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Timely and accurate monitoring of typical coastal targets using remote sensing

technology is crucial formaintainingmarine ecological stability. Hyperspectral target

detection technology proves to be an effective tool in extracting various typical

materials along the coastline. Traditional target detection methods using spectral

domain information can effectively retain the intrinsic properties of the material.

However, it is difficult to effectively recognize targets in homogeneous regions by

using only spectral domain information, which may lead to insufficient utilization of

spatial information. In this study, a detector based on signal-to-noise ratio fusion

constrained energy minimization with low-rank sparse decomposition (SFLRSD) is

proposed. This detector improves the separability of background and target by

obtaining spatial domain information from hyperspectral images and fusing spectral

domain information. First, total variation regularization and fractional Fourier

transform are applied to process spatial and spectral domain information,

respectively. The constrained energy minimization (CEM) detector is used to

improve the separability between the target and background of the processed

data. Then, the background and anomalies are represented as low-rank and sparse

components, respectively, using low-rank sparse matrix factorization. This

transforms the model solution into a covariance matrix problem, which is then

solved using marginal distance difference (MDD) to isolate anomalous parts.

Subsequently, the anomaly parts are fused with CEM detector results, weighted by

their respective signal-to-noise ratios. This detection model leverages unified

hyperspectral image features, enhancing spectral discreteness of anomalous

targets and backgrounds. Finally, experiments on custom created hyperspectral

dataset show that the proposed method outperforms other baseline methods in

terms of visualization and quantitative performance. In this paper, we not only
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propose a new hyperspectral target detection method, but we also collect three

typical marine litter of different materials by means of airborne hyperspectral remote

sensing and construct four hyperspectral datasets in a real environment. All the

simulation experiments in this paper are conducted in these four datasets.
KEYWORDS

marine ecology, remote sensing, target detection, hyperspectral imagery, spatial fusion,
low-rank sparsity
1 Introduction

Artificial items of various material types, such as plastic bottles,

metal cans, and fabrics, as well as the wooden debris by

meteorological phenomena such as storms, are often left behind

on human-activated coastlines or riverbanks. Litter of various

materials are harmful to marine ecosystems. Efficient and

accurate monitoring of coastal scattering is of great significance

for ecological environment and coastal defense safety (Yang et al.,

2023; Zhou et al., 2023a; Li et al., 2024). With the development and

maturity of unmanned aerial vehicle (UAV) technology, it plays an

increasingly critical role in the field of high-resolution data

collection at low altitude. Currently, airborne remote sensing (RS)

technology enriches the ways of satellite data acquisition and

provides better support for the information extraction from RS

images. Moreover, satellite RS (Zhong et al., 2021; Sun et al., 2023;

Gong et al., 2024; Yin et al., 2023a; Yin et al., 2023b), UAVs, video

surveillance, and traditional ground manual inspection methods

constitute a comprehensive technical system for the inspection and

monitoring of the water coastline (Li et al., 2021; Li L. et al., 2023;

Zhang, 2023; Zhou et al., 2023b).

Hyperspectral remote sensing is a powerful ground-based

observation technology, different from traditional remote sensing

technology, hyperspectral imagery (HSI) integrates spectral and

spatial information and is a kind of three-dimensional image data

(Bioucas-Dias et al., 2013; Zhao et al., 2023a), which can obtain

detailed spectral information of objects or materials by detecting

hundreds of narrow bands (Hu et al., 2023). In the water shoreline,

hyperspectral remote sensing technology is usually applied to detect

and monitor garbage and other environmental pollutants (Dierssen

et al., 2021), which mainly utilizes the information of continuous

spectral bands collected by hyperspectral imagers, which can

identify and differentiate the spectral characteristics of garbage

and natural wetland environment (Karaca et al., 2013). Therefore,

the increasing popularity and influence of the new remote sensing

method of detecting shoreline litter, such as oceans and seas,

through drone-borne hyperspectral remote sensing has become a

necessary choice in remote sensing for both academia and industry.

This technique has also been successfully used in the fields of

mapping of coastal zones, monitoring of vegetation growth,

estimation of vegetation biomass, extraction of geologic
02
information, and monitoring of river and lake shoreline litter (Ma

et al., 2008; Li et al., 2012; Liu et al., 2014; Liu et al., 2019; Tong et al.,

2016; Bajjouk et al., 2020; Li et al., 2022) and has become a

continuing research hotspot in the field of remote sensing.

With the rapid development of remote sensing technology, in

2012, researchers and scholars have used remote sensing technology

for detecting water surface litter, using a variety of airborne

equipment and achieved good detection results (Veenstra and

Churnside, 2012), Mace (2012) proposed the idea of modeling

analysis methods combined with remote sensing technology for

monitoring the sea area where plastic litter accumulates. Freitas

et al. (2022) collected airborne hyperspectral remote sensing to

acquire a hyperspectral imaging dataset of marine litter, which

contains different plastic targets and other litter targets, and

evaluated the detection and classification of plastic materials in an

unsupervised manner with unknown spectral response of the plastic

materials, and the results showed that the overall accuracy of the

classification of all categories of marine litter in the dataset reached

98.71%. Zeng et al. (2019) constructed a classification network of

Multi-Scale Convolutional Neural Network (MSCNN) using aerial

hyperspectral remote sensing and combining it with the latest deep

learning techniques to solve the problem of monitoring large-scale

garbage, which further combined with image segmentation

techniques to realize the accurate extraction of the location of

large-scale garbage and its size. Freitas et al. (2021) developed a

remote hyperspectral imaging system for monitoring the

concentration of marine litter, which adopts the form of aerial

hyperspectral remote sensing to collect marine litter, and uses

random forest and support vector machine to monitor marine

litter automatically, and the results show a high detection accuracy.

Balsi et al. (2021) developed an automated procedure for identifying

and distinguishing different types of large plastic litter in the coastal

environment using UAV-mounted hyperspectral imaging, and the

effectiveness of the procedure was verified through a field survey

carried out along the coast of Sassari, Italy. Serranti et al. (2018)

proposed a new method based on hyperspectral imaging for

analyzing microplastic litter in the ocean, which is capable of

obtaining detailed information about plastic particles, including

number, size, shape, and polymer type, from individual images.

With the development of hyperspectral imaging technology, in the

field of plastic waste identification, hyperspectral imaging is
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commonly used to identify polymer-based litter (Hu et al., 2013;

Bonifazi et al., 2015a; Bonifazi et al., 2015b; Luciani et al., 2015;

Serranti et al., 2015).

In general, hyperspectral target detection algorithms are divided

into two main categories: anomaly detection and target detection

(Zhao et al., 2020; Zhao et al., 2022). Target detection for

hyperspectral images can be regarded as a binary classification

task aiming to categorize pixels as targets or backgrounds.

Hyperspectral match detection relies on the a priori information

of the target spectra by comparing the deviations of the image pixel

spectra from the target spectra and converting these deviations into

characterization metrics, and then using statistical methods to set

thresholds to achieve target pixel identification. In contrast,

hyperspectral anomaly detection is a type of target detection that

does not require any a priori spectral information, but instead

utilizes mathematical or physical models to identify target pixels

that are significantly different compared to surrounding pixels.

Recently, some researchers have analyzed and studied

hyperspectral spectra in the transform domain. In hyperspectral

image processing, Li et al. (2012) proposed a spectral similarity

measure based on Fourier transform (FT). In order to balance the

differences between high-frequency and low-frequency components,

the method uses the target spectral features as normalization factors.

The above transform only analyzes the spectral in the frequency

domain, and the fractional Fourier transform (FrFT) can better deal

with non-stationary signals compared with the conventional FrFT

(Chen et al., 2014). Currently, FrFT has been used in some remote

sensing image processing. Tao et al. (2019) proposed an anomaly

detection algorithm with fractional Fourier entropy RX (FrFE-RX) and

used it as a feature extraction method to obtain intermediate features

between spectral and Fourier domains. Zhao X. et al. (2021) used FrFT

to project the raw spectral information into the fractional domain and

designed a new adaptive constrained energy minimization

(FACEM) detector.

In recent years, low-rank sparse matrix decomposition

(LRaSMD) (Du et al., 2016; Li et al., 2020) has been paid attention

by many research scholars in the field of hyperspectral anomalous

target detection due to its complete theoretical knowledge and

operability. In the low-rank sparse representation assuming that the

background data are located in multiple low-rank subspaces, Xu et al.

(2015) proposed a background dictionary training method to

separate the outlier pixels by training the background dictionary.

Robust principal component analysis (RPCA) significantly enhances

the robustness of anomaly detection by treating the background and

anomaly targets of hyperspectral data as low-rank and sparse

components, respectively, and combining them with the RX (Reed-

Xiaoli) algorithm for anomaly detection of the sparse component

(Sun et al., 2014). Yao et al. (2022) proposed a nonconvex regularized

approximation model based on low-rank sparse matrix factorization

(LRSNCR) based on RPCA, which is closer to the original problem

than the RPCAmodel, replacing the low-rank and sparse terms of the

matrices with the WNNM (weighted kernel paradigm minimization

method) and Capped l2,1-norm, respectively, and gave an effective

optimization algorithm. Zhao et al. (2023b) proposed a time-series

target detection based on spectral perception and spatial-temporal

tensor decomposition.
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Hyperspectral image processing methods based on tensor

analysis are used in hyperspectral image target detection due to

their ability to maximize the original structure of the hyperspectral

image. Zhang et al. (2008) proposed a tensor-based spatial target

recognition algorithm for hyperspectral images. Liu et al. (2016)

designed a new tensor hyperspectral target detection framework

“Tensor Matched Subspace Detector (MSD)” integrates tensor well

into traditional target detection algorithms, in which hyperspectral

data is stored in the form of a kind of third-order tensor to jointly

utilize the information of multidimensional data. Zhao et al. (2019)

designed a detection method for solving anomalous targets by

localized Mahalanobis distances based on tensor decomposition,

where anomalies and noise are excluded from each factor matrix

after the decomposition to filter out the clean background according

to the definition of tensor Tucker decomposition, and finally

Mahalanobis distances are used to calculate the degree of

anomalies using the sliding double-window method in the

original and background image datasets, respectively. Huang et al.

(2019) designed a hyperspectral remote sensing image change

detection method based on a restricted Boltzmann machine with

a third-order tensor, and obtained good anomaly detection results.

The tensor space-based detection model can analyze and represent

the spatial features of hyperspectral image data more conveniently,

and can improve the detection effect very significantly on the basis

of traditional methods.

He et al. (2015) proposed a total variation regularization low-

rank matrix decomposition method by incorporating total variation

regularization into the low-rank matrix decomposition framework.

The method combines the denoising model with simultaneous

constraints of total variation regularization and low-rank matrix

decomposition, which can effectively retain the spatial edge

information while removing the noise. The necessity of sparse

low-rank simultaneous use for denoising hyperspectral images is

demonstrated. Due to the atmospheric interference and signal

response, almost all of the acquired HSIs are inevitably polluted

by various noises to different degrees (Rasti et al., 2021; Xu et al.,

2022). The noise pollution destroys both initial spectral and spatial

features in HSI. On the one hand, if we discard all these noisy HSI in

subsequent applications, it will lead to severe data waste (Zhang

et al., 2021). On the other hand, if we ignore these noise pollution

problems and directly utilize them for subsequent applications, it

will also disturb the interpretation algorithms (Bruzzone and

Persello, 2009; Zhang et al., 2018). For instance, many works

manifest that the noise pollution problem results in reducing HSI

classification accuracy. However, it is hard to suppress the mixed

noise in HSI through hardware improvement (Kerekes and Baum,

2003; Xiao et al., 2023). Therefore, removing noise in HSI via

denoising algorithms is indispensable before HSI interpretation and

applications (Yuan et al., 2015; Xie et al., 2023). Cheng and Wang

(2019) incorporated the graph and total variation (TV)

regularization into the LRR optimization (GTVLRR). Zhao C.

et al. (2021) utilized a novel enhanced TV with an endmember

background dictionary (EBD) for HSI anomaly detection, which

decreased the impact of anomaly components in mixed pixels.

Cheng and Wang (2020) fused TV and sparsity-inducing

decomposition regularizations to facilitate the separation. Wang
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et al. (2023) proposed a joint anomaly detection and noise removal

paradigm called DSR-ADNR, which develops a double subspace

representation method to obtain both denoised and detection

results simultaneously. Yuan et al. (2012) propose a hyperspectral

image denoising algorithm employing a spectral-spatial adaptive

total variation (TV) model, in which the spectral noise differences

and spatial information differences are both considered in the

process of noise reduction. To reduce the computational load in

the denoising process, the split Bregman iteration algorithm is

employed to optimize the spectral-spatial hyperspectral TV model

and accelerate the speed of hyperspectral image denoising.

This paper mainly focuses on the detection of small and

scattered typical material objects in the waterside shoreline

environment, and creates a hyperspectral dataset by collecting

hyperspectral data of typical material objects in the shoreline in

the field. Then the proposed low rank sparse decomposition

algorithm based on target saliency fusion is utilized for target

detection experiments to provide technical support for ecological

environmental protection. The main contributions of this paper are

as follows:
Fron
(1) Acquisition and creation of hyperspectral dataset of typical

material objects in the waterside shoreline environment.

(2) The spatial and spectral domains of hyperspectral images

are processed using total variation (TV) regularization and

FrFT, respectively, and a new constrained energy

minimization (CEM) detector based on the fusion of

spatial and spectral information is proposed.

(3) The background and anomalies are represented as low-rank

and sparse components using low-rank sparse matrix

decomposition technique, respectively, and the anomalous

part is obtained by converting the model solution into a

problem of solving the covariance matrix through the

Marginal distance difference. Then, a target detector is
tiers in Marine Science 04
proposed based on a signal-to-noise ratio (SNR) fusion

CEM model. This model aims to automatically fuse the

results of low-rank and sparse decomposition by utilizing

the SNR fusion CEM technique. Finally, experiments on the

four self-constructed hyperspectral datasets created show

that the proposed method has better detection performance

than other methods and can better separate background

and anomaly.
2 Methodology

By taking advantage of the feature of spectral unity of

hyperspectral images, the spatial domain of hyperspectral images is

processed with total variation (TV) regularization for noise reduction,

which can preserve the edge information of the images and promote

the segmentation smoothness of the images. Then the spectral

domain of the hyperspectral image is feature extracted by fractional

Fourier transform (FrFT) to enhance the spectral difference between

the anomalous target and the background, and then CEM is used to

further improve the separability of the target and the background,

and to comprehensively utilize the spatial spectral information of the

image to improve the detection effect. Subsequently, the background

and the anomaly are represented as low-rank and sparse components,

respectively, using the low-rank sparse matrix decomposition

technique, and then the anomaly part is obtained by converting the

model solution into a problem of solving the covariance matrix

through the Marginal distance difference. Finally, the obtained

anomaly part and the CEM detector processing results can be fused

by their respective signal-to-noise ratio (SNR) as the weighting

coefficients to obtain superior target detection results, and the

framework of the hyperspectral target detection based on spatial

spectral domain transform fused low-rank sparse decomposition

(SFLRSD) method is shown in Figure 1.
FIGURE 1

Framework of hyperspectral target detection method based on saliency fusion low-rank sparse decomposition (SFLRSD).
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2.1 Constrained energy minimization
detector based on fusion space
spectral information

2.1.1 Spatial domain data processing based on
total variation regularization

Total variation (TV) regularization is frequently employed in

the process of converting hyperspectral images from three-

dimensional (3D) cube images to two-dimensional (2D) matrices.

This technique is used to maintain the local spatial information of

the image segmentation, while also achieving smoothing effects and

removing some of the noise that may be introduced during the

conversion process. Therefore, when target detection is performed

on hyperspectral images, the spatial domain of the hyperspectral

image can first be processed using the TV (Osher et al., 2005), which

preserves the edge information of the image and promotes

segmental smoothing of the image in order to improve the

estimation of the background portion.

Since spatially adjacent pixels can be represented as linear

combinations of background atoms, the spatial regularization

constraints can be expressed in terms of linear combination

coefficients, i.e., low-rank coefficients xi and xj (Niu and Wang,

2016). For any point in the hyperspectral image, the TV regularizer

is represented as shown in Equation 1 (Sun et al., 2022).

TV(X) = o
i,jf g∈U

‖xi − xj‖1 (1)

Where, U denotes the set of points in the spatial neighborhood

of each pixel point.

Introducing the linear operators Gh and Gv in the horizontal

and vertical directions (Iordache et al., 2012), in the two-

dimensional image I ∈ RNx�Ny , Nx and Ny denote the two-

dimensional image width and height, respectively, then the

horizontal direction operator Gh and the vertical direction

operator Gv are shown in Equations 2 and 3.

Gh(I(i, j)) =
I(i, j + 1) − I(i, j) 1 ≤ j < Ny

0 j = Ny

(
(2)

Gv(I(i, j)) =
I(i + 1, j) − I(i, j) 1 ≤ i < Nx

0 i = Nx

(
(3)

For the three-dimensional image, the operations of Equations 2

and 3 are performed for each band in turn. As a result, a linear

operator representation of the horizontal and vertical directions of

the hyperspectral image is obtained as shown in Equations 4 and 5.

GhX = ½d1, d2,…, dN �, di = xi,j − xi+1,j
�� �� (4)

GvX = ½v1, v2,…, vN �, vi = xi,j − xi,j+1
�� �� (5)

Rewrite Equation 1 as Equation 6.

TV(X) = ‖
GhX

GvX

" #
‖1,1 = ‖GX ‖1,1 (6)
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Where, l1,1 -parameters is defined as the sum of l1-parameters of

each column of the matrix. Equation 6 represents the superposition

of vectors in the horizontal and vertical directions.

2.1.2 The fractional Fourier transform based
spectral domain data processing

Traditional hyperspectral target detection methods are based on

the concept that background pixels can be represented by their

spatial neighborhood, while target pixels cannot be represented by

their spatial neighborhood. However, these methods do not

consider transform domain information and are greatly affected

by non-stationary noise. Consequently, the constructed background

model remains influenced by targets and does not fully utilize

background information. Although some hyperspectral target

detection algorithms for deep feature extraction have recently

been proposed by experts and scholars in combination with deep

learning, they all have the disadvantages of high computational

complexity and low target detection performance. However, the

Fourier transform (FT) can effectively extract features in the

spectral and transform domains, and by adjusting the order, it

can reveal the characteristics of the signal in the time domain, the

frequency domain, and the time-frequency domain. In the optimal

order domain, similar signals exhibit significant energy aggregation,

which shows excellent performance for applications such as noise

suppression and target detection (Chen et al., 2014).

The FrFT is a Fourier transform method that uses linear

frequency modulation (FM) orthogonal basis to replace the

traditional complex exponential orthogonal basis, which realizes

the comprehensive acquisition of spectral information between the

frequency domain and the spectral domain by changing the order.

In hyperspectral target detection, by using the optimal order of the

FrFT, the essential features of the image can be extracted in the

intermediate domain, highlighting the differences in spectral

features between the target and the background.

For L-band, the spectral vector N hyperspectral image RL×1, xi
(i=1,2,…,N) is any one of the points, and the spectra are normalized

by rearranging all the spectra of the hyperspectral image into a

matrix (L×N): X = [x1, x2, …, xN] as shown in Equation 7.

X =
X − Xmin

Xmax − Xmin
(7)

The center pixels D (d1,d2,…,dn) of some a priori targets are

selected from the hyperspectral image and the average of these

pixels is calculated as shown in Equation 8.

d =
d1 + d2 +⋯+dn

n
(8)

Where, n denotes the number of a priori targets. The

hyperspectral dataset is projected into the fractional domain after

TV smoothing of the hyperspectral image and the known targets.

The formula for FrFT is calculated as shown in Equation 9.

~xi(u) = (1=L)o
L

f=1

xi(f )Kp(f , u) (9)
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Kp(f , u) =

Afexp½jp(f 2cotf − 2fucscf + u2cotf)�
f ≠ np

d (f − u), f = 2np

d (f + u), f = (2n + 1)p

8>>>>><
>>>>>:

(10)

Where, L is the number of hyperspectral bands; n represents an

integer; f and u represent indices; f represents the rotation angle;

and p represents the fractional order. Af is calculated as shown in

Equation 11.

Af =
exp½−jpsgn(sinf)=4 + jf=2�

sinfj j1=2 (11)

Where, ~xi denotes the original spectral at p=0. When p=1, ~xi is

the FT of the original spectral. ~xi is a complex number, and in order

to utilize the phase information, the magnitude needs to be

calculated as shown in Equation 12.

~xsi = ~xij j (12)

Where, ~xsi is obtained by calculating ~xi size.
2.1.3 Constrained energy minimization model
with fused spatial information

Let the observation dataset S={x1,x2,…,xN}, where xi=(xi1,xi2,…,

xiL)
T, 1 ≤ i ≤ N is a dataset pixel vector, N is the number of pixels,

and L is the number of bands in the hyperspectral image. The CEM

is a FIR linear filter which is represented by an l-dimensional vector

w = w1w2…wlð ÞT that minimizes the energy of the output under

certain conditions, which are constrained as shown in Equation 13.

dTw = o
l

k=1

dkwk = c (13)

Where, d is the target spectral vector of the dataset, w is the

filter; and c is an arbitrary scalar, usually 1. Assuming that the input

xi to the FIR filter produces an output of yi, yi is computed as shown

in Equation 14.

yi = o
l

k=1

wkxik = wTxi =x
T
i w (14)

Where, yi is the output of the linear filter and xi is the input pixel

spectral vector. Therefore, the average output energy produced by

the observation data set S is shown in Equations 15 and 16.

1
N o

N

i=1
y2i

" #
=

1
N o

N

i=1
(xTi w)

TxTi w

" #
= wT 1

N o
N

i=1
xix

T
i

" # !
w

= wTXl�lw (15)

Xl�l =
1
N o

N

i=1
xix

T
i

 !
(16)

Where, Xl×l is the autocorrelation matrix of the observed data

set S. Therefore, the design of the FIR linear filtering algorithm can

be considered as a CEM problem as shown in Equation 17.
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min
w

1
N o

N

i=1
y2i

" #( )
= min

w
wTXl�lw
� �

dTw = o
l

k=1

dkwk = 1

8>>>>>><
>>>>>>:

(17)

If the Lagrange multiplier method is used to solve the above

problem, the FIR linear filter w is shown in Equation 18.

w =
X−1
l�ld

dTX−1
l�ld

(18)

Then, the CEM is shown in Equation 19.

DCEM(x) =
xTX−1d

dTX−1d
(19)

Substituting ~xi into observation dataset S, the observation

dataset is thus replaced by S = ~x1, ~x2,…, ~xNf g, and thus the

detection result D1= (~xi) is obtained by the calculations in

Equation 13 through Equation 19.
2.2 Detection model based on SNR fusion
of CEM and low-rank sparse
matrix decomposition

2.2.1 Low-rank sparse matrix solution based on
fast approximation algorithm

In the field of hyperspectral imaging analysis, it is well known

that anomalous pixels account for a very small proportion of the

overall image, and the vast majority of pixels are background. The

spectral vectors of the background pixels can be linearly

characterized by their neighboring pixels due to their high

interdependence, and these background pixels can reveal the

regularity of their statistical distributions more accurately in a

contracted, low-dimensional subspace. However, the target pixels

in anomaly detection exhibit a high degree of unpredictability and

randomness, presenting obvious sparse distribution characteristics,

in contrast to the dense background pixels. On this basis, the spectra

of the background pixels mostly originate from a mixture of several

common substances, and thus can be considered to be drawn from

several low-dimensional subspace samples, which leads to a low-

rank distribution of the dimensionality of the background. Relying

on this low-rank nature, hyperspectral target detection algorithms

utilizing low-rank and sparse matrix decomposition techniques

have been proposed. The core idea behind such methods lies in

conceptualizing the hyperspectral data set as a high-dimensional

information matrix and separating the background from the

anomalous targets through matrix decomposition methods to

achieve effective recognition of anomalies.

In hyperspectral anomaly detection, to realize the separation of

anomalous and background components, the acquisition of effective

anomalous components can be achieved by low-rank sparse

representation and matrix decomposition strategies (Yu, 2023).

The matrix decomposition method usually decomposes the
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hyperspectral data into three parts: background, anomaly and noise,

and the model can be expressed as shown in Equation 20.

D = L + S + N (20)

Where, D∈RB×N is the acquired hyperspectral data (B denotes

the number of bands and N is the overall number of pixels), L is the

low-rank background, S is the sparse target, and N is the

interference noise. Applying constraints to the background and

the anomalous targets yields as shown in Equation 21.

min
L,S

‖D − L − S ‖2F ,  s : t : rank(L) ≤ r, card(S) ≤ kN (21)

Where, ‖ � ‖F is the Frobenius paradigm, rank( � ) is the matrix

rank, card( � ) is the matrix cardinality value, r is the upper limit of

the degree of matrix low-rank, and k is the upper limit of the degree

of matrix sparsity. The cardinality value k of S denotes the amount

of sparsity and is often referred to as the l0 norm. The solution can

be performed by alternating L and S, L and S are updated as shown

in Equation 22.

Lt = arg min
rank(L)≤r

‖D − L − St−1 ‖2F , St

= arg min
card(S)≤kN

‖D − Lt−1 − S ‖2F (22)

Where, t is the time, from which the L and S values

were obtained.

The raw hyperspectral image data cube (HSI) has spatial and

spectral dimensions H × W × B, which can be rearranged into a

two-dimensional matrix of size B × N, where B represents the

number of spectral bands, H and W represent the height and width

of the image scene, respectively, and N denotes the total number of

pixels in the entire image scene. The spectral features of the

neighboring image elements of the material in the HSI data are

highly correlated, so each spectral vector can be approximated as a

linear combination of several basis vectors. Background images are

usually considered to have low-rank properties. On the other hand,

due to the low spatial resolution of HSI, the anomalies of interest in

the HSI data usually have low probability and represent only a small

portion of the entire image scene, which indicates the sparse nature

of the anomalies.

In recent years, experts and scholars have proposed many

optimization methods for low-rank sparse models, mainly focusing

on developing fast approximations and meaningful decompositions.

Zhou and Tao (2011) proposed a fast approximation algorithm (Go

Decomposition, GoDec) to solve the low-rank background

component and sparse target component. In addition, the GoDec

algorithm explores the low-rank sparse structure and can consider

additive noise simultaneously. The BRP-based GoDec problem can

be solved by minimizing the decomposition error under rank and

sparsity constraints by writing Eq. (20) as X = B + S + N. Where, B

denotes the low-rank background component, S denotes the sparse

target component, and N denotes the noise, and the modeling

problem of GoDec is specified as shown in Equation 23.
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min
B,S

‖X − B − S ‖2F ,  s : t : rank(B) ≤ r, card(S) ≤ kN (23)

Where, r is the upper limit of the rank of B, which can be set

according to the main background end elements, and k is the upper

limit of the base of S, which is called the l0-paradigm of S. The

optimization problem in Equation 23 can be transformed into

solving the following two subproblems alternately until

convergence as shown in Equations 24 and 25.

Bt = arg min
rank(B)≤r

‖X − B − St−1 ‖2F (24)

St = arg min
card(S)≤kN

‖X − Bt−1 − S ‖2F (25)

Low-order approximation theory is used to solve the

subproblems in Equation 24, assuming as shown in Equation 26.

Y1 = XA1

Y2 = XTA2

(26)

Where, A1∈RB×r and A2∈RN×r are random matrices. Where A1

can be obtained by the Matlab randn function which generates

randommatrices conforming to a standard normal distribution and

A2 can be obtained by A2=Y1=XA1. The rank r approximation of

X∈RB×N based on BRP is shown in Equation 27.

B = Y1(A
T
2Y1)

−1YT
2 (27)

For the subproblems in Equation 25, St is updated by the item-by-

item hard-thresholding method of X–Bt-1 as shown in Equation 28.

St = PW(X − Bt−1), W : (X − Bt−1)i,j∈W
�� �� ≠ 0

and ≥ (X − Bt−1)i,j∈�W

��� ���,  Wj j ≤ kN
(28)

Where, PW(·) is the projection of the matrix onto the set W, and

W is a nonzero subset of the first kN largest elements of |X–Bt-1|.
2.2.2 Low-rank sparse decomposition target
detector based on mahalanobis distance

After solving for the low-rank and sparse components of the

matrix using GoDec respectively, the low rank and sparse matrices

are then separated using the Mahalanobis distance method, where

the low-rank background matrix captures the global background

information and the sparse matrix contains the anomaly

information, thus separating the background from the anomaly.

Therefore, the statistical features of the background can be obtained

from the background matrix, and then the detection model can be

created by applying the Mahalanobis distance difference using the

statistical features. The detector can be represented as shown in

Equation 29.

D2(x) = (x − mb)
TG−1

b (x − mb) (29)

Where, mb is the mean of the input background data and Гb is

the covariance matrix of the input background data. mb and Гb can

be estimated from the recovered background component B = [B1,
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…,BN] as shown in Equations 30 and 31.

mb =
1
N (B1 +⋯+BN ) (30)

Gb =
1
N
(B − mb)

T � (B − mb) (31)

The characteristic decomposition of the background covariance

matrix Гb is shown in Equation 32.

Gb = VAVT (32)

Where, V = ½V1V2,…,VB� is the eigenvector matrix, A=diag

(l1l2,…,lB) is the eigenvalue matrix and l1 ≥ l2 ≥ � � � ≥ lB. The
inverse covariance matrix is shown in Equation 33.

G−1
b = VA−1VT =o

B

i=1
l−1
i ViV

T
i (33)

Due to insufficient training samples, the inverse matrix of the

background covariance matrix is usually rank-lossy, especially in

localized methods, when there exists a certain eigenvalue li that is
too small and makes l−1

i significantly higher. Therefore, the inverse

background covariance matrix can be estimated from the first r

largest eigenvalues of the background component vectors and their

corresponding eigenvectors as shown in Equation 34.

G−1
b =o

r

i=1
l−1
i ViV

T
i (34)

In target detection, SNR is commonly used to measure the ratio

between the intensity of the detected target and the intensity of the

background noise, which is often used to describe the quality and

clarity of the detection. The SNR of the CEM and the low-rank

sparse matrix decomposition detection results are calculated

separately, and then the feature vectors of the two are multiplied

by their respective SNRs and then summed up to obtain the final

detection results as shown in Equation 35.

D = D1 ∗ SNR1 +D2 ∗ SNR2 (35)

Where, SNR1 is the D1 signal-to-noise ratio and SNR2 is the D2

signal-to-noise ratio. Table 1
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3 Hyperspectral datasets

3.1 Hyperspectral data set acquisition

3.1.1 Acquisition of experimental systems
The study area and experimental environment are as shown

in Figure 2.

The data in this paper are constructed through UAV

hyperspectral remote sensing experimental acquisition, and the

experiment adopts the UAV hyperspectral image acquisition

system of UAV + hyperspectral imager. The system consists of a

UAV platform and an airborne hyperspectral imager, and the UAV

platform adopts a multi-rotor UAV for hovering and route

planning flight. The airborne hyperspectral imager is a dedicated

airborne hyperspectral imager with a two-axis gimbal, which can

realize two-axis anti-shaking stabilization to reduce the jitter of the

screen when collecting data.
(1) Unmanned airborne platform. The UAV platform used for

the experimental data collection in this project is DJI M300

RTK multi-rotor UAV, with a built-in RTK module that

can realize centimeter-level positioning.

(2) Airborne hyperspectral imager. The hyperspectral imager

used in this experiment is Cubert-X20P airborne

hyperspectral imager, with a spectral range of

350nm~1000nm, covering visible and some near-infrared

spectral bands, and the resolution of the hyperspectral

image is 1886×1886pix. The microcomputer contains the

control software program for the hyperspectral camera, and

by connecting the Cubert-X20P airborne hyperspectral

imager to the DJI M300 RTK UAV, the hyperspectral

imager can be powered by the UAV power supply system.
3.1.2 Data acquisition experiments
(1) Collecting target object statistics. After the previous research

in the experimental area, it was found that the typical garbage in the

environment of the experimental area contains materials such as

metal, fabric and plastic. Accordingly, in the collection experiment

of this study, three types of typical targets, namely metal, fabric, and

plastic, were collected. The statistics of typical target types are

presented in Table 2.

In order to create as realistic a hyperspectral database as

possible of typical material objects in shoreline environments, the

environments for this acquisition experiment were sandy beaches

and water surfaces.

(2) Hyperspectral image data acquisition. Different types of

material objects were collected using a UAV-mounted

hyperspectral imager with a spectral range of 350 to 1000 nm and

an image resolution of 1886 × 1886pixels. The datasets were

collected under sunny weather conditions from 10:30 to 16:30,

thus ensuring sufficient sunlight and the integrity of the

hyperspectral imager’s acquisition bands (Cheng et al., 2022). In

order to ensure the consistency of the quality of the datasets and

reduce the operational error of each dataset during acquisition, the
TABLE 1 CEM method incorporating spatial spectral information
combined with low-rank sparse matrix decomposition algorithm.

Input: hyperspectral data X∈RB×N, r: maximum rank of
the background matrix, k: sparse matrix base.

(1) Initialization: convert X∈RB×N to X=B+S+N.
(2) Calculate the low-rank background component B using Eqs. (23) to (28).
(3) Compute the sparse target component S using Eqs. (23) to (28).
(4) Solve to obtain the result D2(x) using the Mahalanob is distance detector Eq.
(29).
(5) Fuse the result D1= (~xi) from the CEM algorithm with the result D2(x) from
the low-rank sparse matrix decomposition by their respective SNRs to obtain the
detection result D=D1*SNR1+D2*SNR2 by Eq. (35).
Output: detection result D.
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UAV routes were therefore first set up before acquisition, of which

the main parameters of the routes are shown in Table 3.
3.2 Creating datasets

Through field acquisition experiments, the created datasets are

typical material targets in a real shoreline environment, where the

acquisition height is 110 meters. In order to eliminate the influence

of invalid bands, the culled bands were 450-950nm, totaling 126

valid bands. The resolution of the hyperspectral images in the

dataset is 150×150 pixels, and the spatial resolution (GSD) is

3.73cm. In order to ascertain the feasibility and robustness of the

proposed algorithm, the datasets comprised two backgrounds and

three material targets. Figure 3 illustrates the four datasets that were

constructed. Figures 3A, B illustrate the hyperspectral images
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collected under the beach background, while Figures 3C, D)

depict the hyperspectral images collected under the water

background. In total, there are four datasets, each collected under

a different background. The next experiments will be conducted on

these four datasets. Table 4 presents the statistical data regarding the

number of targets for the three materials in the two contexts.
4 Experiments and results

In this section, the applicability of our proposed SFLRSD model

for hyperspectral image target detection is illustrated by analyzing

and discussing the experimental results. The algorithms and

processes in this paper were implemented using MATLAB

language in a PC that was powered by Windows 10 and Core i7-

11800H CPU @2.30GHz by Intel with 32 GB RAM.

Secondly, five hyperspectral target detection methods are

selected in this paper as comparative methods to verify the

detection performance of the proposed method, including CEM

(Harsanyi, 1993), ACE (Pieper et al., 2011), LSMAD (Zhang et al.,

2015), LRSNCR (Yao et al., 2022), TD-IEEPST (Sun et al., 2024). All

five comparison methods are set up in accordance with the

parameters of the original text to optimize their performance.
4.1 Detection performance

The evaluation criteria for hyperspectral image (HSI) target

detection results used in this section contain both qualitative and

quantitative aspects. Qualitatively using the difference between the

target brightness and background contrast, as a visual display of the

detection results, generally the larger the target image element

percentage, the brighter its corresponding image element the

better the detection effect. Quantitative evaluation indexes of
FIGURE 2

The study area environment. (A) Experimental environment. (B) Sensor and targets.
TABLE 2 Statistics of typical waste targets.

Category Target
Size
(unit:

centimeters)
Physical Image

Metal
Aluminum

cans
13*20

Fabric Life jackets 30*40

Plastic
Plastic
garbage
bags

28*34
TABLE 3 Main parameters of drone routes.

Major Category Parameters

Flight Height 110m

Flight Speed 10m/s
frontiersin.org

https://doi.org/10.3389/fmars.2024.1452737
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Zhao et al. 10.3389/fmars.2024.1452737
detection effect are receiver operating characteristic (ROC) curve,

ROC area under the curve (AUC) value (Hou et al., 2021) and AUC

values the signal to noise probability ratio (AUCSNPR) (Chang, 2020;

Li Z. et al., 2023).

(1) ROC curve. The ROC curve is an index for quantifying

target detection and evaluating the technical performance ofB

hyperspectral images based on the real information about the

location of anomalies in the hyperspectral images, which

quantitatively analyzes the performance of the target detection

method by comparing the detection value with the reference

information of the anomalous target. Generally, in the ROC

curve, the horizontal axis is the false alarm rate (FAR) and

the vertical axis is the detection rate (PD). The false alarm

rate (FAR) and detection rate (PD) are defined as shown in

Equations 36 and 37.

FAR =
Nfd

Na
(36)

PD =
Ncd

Nt
(37)

Where, Nfd symbolizes the background pixel counts that are

incorrectly judged as anomaly pixel counts and Na symbolizes the

total counts of pixels in HSI. Ncd represents the detected anomaly

pixel counts and Nt represents the total counts of anomaly target

pixel in the HSI.

(2) AUC value. When the ROC curves of two target detection

algorithms intersect or are closely adjacent to each other, it indicates

that these algorithms have mutual advantages and disadvantages in

terms of detection probability at different false alarm probability
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levels, which makes it difficult to directly discriminate the

advantages and disadvantages of the algorithms by the ROC

curves. In this case, in order to accurately compare the detection

performance, the AUC (area under the ROC curve) value can be

used as a comprehensive evaluation index. The AUC value

represents the area of the region between the ROC curve and the

false alarm probability axis, and the closer its value is to 1, the better

the performance of the algorithm is, and in the ideal case, the AUC

value reaches the maximum value of 1. The AUC is calculated as

shown in Equation 38.

AUC ¼
Z +∞

0
FROC(x)dx (38)

Where, FROC represents the ROC curve function.

(3) AUCSNPR value. A recent study (Chang, 2020) deeply

analyzed the evaluation tools for hyperspectral target detection

and proposed AUCSNPR to evaluate background suppressibility.

AUCSNPR is calculated based on the 3-D ROC curve. In addition to

PD and FAR, the 3-D ROC curve introduces the segmentation

threshold t as the third variable, which is sampled from the

anomaly score map with max-min normalization. A 3-D ROC

curve can generate three 2D ROC curves, which take (PD, FAR),

(PD, t), and (FAR, t) as variables, respectively. Similar to Equation

38, the AUC value under the 2D ROC curve (PD, t) is calculated as

shown in Equation 39.

AUCd,t =
1
2o
p−1

l=1

(t l+1 − t l)(PDl+1 + PDl) (39)

And the AUC value under the 2D ROC curve (FAR, t) is

calculated as shown in Equation 40.

AUCf ,t =
1
2o
p−1

l=1

(t l+1 − t l)(FARl+1 + FARl) (40)

Then, the AUCSNPR value is calculated as shown in Eq. (41).

AUCSNPR =
AUCd,t

AUCf ,t
(41)

A larger AUCSNPR value means a better background

suppressibility of hyperspectral target detection methods.
FIGURE 3

The pseudo-color 3D cube image of the four datasets. (A) Dataset-A: metal material for beach background. (B) Dataset-B: plastic material for beach
background. (C) Dataset-C: fabric (life jacket) material for water background. (D) Dataset-D: plastic material for water background.
TABLE 4 The number of targets of different materials in two scenarios
(unit: pcs).

Target Beach background Water background

Metal 4 4

Fabric
(life jacket)

3 3

Plastic 3 3
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FIGURE 4

Detection maps by Dataset-A. (A) Pseudo-color image for Dataset-A. (B) Ground truth image for Dataset-A. (C) CEM. (D) ACE. (E) LSMAD. (F)
LRSNCR. (G) TD-IEEPST. (H) SFLRSD.
FIGURE 5

Detection maps by Dataset-B. (A) Pseudo-color image for Dataset-B. (B) Ground truth image for Dataset-B. (C) CEM. (D) ACE. (E) LSMAD. (F)
LRSNCR. (G) TD-IEEPST. (H) SFLRSD.
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4.2 Analysis of detection performance

In this section, the detection performance of the proposed

hyperspectral target detection algorithms is analyzed through four

sets of comparative experiments, starting with a visual detection

result analysis, where the six methods are tested in each of the four

different datasets (Dataset-A, Dataset-B, Dataset-C, and Dataset-D).
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Figures 4–7 show the detection plots of the different methods on

each dataset, the brighter the pixel in the plot, it also means the

higher the chance of being the target pixel.

The visualized detection results of the various algorithms on the

four datasets are shown in Figures 4–7. Figure 4 illustrates the

detection results for Dataset-A, where the ACE algorithm detects all

the targets but its suppression of the background is not as good as
FIGURE 6

Detection maps by Dataset-C. (A) Pseudo-color image for Dataset-C. (B) Ground truth image for Dataset-C. (C) CEM. (D) ACE. (E) LSMAD. (F)
LRSNCR. (G) TD-IEEPST. (H) SFLRSD.
FIGURE 7

Detection maps by Dataset-D. (A) Pseudo-color image for Dataset-D. (B) Ground truth image for Dataset-D. (C) CEM. (D) ACE. (E) LSMAD. (F)
LRSNCR. (G) TD-IEEPST. (H) SFLRSD.
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that of the SFLRSD algorithm. The CEM algorithm also detects all

the targets but again its suppression of the background is not as

good as the SFLRSD algorithm. The TD-IEEPST algorithm also

detected all targets, but it also had many false targets, and was the

algorithm with the most misdetected targets among the comparison

algorithms. Although the LSMAD and LRSNCR algorithms

suppress the background well, they both detect only some of the

targets, and are the algorithms with the most missed targets. Our

SFLRSD algorithm not only detects all the targets but also has the

most superior suppression of the background. Therefore, in the

detection results of Dataset-A, our proposed SFLRSD algorithm has

the best detection results. Figure 5 demonstrates the detection

results of Dataset-B, in which the ACE and CEM algorithms can

obviously detect two targets, but are not good for the third target,

especially the third target of the CEM algorithm is almost mixed

with the background. The TD-IEEPST, LSMAD and LRSNCR

algorithms almost completely confuse the target with the

background, and it is difficult to distinguish the target from the

background, and these three algorithms have poor detection results.

It can be seen that our SFLRSD algorithm is able to detect the three

targets completely, and the detection effect is also good, and the

suppression of the background is also the best. Figure 6 shows the

detection results of Dataset-C. The ACE and CEM algorithms are

only able to detect two targets, especially the CEM algorithm has
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more obvious miss detection. The TD-IEEPST algorithm is able to

detect all targets obviously, but the suppression of the background is

very poor and there are some false detections. The LSMAD and

LRSNCR algorithms have good suppression of the background, but

they both detect only some of the targets. Our SFLRSD algorithm

not only detects all targets, but also suppresses the background well.

Figure 7 shows the detection results for Dataset-D. The ACE, CEM

and TD-IEEPST algorithms are able to detect all the targets, but the

suppression of the background is poor, especially the TD-IEEPST

algorithm detects a large amount of background as a target.

Although LSMAD can suppress the background well, it only

detects one target, and there is a serious leakage. The LRSNCR

algorithm not only suffers from the problem of missed detection,

but also has poor background suppression. It can be seen that our

SFLRSD algorithm is able to detect all targets and also suppresses

the background well, with the best detection effect. Therefore, by

comparing the detection results on the four datasets, our proposed

algorithm has the best detection results, which is not only able to

detect all targets, but also able to suppress the background well.

Our algorithm achieves the best detection results because we

first perform full variational regularization noise reduction in the

spatial domain of the hyperspectral image to remove the noise due

to equipment, environment, etc., and promote image smoothness.

The spectral discreteness of the anomalous target from the
FIGURE 8

The ROC for four datasets. (A) Dataset-A. (B) Dataset-B. (C) Dataset-C. (D) Dataset-D.
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background is then enhanced using fractional order Fourier

transform. We then fused the results of target detection and

anomaly detection using a signal-to-noise ratio-based approach,

which fuses the advantages of both while removing the

disadvantages of both, and is able to enhance the separation of

the target from the background and improve the detection rate.

Therefore, by comparing the detection results of the SFLRSD

algorithm for the four datasets, it can be concluded that the SFLRSD

algorithm is more effective in detecting the water surface targets than

the beach environment, which may be due to the presence of more

materials of similar material in the beach environment generating a

higher number of mixed image elements. Relatively less clutter exists in

the water surface environment, but the stronger reflection of sunlight

from the water surface also leads to a decrease in the detection effect.

Figure 8 shows the ROC curves for four datasets using different

methods, where SFLRSD is the corresponding ROC curve of the

proposed method. As shown in Figure 8A, the ROC curve of the
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proposed algorithm has a clear trend and is always at the top,

wrapping around the other curves, and the PD value of the SFLRSD

algorithm is larger than the other schemes at the beginning, and

after that, the proposed algorithm still has a high probability of

detection and a low FAR. As shown in Figure 8B, the SFLRSD

algorithm has a smoother curve when the FAR is small and keeps

wrapping the other curves at the top, and the PD value is much

larger than the other algorithms at the same FAR. As shown in

Figure 8C, LSMAD is at the top when the FAR is small, and then it

is intertwined with SFLRSD and then covered by SFLRSD, after

which the SFLRSD algorithm has been at the top wrapping the other

curves. As shown in Figure 8D, when the FAR is small, SFLRSD has

a large PD value, while the other algorithms have smaller PD values,

and the SFLRSD curve has been at the top wrapping the other

curves. The ROC curves of our method almost always wrap around

the ROC curves of the other methods and cover them, with SFLRSD

having a higher PD and lower FAR. Therefore, the proposed
TABLE 5 PD values for different detectors on four datasets when FAR is 0.1.

Algorithms CEM ACE LSMAD LRSNCR TD-IEEPST SFLRSD

Dataset-A 0.9027 1.0000 1.0000 0.9558 0.9735 1.0000

Dataset-B 0.9840 0.8920 0.7760 0.5920 0.6480 0.9960

Dataset-C 0.8077 0.8322 1.0000 1.0000 1.0000 1.0000

Dataset-D 0.9615 0.6731 0.7949 0.8846 0.9487 1.0000
TABLE 6 FAR values for different detectors on four datasets when PD is 0.9.

Algorithms CEM ACE LSMAD LRSNCR TD-IEEPST SFLRSD

Dataset-A 0.0712 0.0067 0.0080 0.0145 0.0678 0.0023

Dataset-B 0.0273 0.1087 0.2469 0.5574 0.4790 0.0123

Dataset-C 0.9506 0.2652 0.0102 0.0122 0.0131 0.0048

Dataset-D 0.0202 0.9624 0.1381 0.1230 0.0460 0.0009
TABLE 7 AUC values of different algorithms for four datasets.

Algorithms CEM ACE LSMAD LRSNCR TD-IEEPST SFLRSD

Dataset-A 0.9254 0.9968 0.9977 0.9704 0.9713 0.9994

Dataset-B 0.9881 0.9478 0.9214 0.8357 0.8233 0.9948

Dataset-C 0.8542 0.9333 0.9969 0.9961 0.9959 0.9990

Dataset-D 0.9868 0.7364 0.9647 0.9561 0.9862 0.9994
TABLE 8 AUCSNPR values of different algorithms for four datasets.

Algorithms CEM ACE LSMAD LRSNCR TD-IEEPST SFLRSD

Dataset-A 4.9693 12.8328 13.8463 5.6611 4.4306 17.5761

Dataset-B 4.1101 13.8959 4.0590 2.2684 2.8061 19.4009

Dataset-C 3.6911 17.0962 17.8302 12.1066 7.0424 25.7517

Dataset-D 4.0811 4.8520 12.1180 4.9375 4.8447 20.5797
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FIGURE 9

The AUC value of SFLRSD algorithm in four datasets.
FIGURE 10

Statistical separability comparison for four datasets. (A) Dataset-A. (B) Dataset-B. (C) C Dataset-C. (D) Dataset-D.
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TABLE 9 Execution times of different algorithms in the four datasets (unit: seconds).

Algorithms CEM ACE LSMAD LRSNCR TD-IEEPST SFLRSD

Dataset-A 0.0149 0.4145 8.8883 17.7754 0.3710 18.7269

Dataset-B 0.0125 0.3094 8.7277 16.7303 2.9021 18.6818

Dataset-C 0.0162 0.3303 8.1177 22.3435 9.1952 19.0549

Dataset-D 0.0115 0.3113 8.2987 17.6235 9.1399 18.9280
F
rontiers in Marine Scien
ce
 16
FIGURE 11

The 3D ROC for four datasets. (A) Dataset-A. (B) Dataset-B. (C) Dataset-C. (D) B Dataset-D.
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method performs much better than the other methods on the

ROC curve.

Table 5 lists Table II lists the PD values of the six comparison

algorithms when FAR is 0.1. The PD values of SFLRSD are 1.0000,

0.9960, 1.0000, and 1.0000 for the four datasets when FAR is 0.1,

respectively. The optimal PD values of the remaining algorithms in

the four different datasets are 0.9735, 0.9840, 0.8322, and 0.9615,

respectively. These values are poor relative to the AUC values of

SFLRSD. Table 6 lists Table II lists the FAR values of the six

comparison algorithms when PD is 0.9. The FAR values of SFLRSD

are 0.0023, 0.0123, 0.0048, and 0.0009 for the four datasets when PD

is 0.9, respectively. The remaining algorithms have the smallest

FARs of 0.0067, 0.0273, 0.0102, and 0.0202, respectively.

These values are large relative to the FAR of SFLRSD. These

results demonstrate the effectiveness of the proposed SFLRSD.

Table 7 lists the AUC values of the objective indices obtained for

each dataset using different methods for anomaly detection, and

SFLRSD in the table is the ROC value corresponding to the

proposed method. The AUCs of the proposed SFLRSD on the four

datasets are 0.9994, 0.9948, 0.9990, 0.9994, respectively. In addition, the

second largest AUCs on the four datasets are 0.9977, 0.9881, 0.9969,

0.9868, which are not higher than that of our method.

Table 8 lists the AUCSNPR values of the six comparison

algorithms. The AUCSNPR values of SFLRSD are 17.5761, 19.4009,

25.7517, and 20.5797 for these four datasets, respectively. The

optimal AUCSNPR values of the remaining algorithms in the four

different datasets are 13.8463, 13.8959, 17.8302, and 12.1180,

respectively. These values are poor relative to the AUCSNPR values

of SFLRSD.

The AUC values of our SFLRSD algorithm on the four datasets

are presented in Figure 9. A comparison of these values reveals that

the detection performance in the same background decreases as the

size of the target increases. A comparison of the AUC values of the

same target in different backgrounds indicates that the AUC value

of the water background dataset is greater than that of the beach

background. Consequently, it can be posited that the detection

performance of the SFLRSD algorithm is contingent upon not only

the size of the target, but also the complexity of the background in

the dataset.

In order to further evaluate the algorithms suppression of

background and separation of target, we added Box Plot to

evaluate and explain the separability between target and

background of the algorithm SFLRSD proposed in this paper and

the comparison algorithm. In Box Plot, we use blue and red color to

represent the background and target, respectively, and the height of

the blue box and the red box indicates the suppression of the

background and target by different algorithms (the values of the

background and target). In hyperspectral target detection, the lower

the blue box is, the more severely the background is suppressed. The

distance between the red box and the blue box indicates how well

the algorithm separates the background and the target, the larger

the interval, the better the separation of the target, which means that

the algorithm has a better separation. Figure 10 gives a box-and-line

plot of the separation between the target and the background based

on the detection values, which reveals the separability of the target

and background pixels to measure the detection performance. As
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shown in Figure 10A, the SFLRSD algorithm is able to highlight the

target while suppressing the background better and the distance

between the red and blue rectangles is larger than the other

comparative methods, which suggests that SFLRSD can separate

the anomalies from the background better and more convincingly.

As shown in the box line plots of the other three datasets in

Figures 10B–D, it can be seen that the proposed SFLRSD can

easily identify the desired target from the background.

In order to analyze the experimental results in more detail, we

also used a three-dimensional receiver operating characteristic

curve (3D ROC) analysis. Chang (2020) developed an effective 3D

ROC analysis-based evaluation tool, which extends the traditional

ROC analysis by including the threshold t as an additional

independent parameter to represent a 3D ROC curve as a

function of three parameters, detection rate (PD), false alarm rate

(PF), and t. As a result, a 3D ROC curve can be generated by a triplet

parameter vector specified by (PD, PF, t) and it can also be used to

two ROC curves of (PD, t), and (PF, t), and the ideal values of (PD,

t) and (PF, t) are 1 and 0, respectively. Figure 11 shows the 3D ROC

curves for four datasets using different methods, where SFLRSD is

the corresponding 3D ROC curve of the proposed method. As can

be seen from Figure 11, the SFLRSD algorithm performs better with

high PD and low PF in all the datasets. This corresponds to the ROC

curves, AUC values, and AUCSNPR values, which indicates that our

algorithm has a high detection rate and a low false alarm rate.

We counted the running time of the six algorithms on the four

datasets, as shown in Table 9. Table 9 shows that our SFLRSD

algorithm runs for 18.7269s, 18.6818s, 19.0549s, and 18.9280s on

the four datasets, and the comparison algorithms run for the longest

time of 17.7754s, 16.7303s, 22.3435s, and 17.6235s, respectively.

Our algorithm has the longest running time on most of the datasets,

so it can be concluded that the computational efficiency of our

algorithm is not the best compared to the comparison algorithms,

and this is something we need to improve.
5 Conclusions

In this paper, we used aerial hyperspectral remote sensing to collect

hyperspectral images of typical material targets in shoreline

environments to create four hyperspectral datasets in beach and

water environments. We propose to present a hyperspectral target

detection algorithm based on target saliency fusionwith low-rank sparse

decomposition. The research content of this paper can not only provide

some theoretical basis for the monitoring of coastal scattered garbage,

but also provide a new method and new ideas. First, processing the

spatial domain information and spectral domain information separately

not only preserves the edge information of the image and promotes

image segmentation smoothness, but also enhances the spectral

distinctiveness of the anomalous target from the background. Then, a

target detection model based on SNR fusion CEMwith low-rank sparse

decomposition is proposed, which can make full use of the spectral

information as well as obtain excellent targets. In order to verify the

robustness and feasibility of the proposed algorithm, comparison

experiments are conducted on four datasets created by the waterside

shoreline environment, and after analyzing the visual detection results,
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the proposed algorithm is able to detect the target on all datasets. After

comparing the remaining five algorithms, the experimental results show

that the proposed method has the highest AUC value and obvious

background suppression and target extraction ability in all datasets.

Meanwhile, there are still some shortcomings, which need to continue

further exploration and research. The iterative optimization speed of

our algorithmmay be less dominant, so shortening the running time or

speeding up the convergence speed is an important aspect worth

improving. The number of targets collected in this paper is small, and

the dataset needs to continue to accumulate and expand.
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