual representation of the

status data pertaining to dangerous cargo containers.

To illustrate the operational and storage procedures for the

hazardous cargo containers at the Shanghai Port, a three-

dimensional computer-generated model was constructed using

Unity 3D. In this study, the operation process of the containers is

constructed. Figures 3, 4 illustrate the operational processes

involved in the import and export of the shipping dangerous

cargo containers, respectively. The operation scenario of the port

container includes model resources such as a yard crane, a quay

crane, a container truck, a forklift truck, AGVs, a container ship,

and a container, which matches the real operation scenario. It aims

to complete the export process of containers from the storage yard,

truck collection transportation, yard crane transportation, AGV

transportation, and, finally, quay crane loading. The import process,

on the other hand, entails quay crane unloading, forklift container

raising, AGV transportation, yard crane transportation, and truck

collection transportation. In essence, the system is designed to

comprehensively control the import and export operations of

dangerous cargo containers, thereby ensuring the safe movement

of such cargo. The objective is to enhance the safety management of

the operations pertaining to the transportation of dangerous cargo

containers in ports. The operation process of exporting containers

from the storage yard in the port is illustrated in Figure 3.

The hazardous cargo container import operation process in

ports is as follows:
i. Upon arrival at the port, the container ships are equipped

with quay cranes that facilitate the lifting and placement of

containers at the shore crossing.

ii. A forklift is utilized to elevate a container containing a

potentially hazardous material and subsequently deposit it

onto an AGV plane.

iii. The control room is responsible for the operation of the

AGV transport container, which is connected to the bridge

crane via remote control.

iv. Upon arrival at the designated location, the AGV is

remotely operated by the dispatch center to lift

containers and transport them to the container yard.

v. A container truck driver proceeds to the designated

storage yard, loads the container, and subsequently

transports it to the crossing in order to complete the

import container process.
Figure 5 shows the virtual model of the container operation and

logistics process in the port constructed by Unity 3D. In order to

achieve the action unity between virtual models and physical entities,

the principle of geometric variation plays a pivotal role in the Unity

3D visualization scenes. For ensuring the seamless integration of all

models, the scripts are developed and implemented based on

geometric transformation technology, which governs matching the

motion and scene roaming. This study uses the matrix

transformation to realize the free transformation of the model in

three-dimensional space, which is the basic tool for manipulating the

graph element. The geometric transformation of the model is
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achieved by modifying the spatial position of pixels and displaying

the coordinates of the original points in the new spatial position,

including the translations, rotations, and scaling. In Unity 3D, every

GameObject has a Transform property that implements object shift,

rotation, and scaling. The hierarchy of the transform property can be

observed in the Unity 3D Hierarchy panel. The transform is a matrix

operation encapsulated in Unity 3D that enables the realization of a

range of 3D model operations, including translation, rotation, and

scaling, among others. In other words, the matrix operations
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constitute the fundamental basis for the realization of model

actions within a virtual scene. The transform component has three

properties: position, rotation, and scale. By binding the parent

relationship to the model moving parts, mount scripts to moving

parts and call transform.position or transform.Translate() methods to

realize the translation transformation of model objects. Then, rotate

the model through the transform.Rotate() and transform.Rotation

functions. The rotation is achieved by calling the update function,

which rotates each frame in accordance with the desired orientation.
FIGURE 3

The process and the virtual model of hazardous cargo container exports in the port. Source: Models created with Unity, by the authors.
FIGURE 4

The process and the virtual model of hazardous cargo container imports in the port. Source: Models created with Unity, by the authors.
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The rotation method circumvents the issue of universal joint

deadlock that is inherent to the Euler angle method, which relies

on the selection of three axes. Ultimately, the virtual model can be

scaled using transform.Scale().
4.2 Twin data collection and
information fusion

The data are the core driving force of the DT-based platform.

This study collects the data through sensors installed in the

container operation and storage area in the port, and realizes the

real-time data display on the virtual model side of the DT platform.

The status of dangerous cargo containers may change in the process

of import and export, loading and unloading, and storage. The

status of the dangerous cargo is generally related to its current

temperature, humidity, vibration, location, and tilt, and the

temperature inside the container determines the storage

conditions of dangerous cargo. The remote monitoring of

container working status (mainly temperature and humidity) has

become the consensus of the port management. By monitoring

temperature and humidity data in different locations of a fixed

container, this study explores the temperature and humidity

differences in various locations of the container. Furthermore, a

full-scale shipping container is selected for experimental testing in

port operation and storage site. The hazardous cargo container is a

standard 20 feet, with an inner size of 5.898×2.352×2.385 m

(length×width×height). The volume of the testing container is

28 m2, and the load is 18 T. A total of four temperature and

humidity sensors are arranged on the hazardous cargo container

wall in axisymmetric mode. The left middle sensor is placed on the

left side of the container, and the sensor is applied to monitor the

change of characteristic parameters near the innermost side wall of

the container. The sensor is placed in the middle upper part of the
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container, in order to monitor the characteristic parameter changes

of the uppermost side of the hazardous cargo container. The sensor

placed in the lower middle part of the container is designed to

monitor the change of the characteristic parameters at the lowest

point. The right middle sensor of the container is closest to the

container door to monitor the impact of external sunlight from

onshore environment. The data acquisition and sensor layout of the

testing hazardous cargo container is illustrated in Figure 6.

The sensor used in this experiment is RS-WS-WIFI-6, which is an

industrial temperature and humidity transmitter using WIFI for

wireless data transmission. The device makes full use of the

established WIFI communication network to achieve data acquisition

and transmission, so as to realize centralized monitoring of

temperature and humidity data. The twin data are the link between

the physical entity and the virtual model, and the dispatch, operation,

and environmental data related to the real container operation process

are collected by distributing sensors throughout the port area. It

involves the production business data, machinery data, and other

environmental data. The communication interface is developed by

using communication protocols. The communication connection

between the system platform and field operation equipment, the

terminal operation system (TOS), equipment management system,

truck dispatching system, truck positioning system, and other relevant

systems of the port is established, and the twin data of physical

container in the port are collected.
i. Communicate with TOS to obtain the overall port

operation plan, ship information, operation task list of

each container lifting and transportation equipment,

container distribution in the storage yard, container type,

and container number.

ii. Communicate with the equipment management system to

obtain the real-time location and operating speed of the

lifting equipment such as a quay crane and a field crane,
FIGURE 5

DT-based virtual model of port operation and logistics process. Source: Models created with Unity, by the authors.
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spreader expansion size and load condition, container

quality under spreader, equipment fault information, and

other data.

iii. Communicate with the collection truck positioning system

to obtain the real-time location of the operation collection

truck and field crane, quay crane, and other information of

the current service.
The data acquisition in real time serves as the foundation for the

transition from the physical to the digital space. In this study, real-

time data represent the fundamental building block for the

construction of a DT Ad Hoc network model. During the course

of container operations within the port, the sensors generate a

substantial quantity of streaming data. However, the overall quality

of streaming data is inadequate, resulting in a considerable amount

of the noise data and redundant data in real-time data collection.

The construction of a DT Ad Hoc network model is contingent

upon the availability of high-quality, real-time data from the port

DT Ad Hoc network. This study uses a methodology that processes

the aforementioned real-time data, which have been collected from

the port. Non-local means the denoising algorithm is developed for

the purpose of removing the noise data. In the initial stage, the

target denoising point x and the search point y are selected to

construct the neighborhood window. The degree of the similarity

between the target denoising point x and the search point y is

illustrated in Equation 11. A smaller distance between the target

denoising point x and the search point y indicates a higher degree of

similarity between them.
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S(x, y) =
exp½� (Ly (x)�y (y))a� 2�

υ(x)
    (11)

where S(x, y) is the similarity between the target denoising point

x and the search point y; L is the distance between the search

window y(x) and the neighborhood window y(y); a is the

smoothing parameter.

In order to calculate the similarity between all data points y in

the search window, it is necessary to apply Equation 11 to all of the

data points. The neighborhood weight value of the target denoising

point x is calculated based on the results obtained. Non-local means

the denoising algorithm is developed to process the target denoising

point x, resulting in the expression shown in Equation 12.

V(x) = S(x, y) · w (12)

where V(x) is the real-time data of an Ad Hoc network following

the removal of noise and w is the neighborhood weight value of the

target denoising point.

Equation 12 is used for the processing of all data collected by the

port. Following the removal of noise, a self-assembled real-time

dataset of the DT-based system can be obtained, resulting in V={V1,

V2,⋯,Vt}. In this study, the Kalman filter algorithm is utilized once

more for the processing of the redundant data. The real-time

dataset V of an Ad Hoc network can be processed to yield a real-

time dataset of the same network that is free of noise and

redundancy. Accordingly, the dataset is provided for the

construction of the DT Ad Hoc network model of the subsequent

port operation and logistics. The DT Ad Hoc network model is
FIGURE 6

Schematic diagram of data collection in the actual container and digital model conversion. Source: Models created with Unity, by the authors.
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composed of three distinct networks, including an Ad Hoc network,

a twin network, and a service system. The twin network is a highly

realistic replication network that is established on the basis of real-

time data. It is achieved through the implementation of entity

modeling, rule modeling, service modeling, and behavior modeling,

which, in turn, facilitate the realization of the Ad Hoc virtualization

based on a cloud platform. Additionally, the data acquisition

module has been incorporated into the service system to facilitate

the integration of the multi-source data.

Information transmission is the operation support of the whole DT

system, which transmits, iterates, and maps the data of each layer in

real time, including the control instruction data generated in the life-

cycle process. These data cover the user interaction data, job

management data, equipment traffic scheduling data, as well as the

relevant data generated by iterative and real-time mapping with the

data of each layer. In this study, the twin data are cleaned, processed,

and fused, and the database table is established according to the logical

relationship of data for the unified storage and management. By

leveraging advanced sensing, signal transmission, and storage

technology, the system can obtain data with a greater speed,

precision, and completeness. It enables the elimination of the issue of

the information islands and data non-interaction at the container

operation site in the port, facilitating the centralized management and

control of container operations. The system can also monitor and

manage the entire process in the port, providing the personnel with

real-time visibility into the operating status of equipment and the

internal situation of containers. It guarantees the intelligent monitoring

and management of the dangerous cargo containers in the port.

As the foundation of the DT-driven platform, the data

baseboard must integrate and manage all stages, all elements, and

all business information throughout the entire life-cycle process of

port operations and logistics. It is achieved through the use of multi-

source data fusion. In accordance with the DT Ad Hoc network

model developed in this study, the multi-source data gathered from

the service system are loaded, and the multi-source data features are

extracted through the region-based CNN. The high feature

dimension of the multi-source data extracted by the region-based

CNN presents a significant challenge for the conventional models

attempting to achieve a rapid data fusion. Accordingly, this study

develops the creation of a bilinear model. The bilinear pool is an

effective method for capturing the relationship between the features

of the multi-source data and for achieving the fusion of the multi-

source data by incorporating a substantial number of parameters.

The multi-source data collected during the container operations

and logistics in the port is input into the region-based CNN to

extract data features, and the output is the result of the multi-source

data fusion. In addition, unmanned aerial vehicles (UAVs) and the

on-site monitoring camera are used for image acquisition. The

internal processing of the acquired images, and files such as index,

coordinate system, and open scene graph binary data are generated,

respectively. According to the processed data and coordinate system

file, slice cache is carried out to generate the image configuration file

matching the type. This study releases the video picture service of

the hazardous cargo container operation and storage in the port and

invokes it in the DT models and scenario platform.
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4.3 Predictions of optimization algorithm in
the DT-based system

According to statistics on accidents regarding dangerous cargo

in the port, the probability of accidents in conveying machinery and

loading and unloading machinery is higher accordingly. The unsafe

state of the machinery and equipment in the process of dangerous

cargo container operation is mainly analyzed from the safety and

reliability of the port machinery and equipment, storage facilities,

loading and unloading technology, safety facilities, and the

dangerous cargoes’ characteristics. The failure of port machinery

and equipment covers the failure of fixed devices, parts falling,

equipment overturning, equipment breaking, leakage, etc., which

cause lifting injuries, object strikes, and other accidents. Therefore,

real-time monitoring of the environmental wind velocity and air

humidity in the port is extremely important, and these parameters

directly affect the performance instability of the machinery and

equipment during the port operation process. On the other hand,

the focus of this study is on the dangerous cargoes’ characteristics.

Because of unknown situations inside the hazardous cargo

container, the data presented by the DT are essential. Statistics on

the causes of port accidents (Hou et al., 2021; Khan et al., 2022,

2023) revealed that due to the packaging breakage of dangerous

cargoes stored in containers, spontaneous combustion caused by

thermal runaway and moisture caused by dangerous substances

accounted for a high proportion. For the current deficiency of real-

time monitoring inside containers, this study attempts to use the

temperature and humidity sensors to synchronize data to DT-

driven system. The deep learning algorithm in the DT-driven

system is used to analyze a large amount of temperature and

humidity data to identify the potential risk of spontaneous

combustion accidents of dangerous cargoes in containers.

The input module tracks the information of the target container

and the surrounding environment information (e.g., temperature,

humidity, and wind velocity) of the port into the fully connected layer

(FCL) with 128 nodes. The FCL compiles the data information of

each hazardous cargo container at every moment into a strip vector.

In preparation for the data entry into the compiler and dangerous

cargo status identification module, the ReLU function is used as the

activation function in FCL. In the module, the results obtained after

the training test set are output through the output module. Output

one is a two-dimensional vector composed of temperature (°C) and

humidity (%RH) in the target hazardous cargo container, and output

two is a vector composed of probabilities of the different states such as

spontaneous combustion of dangerous cargoes. This study selects the

temperature, humidity, and pressure collected in a fixed hazardous

cargo container in the Shanghai Port from March 2019 to January

2023. The offshore wind velocity and dew point temperature within

the Shanghai Port are subject to monitoring data. The dataset is

divided into three distinct subsets: a training set, a verification set, and

a test set. The training set is developed for the purpose of training

the model, the verification set is utilized for the evaluation of the

model, and the test set is utilized for the determination of the

accuracy of the final predictions. The data sampling process is

conducted on a 30-min time scale, resulting in the acquisition of a
frontiersin.org

https://doi.org/10.3389/fmars.2024.1455522
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Wang et al. 10.3389/fmars.2024.1455522
total of 65,529 data points in the present work. The ratio of the

training set to the test set is 8:2. The correlation coefficient is

calculated to assess the precision of the forecast derived from the

combination of a CNN and the LSTM algorithm. Figure 7 shows the

predicted results of the temperature change in a hazardous cargo

container by using the combination of a CNN and the LSTM

algorithm. The blue dots represent the predictions of the

optimization algorithm in a DT-driven system, while the red dots

depict the actual data collected by the sensor inside the target

container. Through the comparison between data, one can observe

the predictions of status change of the dangerous cargoes in

containers under the influence of different environmental factors in

the port. Figure 7A indicates the temperature change in a hazardous

cargo container when considering the factors of the humidity and

atmospheric pressure in the Shanghai Port. In the case of an

independent variable comprising the two highly correlated factors,

namely, humidity and pressure, the predicted correlation coefficient

reaches up to 0.9868. The results reveal that the integrated

combination of a CNN and the LSTM algorithm can precisely

forecast the temperature within a hazardous cargo container in the

port storage process. This approach can be utilized to generate the

precise prediction data for the service layer of the developed DT-

driven system in the current study.

Figure 8 presents the monitoring data and change trend of the

last 10 days in 2022 when considering the humidity and

atmospheric pressure in the Shanghai Port. The training results

using the combination of CNN and LSTM algorithm are highly

accurate. This not only provides a more precise prediction of the

temperature change trend within the hazardous cargo container but

also generates the data with greater accuracy regarding both the

value and the occurrence time of the peak temperature. Figure 7B

shows the predictions of the combination of a CNN and the LSTM
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algorithm on the temperature inside a hazardous cargo container

when considering the factors of humidity, wind velocity, and

atmospheric pressure comprehensively. The findings indicate that

as the independent variable, namely, the factor influencing the

environmental wind condition in the port, increases, the correlation

coefficient reaches a value of 0.9817. The environmental wind

conditions in the port are a significant factor that is highly

correlated with the forecasted temperature within the hazardous

cargo container. Figure 7C presents the predictions of the

combination of a CNN and the LSTM algorithm on the

temperature inside a hazardous cargo container when considering

the factors of humidity, dew point temperature, and atmospheric

pressure. Upon transforming the independent variables into units

of humidity, pressure, and dew point temperature, the resulting

correlation coefficient reaches 0.9853. In comparison to the

independent variables of humidity and pressure, the predicted

correlation coefficient is diminished. Nevertheless, in comparison

with the independent variables of humidity, pressure, and wind

velocity, the predicted correlation coefficient is observed to be

augmented. The results suggest that the environmental wind

conditions in the port have a stronger correlation with the

temperature of hazardous cargo containers than the dew point

temperature. Figure 7D indicates the predictions of the

combination of a CNN and the LSTM algorithm on the

temperature inside a hazardous cargo container when the factors

of humidity, wind velocity, dew point temperature, and

atmospheric pressure are considered. Upon modifying the

independent variables to include humidity, pressure, wind

velocity, and dew point temperature, the predicted correlation

coefficient is 0.9855. The findings demonstrate that the combined

impact of the environmental wind conditions and dew point

temperature of the port on the temperature prediction in the
FIGURE 7

Influence of different independent variables on temperature prediction inside the container.
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hazardous cargo container is more precise than that of a

single factor.

In addition to the temperature data obtained from the

hazardous cargo container, the combination of a CNN and the

LSTM algorithm is used to predict the parameter of the humidity

inside the hazardous cargo container. Similarly, the corpus of

reading data contained within the collection spans the period

between 2019 and 2023. Figure 9 presents the real-time

monitoring humidity data inside the container in 2022 and the

predicted results using the combination of a CNN and the LSTM

algorithm. The humidity value within a hazardous cargo container

plays a pivotal role in the self-heating and spontaneous

combustion of specific dangerous cargoes that have absorbed

water, particularly when the packaging of such cargoes has been

damaged. In order to analyze the accuracy of port environmental

factors in the combination of a CNN and the LSTM algorithm to

predict humidity data in hazardous cargo containers, this study

conducted the training and prediction of data samples respectively

by using the control group. Figure 9A shows the prediction result

of the optimization algorithm in the DT-driven system on the

humidity inside the hazardous cargo container when considering

the factors of temperature and atmospheric pressure in the

Shanghai Port. Figure 9 illustrates the predictions of the

combination of a CNN and the LSTM algorithm, represented by

blue dots, and the humidity data obtained by sensors in the

hazardous cargo container, represented by red dots. In

comparison, the projected outcomes of the embedding

algorithm in the DT system with respect to the humidity within

the hazardous cargo container are in alignment with the actual

monitoring data. Considering the variables of temperature and

atmospheric pressure in port conditions, the predictive efficacy of

the optimization algorithm utilized in this study is evidenced by a

correlation coefficient of 0.9332. Figure 10 reveals the comparison

between humidity monitoring data in the hazardous cargo
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container and predictions by the combination of a CNN and the

LSTM algorithm within 10 days, and the data collection time is 1

April to 11 April 2022. The results demonstrate that the

embedding algorithm of the DT system is capable of accurately

predicting the change trend in the humidity data within a

hazardous cargo container. Furthermore, for instances where the

humidity peak did not occur within the specified time frame, an

augmented training set comprising a greater number of samples

can be employed to facilitate the incremental enhancement of the

predicted outcomes through the implementation of a modified

CNN and LSTM combination.

When the comprehensive port factors are introduced alongside

the offshore environmental wind conditions, the forecasting results of

humidity data exhibit notable discrepancies, as illustrated in

Figure 9B. As the independent variable increases, the correlation

coefficient of predictions for wind velocity in the port is 0.8919. In

comparison to the two factors of environmental temperature and

atmospheric pressure in the Shanghai Port, the accuracy of the

predictions is less precise. The analysis indicates that alterations in

wind conditions within the port have a notable influence on the

humidity levels of hazardous cargo containers. The incorporation of

the wind velocity as an environmental factor has a direct impact on

the correlation between predicted humidity results and those

observed in hazardous cargo containers. Accordingly, when

developing an identical combination of a CNN and the LSTM

algorithm, critical parameters such as the number of hidden layer

units and the initial learning rate of the CNN and LSTM network

must be optimized to enhance the prediction accuracy. Figure 9C

presents the predictions of humidity data inside hazardous cargo

containers by the combination of a CNN and the LSTM algorithm

when considering the factors of environmental temperature, dew

point temperature, and atmospheric pressure in the Shanghai Port

comprehensively. Upon transforming the independent variables into

environmental temperature, dew point temperature, and the
FIGURE 8

Temperature prediction when independent variables are humidity and pressure of port.
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atmospheric pressure of the port, the predicted correlation coefficient

reaches up to 0.9089. Considering the environmental temperature

and atmospheric pressure of the port, the predicted correlation

coefficient is lower. The results reveal that the offshore wind

conditions within the port have a more pronounced influence on

humidity predictions within the hazardous cargo containers than the

dew point temperature within the port. Figure 9D shows the

predictions of the humidity data in hazardous cargo containers by

using the combination of a CNN and the LSTM algorithm when

considering the environmental temperature, wind condition, dew
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point temperature, and atmospheric pressure in the Shanghai Port

comprehensively. As illustrated in Figure 9D, when the independent

variables are modified to reflect the environmental temperature, wind

velocity, dew point temperature, and atmospheric pressure in the

Shanghai Port, the predicted correlation coefficient shows 0.9181.

The enhanced precision of the long-term trajectory forecasting

illuminates the superiority of the LSTM network, demonstrating

that the prediction accuracy of the internal humidity in hazardous

cargo container environments within the developed DT-driven

system is superior when considering the multiple port-related factors.
FIGURE 10

Humidity prediction when independent variables are temperature and pressure of port.
FIGURE 9

Influence of different independent variables on humidity prediction inside the container.
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4.4 Practical implementation of DT
and recommendations

The DT-based application service provides the functional

modules for each stage of port container operation and storage,

integrating various information systems such as monitoring,

control, analysis, and management. In this study, the DT-based

platform is developed to realize the status monitoring of the

dangerous cargoes inside relevant containers, which is

concentrated in the management and monitoring interface of

shipping containers. The current temperature and humidity data

are collected by the sensors arranged in hazardous cargo containers,

and the parameters in the database are compared to determine

whether the dangerous cargoes are in an abnormal state. In the

event of an anomalous status of the dangerous cargo, the DT-based

platform transmits the requisite information to the monitoring

terminal, thereby prompting the platform operator to confirm and

address the anomalous status. The pertinent processing data

encompass the results of processing, the methodologies

employed, the status of the cargo, the temporal parameters, and

the personnel involved. They also provide the most recent updates

regarding the status of the dangerous cargoes based on the available

information. The DT-based platform is designed to meet precise

and expeditious temperature monitoring requirements for the

hazardous cargo containers, offering comprehensive monitoring

capabilities across diverse environmental conditions. The DT-based

platform is equipped with seamless operating system compatibility,

ensuring a unified operational framework across diverse operating

systems. The DT-based platform carries out real-time monitoring,

intelligent analysis, and online monitoring of temperature and

humidity inside hazardous cargo containers. The evolution of

emergency response procedures has progressed from a reactive

stance to a proactive one, with the objective of fostering a

heightened awareness of the potential hazards, prompt detection,

advanced forecas t ing , prompt intervent ion, and the

implementation of efficacious preventive measures. This approach

aims to enhance the overall capability to safeguard against risks

associated with the storage of dangerous cargo containers. The

implementation of this DT-based system can effectively enhance

the precision of risk assessment during the operation and storage of

hazardous cargo containers in port facilities. Furthermore, it can

significantly mitigate the pressure on the emergency response

group in the event of an incident.

The application service layer realizes functions such as fault

warning, future state prediction, and business deduction in the port

operation process based on data analysis. The DT-based system is

integrated into the same interface and presented to managers in a

manner that is both intuitive and accurate, thereby enabling them to

control the port operation process. Furthermore, it provides

solutions for the real-time monitoring of the operation and

storage of the dangerous cargo containers in the current Shanghai

Port area. By analyzing the relevant factors such as the busy degree

of storage yard, operating machinery, and storage yard space

resources, it helps the operators better complete the assignment

of production business instructions. Because the DT models gather

the state data inside each operation process of the container, it is
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combined with the combination of a CNN and the LSTM algorithm

to predict the temperature and humidity data of the further state

inside the hazardous cargo container, and the interface displays the

state trend in advance. The DT models can better assist the safety

manager in terms of advanced prevention and auxiliary decision-

making. If there is an abnormal situation, assist the operator that

deals with an emergency, effectively reducing the probability of

accidents in port operations and logistics. As shown in Figure 11,

the “Display Container Info” column is displayed on the left side of

the management interface of the DT-based system. It includes the

real-time change of the total number of containers in the port and

the real-time distribution of various types of containers. Click a

container DT model in the scene, and the label information appears

next to the container, including the container number, current

location, size, type, weight, category of dangerous cargoes in the

container, and storage time. The real-time temperature and

humidity data collected by the sensors inside the container is

displayed in the data bar on the right of the interface, which can

set related thresholds. Once the data change or exceed the warning,

the interface shows the abnormal reminder. In addition, the safety

status light of the container DT model changes (safety/check

needed/danger), prompting the operator to check the real-time

status of the container. Click the “View” button; the left side of the

interface is the simulation scene of the DT container models. On the

right side of the interface is the real-time display screen of the

camera around the DT model to assist the operator to view the

status of the container in real time. In the middle of the screen, the

information and contact information of the technician on duty are

displayed, and the troubleshooting suggestion is given accordingly.

The DT models developed in this study also cover the

environmental parameter monitoring and data analysis for the

port. The scope of the DT models includes environment

monitoring, meteorological monitoring, sea level monitoring, and

other port categories. Environment monitoring involves sea quality,

sea temperature, tides, currents, and other factors in the offshore

area of the port, and changes in the above factors affect the safety of

container vessels entering and leaving the port. The DT models

integrated with a CNN and the LSTM algorithm can accurately

grasp the changes of the environment and formulate disaster

response plans in time. Meteorological monitoring includes the

meteorological conditions of the port, such as the wind direction,

wind strength, rainfall, and other monitoring data. Sea level

monitoring covers the monitoring data of the level change around

the port, which is an important factor affecting the safety of

infrastructures such as port transportation roads and bridges. DT

models integrated with a CNN and the LSTM algorithm can issue

early warning information. Through the access of meteorological

data, the DT-driven platform displays the local temperature,

pressure, relative humidity, sunshine time, wind velocity, and PM

2.5 and PM 10 values in real time. Meanwhile, historical data are

saved in the database. The deep learning model is trained through

the combination of a CNN and the LSTM algorithm, and the

predictions change abruptly or reach the set threshold. DT models

integrated with a CNN and the LSTM algorithm prompt the safety

manager to take measures to terminate the relevant operations of

the shipping container in the port. In this way, the safety manager
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can view both the internal and external status of the shipping

container in real time. The interface synchronously displays the

contact information of the technician on duty and prompts

suggestions in handling the dangerous cargo container during

port operation and storage.

The intelligent emergency platform based on DT technologies

for the dangerous cargo containers in the port combines the DT-

based models of the port scene, the real-time monitoring data, and

big data knowledge base to realize the intelligent decision-making of

the whole process of the dangerous cargo container operation and

storage. Combining the DT models and using the combination of a

CNN and the LSTM optimization algorithm, the following

recommendations on safety management and post-accident

emergency measures in port operation and logistics are provided:
Fron
i. DT models help safety managers recall historical

information in a more effective manner. The safety

managers can review the details of the past containers’

operation and storage in real time, without having to stare

at the monitoring interface. For example, safety managers

review the previous night’s operations when they go to

work the next day, reducing the problem of work errors

caused by employees staying up late. It helps to reduce the

pressure and intensity of managers, and improves

effectiveness by using DT-based models and the DT-

driven platform to support safety management.

ii. Applications of DT models enable the safety managers to

anticipate future states in advance. The digital intelligence

emergency platform developed in this study can predict the

status evolution information of the dangerous cargoes inside

relevant containers based on optimization algorithm and big

data. The system function includes disseminating early
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warning information, reducing the possibility of accidental

risk, and assisting various personnel.

iii. DT models offer a synchronous display of the status of port

machinery and equipment. The DT models can interface

with the existing port operation system, collection

truck reservation scheduling system, and logistics

business system, among others. Meanwhile, the DT

models synchronously display the related equipment

information, hazardous cargo information in containers,

onshore/offshore environment, and optimal emergency

measures. Once an equipment has potential risk of

failure, the DT-driven platform informs the safety

manager in time for follow-up maintenance. From the

receipt of dangerous cargoes in the port to the delivery of

the cargo to the owner, the DT-driven platform tracks the

whole process from a three-dimensional space. Owing to

DT models and the real-time monitoring of critical

situations, the safety management of dangerous cargo

containers is carried out in the life cycle, helping

decision-makers to improve their business and optimize

their decisions.

iv. The DT-driven platform can disseminate early warning

information based on the environmental factors in the port.

By integrating local meteorological information with the

machine learning method, the DT-driven platform provides

early warning information considering the operation status of

port equipment and future environmental conditions,

effectively realizing the advance arrangement of on-site

emergency measures and pre-accident prevention,

comprehensively improving the emergency response ability

of the port area, as well as its finances and resources, and

reducing accident losses in ports.
FIGURE 11

DT-based safety management platform for port operations and logistics. Source: Models created with Unity, by the authors.
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5 Conclusions

As a result of the dynamic modeling approaches and the DT-

based model applications in port operations and logistics, the

current work present the following practical findings:
Fron
i. A comprehensive framework is proposed for port

operation and logistics; this study caters to the

simultaneous model connection needs of DT-based

smart ports. A novel five-layer framework is formed

from physical entity, virtual model, twin data,

information transmission, and application services. DT

models are implemented to enable a scalable approach for

combining multiple data outputs with measured

parameters while quantifying uncertainty in port safety

managing solutions.

ii. This study compares seven models for the embedded

algorithm in the proposed DT system, and prediction

results of the combination of a CNN and the LSTM

algorithm exhibit an MSE of 19.37%, an RMSE of 4.4%,

an MAE of 2.58%, and an MAPE of 7.3%. The mentioned

indexes reveal the high prediction accuracy for internal

temperatures of hazardous cargo containers in comparison

to the selected models.

iii. By introducing the Shanghai Port case, the risk performance

evaluation and early warning risk values under various

marine conditions are performed and determined,

respectively, in DT-driven three-dimensional space. DT

models integrated with deep learning function can provide

predictions and indicate the impact of temperature/

humidity levels within hazardous cargo containers. Taking

into account the influence of environmental factors (e.g.,

humidity, wind velocity, dew point temperature, and

atmospheric pressure), the correlation coefficients for

these predictions can reach up to 0.9855 and

0.9181, respectively.

iv. Extensive work has developed a DT-driven platform for

monitoring the status of dangerous cargoes in ports, which

focuses on the interactive management interface of

shipping containers in the Shanghai Port. A change in

the safety alarm of the container prompts the DT-driven

platform operator to ascertain the container’s real-time

status. The DT-based system is better positioned to assist

the port manager in terms of advanced prevention and

auxiliary decision-making.
In future work, we pursue the development of multi-aspect

models to identify changes in the physical structure of supersized

automated ports that are not originally incorporated into the initial

physics-based model, i.e., liquefied gas vessels, energy storage

station for AGVs, hydrogen refueling station, and UAVs. More

work is necessary to employ complicated significant thermorunway
tiers in Marine Science 21
models and damage reduction models to obtain more reliable

applications emerging from our current DT-driven system for

port management.
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López, M., Giner-Cifre, C., López-Lilao, A., Sanfélix, V., Monfort, E., and Viana, M.
(2024). An integrated strategy for air quality monitoring and management in industrial
port areas. Cleaner Eng. Technol. 19, 100729. doi: 10.1016/j.clet.2024.100729

Ma, J., Zhang, A., Tang, C., and Bi, W. (2024). A novel risk analysis method for
hazardous cargo operations at port integrating the HFLC model and DEMATEL
method. J. Loss Prev. Process Industries 89, 105319. doi: 10.1016/j.jlp.2024.105319
frontiersin.org

https://doi.org/10.1016/j.compind.2024.104113
https://doi.org/10.1016/j.dajour.2023.100252
https://doi.org/10.1016/j.jksuci.2023.101846
https://doi.org/10.1002/bse.3842
https://doi.org/10.1016/j.jksuci.2024.102068
https://doi.org/10.5750/ijme.v165iA1.813
https://doi.org/10.1186/s12544-023-00581-6
https://doi.org/10.3390/su12031088
https://doi.org/10.1109/ACCESS.2023.3268711
https://doi.org/10.3390/jmse12071215
https://doi.org/10.1002/prs.12322
https://doi.org/10.1016/j.trc.2024.104755
https://doi.org/10.1016/j.trc.2023.104447
https://doi.org/10.1016/j.promfg.2017.07.094
https://doi.org/10.1002/prs.12419
https://doi.org/10.1016/j.ocecoaman.2023.106836
https://doi.org/10.1016/j.trc.2020.02.012
https://doi.org/10.1016/j.oceaneng.2023.115929
https://doi.org/10.1016/j.oceaneng.2023.115929
https://doi.org/10.1016/j.ocecoaman.2024.107087
https://doi.org/10.1016/j.ocecoaman.2024.107087
https://doi.org/10.1016/j.tre.2022.102633
https://doi.org/10.1109/TITS.2023.3346473
https://doi.org/10.1016/j.jii.2018.04.001
https://doi.org/10.1016/j.jii.2018.04.001
https://doi.org/10.3390/jmse11030536
https://doi.org/10.1016/j.procs.2023.11.111
https://doi.org/10.1016/j.apm.2021.07.039
https://doi.org/10.1155/2023/6909801
https://doi.org/10.3390/jmse11091777
https://doi.org/10.3390/su151411360
https://doi.org/10.1007/978-3-319-38756-7_4
https://doi.org/10.1007/978-3-319-38756-7_4
https://doi.org/10.1016/j.jii.2024.100643
https://doi.org/10.1016/j.oceaneng.2023.116046
https://doi.org/10.1016/j.oceaneng.2023.116046
https://doi.org/10.1016/j.ssci.2020.105101
https://doi.org/10.1016/j.jlp.2021.104711
https://doi.org/10.1016/j.oceaneng.2023.115211
https://doi.org/10.1016/j.oceaneng.2023.114128
https://doi.org/10.1080/03088839.2023.2180548
https://doi.org/10.1080/03088839.2023.2180548
https://doi.org/10.1016/j.epsr.2023.109663
https://doi.org/10.1016/j.ocecoaman.2022.106471
https://doi.org/10.1016/j.trd.2019.04.009
https://doi.org/10.1016/j.ssci.2023.106286
https://doi.org/10.1016/j.martra.2024.100111
https://doi.org/10.1016/j.martra.2024.100111
https://doi.org/10.1016/j.oceaneng.2024.117675
https://doi.org/10.1016/j.oceaneng.2024.117675
https://doi.org/10.1057/s41278-024-00291-3
https://doi.org/10.1109/TITS.2021.3122566
https://doi.org/10.1080/00207543.2018.1471243
https://doi.org/10.3390/jmse11081553
https://doi.org/10.1016/j.clet.2024.100729
https://doi.org/10.1016/j.jlp.2024.105319
https://doi.org/10.3389/fmars.2024.1455522
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Wang et al. 10.3389/fmars.2024.1455522
Merino, J., Sasidharan, M., Herrera, M., Zhou, H., Crespo del Castillo, A., Parlikad, A.
K., et al. (2022). Lessons learned from an IoT deployment for condition monitoring at
the Port of Felixstowe. IFAC-PapersOnLine 55, 217–222. doi: 10.1016/
j.ifacol.2022.09.210

Molavi, A., Lim, G. J., and Race, B. (2020). A framework for building a smart port and
smart port index. Int. J. Sustain. Transportation 14, 686–700. doi: 10.1080/
15568318.2019.1610919

Nadales, J. M., Penã, D., Limon, D., and Alamo, T. (2023). Real-time monitoring and
optimal vessel rescheduling in natural inland waterways. IFAC-PapersOnLine 56, 7880–
7885. doi: 10.1016/j.ifacol.2023.10.023

Nadi, A., Sharma, S., Snelder, M., Bakri, T., and Hans van Lint Tavasszy, L. (2021).
Short-term prediction of outbound truck traffic from the exchange of information in
logistics hubs: A case study for the port of Rotterdam. Transportation Res. Part C:
Emerging Technol. 127, 103111. doi: 10.1016/j.trc.2021.103111

Numa-Navarro, I., Wilmsmeier, G., and Gil, C. (2023). Improving empty container
management using street-turn: A case study of the Colombian logistics network. J.
Transport Geogr. 112, 103709. doi: 10.1016/j.jtrangeo.2023.103709

Park, H. Y., Lee, J. W., Park, S. W., and Son, S. Y. (2023). The monitoring and
management of an operating environment to enhance the safety of a container-type
energy storage system. Sensors 23, 4715. doi: 10.3390/s23104715

Pesquera, M. A. (2024). Automation in logistics port and freight transport with
blockchain technology. Transportation Res. Proc. 78, 394–401. doi: 10.1016/
j.trpro.2024.02.050

Pu, Y., Liu, H., Wang, J., and Hou, Y. (2023). Collaborative scheduling of port
integrated energy and container logistics considering electric and hydrogen-powered
transport. IEEE Trans. Smart Grid 14, 4345–4359. doi: 10.1109/TSG.2023.3266601

Rajak, B. K., Chatterjee, S., and Upadhyay, A. (2024). Exploring the success factors
influencing adoption of internet of things in port logistics: an intertype and
interdomain analysis. IEEE Trans. Eng. Manage. 71, 10026–10039. doi: 10.1109/
TEM.2023.3330912

Raza, M., Prokopova, H., Huseynzade, S., and Lafond, S. (2022). Towards integrated
digital-twins: an application framework for autonomous maritime surface vessel
development. J. Mar. Sci. Eng. 10, 1469. doi: 10.3390/jmse10101469

Sanguri, K., Shankar, S., Punia, S., and Patra, S. (2022). Hierarchical container
throughput forecasting: The value of coherent forecasts in the management of ports
operations. Comput. Ind. Eng. 173, 108651. doi: 10.1016/j.cie.2022.108651

Sarantakos, I., Nikkhah, S., and Peker, M. (2024). A robust logistics-electric
framework for optimal power management of electrified ports under uncertain vessel
arrival time. Cleaner Logistics Supply Chain 10, 100144. doi: 10.1016/
j.clscn.2024.100144

Schroeder, G. N., Steinmetz, C., Pereira, C. E., and Espindola, D. B. (2016). Digital
twin data modeling with automationML and a communication methodology for data
exchange. IFAC-PapersOnLine 49, 12–17. doi: 10.1016/j.ifacol.2016.11.115

Schroeder, G. N., Steinmetz, C., Rodrigues, R. N., Henriques, R. V.B., Rettberg, A.,
and Pereira, C. E. (2021). A methodology for digital twin modeling and deployment for
Industry 4.0. Proc. IEEE 109, 556–567. doi: 10.1109/JPROC.2020.3032444

Shen, L., Yang, Q., Hou, Y., and Lin, J. (2022). Research on information sharing
incentive mechanism of China's port cold chain logistics enterprises based on
blockchain. Ocean Coast. Manage. 225, 106229. doi: 10.1016/j.ocecoaman.2022.106229

Tao, F., Sui, F., Liu, A., Qi, Q., Zhang, M., Song, B., et al. (2018). Digital twin-driven
product design framework. Int. J. Production Res. 57, 3935–3953. doi: 10.1080/
00207543.2018.1443229

Tarhan, I., Zografos, K. G., Sutanto, J., Kheiri, A., and Suhartanto, H. (2023). A multi-
objective rolling horizon personnel routing and scheduling approach for natural
Frontiers in Marine Science 23
disasters. Transportation Res. Part C: Emerging Technol. 149, 104029. doi: 10.1016/
j.trc.2023.104029
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