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and Keji Jiang1*
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East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China,
2Laoshan Laboratory of Qingdao Marine Science and Technology Center, Qingdao, China, 3College of
Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai, China,
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The chub mackerel (Scomber japonicus) is one of the most influential small

pelagic fish in the Northwest Pacific Ocean, and accurate modeling approaches

and model selection are critical points in predicting the Scomber japonicus

fishing grounds. This study investigated the changes in catches and fishing days

on no moonlight and bright moonlight days (2014-2022) and compared the

differences in predictive performance between the LightGBM and RF models on

three datasets under the two modeling approaches [those based on the light

fishing vessels operational characteristics (Approach one) and those not

(Approach Two)]. The results were as follows: 1) Stronger moonlight intensity

(e.g., full moon) can limit the fishing efficiency of light fishing vessels, with most

years showing a trend of a higher percentage of fishing days on bright moonlight

days than catches percentage, i.e., no moonlight days resulted in higher catches

with lower fishing days; 2) Compared to Modeling Approach Two, under

Modeling Approach one, RF model achieved better predictive performance on

dataset B, while the LightGBM model achieved better predictive performance on

both datasets A and B; 3) Overall, the Approach One achieved more satisfactory

prediction performance, with the optimal prediction performance on the

complete dataset C improved from 65.02% (F1-score of the RF model,

Approach Two) to 66.52% (F1-score of the LightGBM model, Approach Two);

4) Under the optimal modeling approach (Approach One) and the optimal model

(LightGBMmodel), the differences in the importance of the variables on dataset A

(no moonlight days) and dataset B (bright moonlight days) were mainly centered

on the environmental variables, with CV, SLA, and SSS being the most important

in dataset A, and CV, DO, and SLA being the most important in dataset B. This
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study provides a more scientific and reasonable modeling undertaking for the

research of light purse seine fishing vessels, which is conducive to guiding

fishermen to select the operating area and operating time of the Scomber

japonicus fishery more accurately and comprehensively and realizing the

balanced development of fisheries in terms of ecology and economy.
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1 Introduction

The Northwest Pacific Ocean, the Food and Agriculture

Organization of the United Nations (FAO) Statistical Area 61, is

the marine area with the highest potential catches among the 15

global fishing zones classified by FAO (Tian et al., 2019). Due to its

distinctive geographic and oceanographic features, it ranks among

the most productive fisheries globally (Tian et al., 2022; Yang et al.,

2023a). The confluence of the Oyashio Cold Current and the

Kuroshio Warm Current in the NW Pacific Ocean produces

fronts and eddies of high productivity and complex ocean

dynamics, providing abundant bait organisms and favorable

environments for pelagic fishes such as neon flying squid

(Ommastraphes bartrami), chub mackerel (Scomber japonicus),

and the Pacific Sardine (Sardinops melanostictus) (Han et al.,

2023; Xing et al., 2022). Pelagic commercial fish stocks with

significant ecological and commercial value are the main

component of the Northwest Pacific fishery resources (Jang and

Cho, 2022; Kang et al., 2018; Shi et al., 2023a; Tian et al., 2022), and

they are the main targets of commercial fisheries in several

countries, including Japan, Russia, South Korea, and China. Of

these, only China’s fishing vessels are mainly concentrated in the

high seas, while the remaining countries are in the EEZ in

the vicinity of their countries. Noteworthy, Scomber japonicus is

the most expensive primary target species (Oozeki et al., 2018; Tong

et al., 2022; Yasuda et al., 2023), overwhelmingly dominant in both

quantity and quality (Zhao et al., 2022), prioritized for assessment

by the North Pacific Fisheries Commission (NPFC) (Cai et al., 2023;

Shi et al., 2022), and accounting for 2% of the world’s total finfish

catches in 2020 (FAO, 2022).

Scomber japonicus, a small warm-water pelagic fish with high

abundance and high food value (Zhao et al., 2023), is widespread in

the 0-300 m water layer of the northwestern Pacific (Fan et al., 2020).

It feeds mainly on fish, shrimp, and copepods, and competes for food

with the Sardinops melanostictus (Han et al., 2023). The Scomber

japonicus has a short life cycle and consists mainly of individuals aged

5-7 years (Shi et al., 2023b), but in the last few years, Scomber

japonicus aged six years and older have been infrequent in

commercial catches (Cai et al., 2022). It is a seasonal and long-

distance migratory fish that migrates from south to north in search of
02
prey of optimal size and temperature, usually in the summer to the

prey zooplankton-rich waters of Oyashio Current, and in the winter

migrates from north to south to the Kuroshio-Oyashio Transitional

Zone for overwintering migration (Han et al., 2023; Shi et al., 2023b;

Wang et al., 2021b). Scomber japonicus is highly sensitive to the

marine environment, including sea surface temperature (SST), and its

growth and spatial and temporal distribution are affected by

environmental changes associated with climate change (Kanamori

et al., 2019; Tian et al., 2022), with large fluctuations in resource

abundance and changes in the location offishing grounds (Han et al.,

2023; Okunishi et al., 2020; Wang et al., 2021b). The marine

environment of the Northwest Pacific Ocean and the Scomber

japonicus fishing grounds have experienced dramatic changes in

recent years, which has sparked interest and concern among

scholars to accurately predict the Scomber japonicus fishing

grounds (Chernienko and Chernienko, 2021; Han et al., 2023; Lee

et al., 2018; Okunishi et al., 2020; Xiao, 2022; Yoon et al., 2020).

Predicting fishing grounds is one of the most critical research

components in fishery forecasting. Accurately predicting the

location of fishing grounds is of great significance to fisheries

science, the management of fishery resources, and the reduction

of carbon emissions associated with fishing operations (Chen et al.,

2022; Han et al., 2023). Providing accurate information on the

distribution of fishing grounds for exploitation by fishing vessels

will be facilitated by a thorough study of the relationship between

the distribution of fishery resources and the marine environment

(Tan and Mustapha, 2023). Scomber japonicus are highly sensitive

to the marine environment (Chernienko and Chernienko, 2021;

Han et al., 2023), and exploring the potential relationship between

their catches and the marine environment has become a

mainstream approach to constructing predictive models of their

fishing grounds. In recent years, with the continuous and in-depth

exploration of optimal Scomber japonicus fishing grounds

prediction models, more and more scholars have shown the

importance of model selection on the performance of fishing

grounds prediction and demonstrated the ability of machine

learning models to adequately analyze and predict the vast

amount of catches data with complex spatio-temporal

information (Chernienko and Chernienko, 2021; Han et al., 2023;

Xiao, 2022; Yoon et al., 2020). However, few scholars have discussed
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the impact of data bias on the performance, accuracy, and

credibility of the model prediction. All modeling algorithms are

based on the assumption of data unbiasedness (Melo-Merino et al.,

2020), so machine learning models, which usually have high-quality

data requirements, are not an exception (Malde et al., 2020; Yoon

et al., 2020). Therefore, the usual lack of rigorous design introduces

data bias and degrades model prediction performance.

In fisheries production, the abundance in the observed area can

be underestimated or overestimated, influenced by the type of

fishing gear (Han et al., 2024). The fishing method of Scomber

japonicus fishery in the Northwest Pacific Ocean is mainly light

purse seine fishing vessel (Cai et al., 2023; Tian et al., 2019), which is

based on the characteristics of the phototropic behavior of pelagic

fish and uses light to attract fish to be seined (Shi et al., 2013). While

light trapping stands out as one of the most advanced, effective, and

successful methods for capturing commercially vital species

(Nguyen and Winger, 2019), catch rates of fishing vessels using

lights (light fishing vessels) are highly susceptible to lunar phases,

and fishery producers reduce the frequency of their operations

during bright moonlight days due to lower catch rates (Giri et al.,

2019; Groves et al., 2022; Han et al., 2024, 2022; Li et al., 2022;

Poisson et al., 2010; Yan et al., 2015). In response to the above, Han

et al. (2024) investigated the effect of data bias due to the lunar

phase on the predictive performance of different purple flying squid

(Sthenoteuthis oualaniensis) fishing grounds prediction models.

They pointed out that non-rigorous training set selection can

introduce data bias. Therefore, in the Scomber japonicus fishing

grounds forecasting modeling study, we must take into account the

fact that light fishing vessels have distinct operational characteristics

compared to fishing vessels such as trawlers (vulnerability of the

catches to the intensity of moonlight). However, few scholars have

ventured into studies exploring the effects of the lunar phase on

model prediction performance in the field of Scomber japonicus in

the Northwest Pacific Ocean.

Machine learning, an indispensable yet dynamic technology,

employs algorithms and computational methods to extract insights

from data autonomously, obviating the necessity for explicit

equations or instructions without making prior assumptions

about the nature of the association and with the ability to process

noisy data further (Meeanan et al., 2023; Tan and Mustapha, 2023).

The quality and quantity of research data play a crucial role in

ensuring that machine learning models are effectively trained and

achieve satisfactory predictive performance (Han et al., 2024).

Therefore, although rigorous training set screening can avoid data

bias and improve the model’s prediction performance to a certain

extent, it also reduces the amount of data, which poses a challenge

for the model to be adequately and effectively trained. In order to

construct a highly reliable and accurate prediction model for

Scomber japonicus fishing ground, a machine learning model that

can better balance the quality and quantity of research data is

explored. In the thesis, the Light Gradient Boosting Machine Model

(Chernienko and Chernienko, 2021; Gong et al., 2021; Nagano and

Yamamura, 2023) and the Random Forest Model (Meeanan et al.,

2023; Xing et al., 2022), which have demonstrated satisfactory

prediction performance in studies of Scomber japonicus and other

fisheries, are selected for comparative studies.
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As the cost of fishing increases due to rising labor and oil costs,

the construction of fishing grounds prediction models that vary

with the spatial and temporal variability of the marine environment

is critical to the maintenance and development of fisheries (Yoon

et al., 2020). In order to more effectively promote the Scomber

japonicus fishery towards low-carbon and low-cost fishing, to

reduce the time and fuel spent on searching for the optimal

fishing grounds, we focused on the data bias caused by the light

fishing vessels operational characteristics, and to reduce the impact

of this bias on the construction of the optimal prediction model.

The purpose of this study is to compare the predictive effects of

models constructed under two modeling approaches based on the

light fishing vessels operational characteristics and those that are

not based on the light fishing vessels operational characteristics and

to delve into the following two aspects: 1) to explore and analyze the

changes in the catches of the Scomber japonicus fishery in the

northwestern Pacific Ocean in the different periods of operational

characteristics (no moonlight days and bright moonlight days) from

2014 to 2022, and 2) investigate how data biases affect model

prediction and the significance of environmental variables.
2 Materials and methods

2.1 Data sources

2.1.1 Overview of fisheries data and
research datasets

The dataset utilized in the research of the Scomber japonicus

fishery was procured from the East China Sea and Pelagic Seas Data

Service Center Database. This encompassed fishing logbook records

of Chinese commercial light purse seine fishing vessels from 2014 to

2022, spanning the months of March to December. These records

were collected from operations conducted in the high seas of the

northwestern Pacific Ocean, specifically within the geographical

coordinates of 35°-45°N and 145°-165°E. A total of 70,147 fishing

vessel operation records were included in this paper, and the study

information included the date, operations time, and latitude/

longitude coordinates of the start and end of operations, the

number of operated nets, and the species composition and

quantities of the catch.

In this research, the Scomber japonicus fishery dataset was

reorganized into three datasets for further analysis, considering

how Han et al. (2022) divided the no moonlight days and bright

moonlight days. The study datasets were as follows: dataset A (only

no moonlight days fishery data: lunar days 1-10 and 20-30), dataset

B (only bright moonlight days fishery data: lunar days 11-19), and

dataset C (all days) (Figure 1).

2.1.2 Selection of marine environment variables
and overview of essential information

The number of ocean environment variables is critical to

improving the model’s predictive performance and computational

efficiency; too few environment variables can lead to a decrease in

the model’s predictive performance, but it is worth noting that too

many variables can also lead to redundancy, noise, and overfitting
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(Han et al., 2024). In this research article, we selected six main

variables driving changes in the spatial and temporal distribution of

Scomber japonicus fishing grounds to construct a forecast model

(Chernienko and Chernienko, 2021; Han et al., 2023), namely Sea

Surface Temperature (SST, Kelvins), Sea Surface Salinity (SSS, ‰),

Chlorophyll-a (Chla, mg/m3), Current Velocity (CV, m/s), Sea

Level Anomaly (SLA, m), and Dissolved Oxygen (DO, mmol/m3).

The six marine environmental variables mentioned above have

significantly impacted the resources and habitat of Scomber

japonicus. SST is widely recognized as having significant effects on

the distribution and abundance of resources, habitat location,

growth and development, migration, and the catch of Scomber

japonicus (Liu et al., 2023). At the same time, temperature

variation in seawater is also an important abiotic factor affecting

the growth and development of Scomber japonicus (Xiao, 2022); SSS

can have an effect on the survival, breeding, and fattening of Scomber

japonicus. It also significantly affects the resource abundance and

habitat of Scomber japonicus (Liu et al., 2023; Sun et al., 2024); Chla

is an essential factor influencing the distribution of Scomber

japonicus resources and is a basic indicator for estimating marine

productivity. Its concentration is usually used to characterize

phytoplankton biomass. It is often used to predict the location of
Frontiers in Marine Science 04
fishing grounds because of its indirect relationship with the

distribution of fishing grounds from the perspective of the food

chain (Liu et al., 2023; Shi et al., 2023b; Sun et al., 2024; Zhao et al.,

2022); The distribution of current velocity in the northwestern

Pacific Ocean is complex, with the presence of the Kuroshio

Warm Current and its tributaries, which have higher temperatures

and salinities, as well as coastal currents with lower salinities. The

Oyashio Cold Current and the Kuroshio Warm Current have

the most pronounced impact on the resources and habitat of the

Scomber japonicus. The Oyashio Cold Current and the Kuroshio

Warm Current converge and merge in the Northwest Pacific Ocean,

lifting the rich inorganic substances and other nutrients on its

seafloor and providing a favorable environment for marine life to

reproduce and survive (Liang et al., 2024; Liu et al., 2023; Sun et al.,

2024); SLA, Chla and SST data overlaid with fishery data can

effectively explore the impact of mesoscale eddies on the Scomber

japonicus fishery. The Scomber japonicus fishing grounds were

usually around the periphery of warm-core eddies, and these areas

are considered to be highly productive due to the occurrence of sea

surface depression and divergence or upwelling (Tian et al., 2022).

The Scomber japonicus distribution and abundance are susceptible

to the influence of DO (Liang et al., 2024; Liu et al., 2023);. In the
FIGURE 1

Temporal and spatial distribution of Scomber japonicus catches on the high seas of the Northwest Pacific Ocean on the no moonlight days and
bright moonlight days, 2014-2022 [(A) no moonlight days; (B) bright moonlight days].
frontiersin.org

https://doi.org/10.3389/fmars.2024.1451104
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Han et al. 10.3389/fmars.2024.1451104
Kuroshio Extension region and to its north, water masses formed in

the winter mixing layer are nearly saturated with oxygen due to their

exposure to the atmosphere. When these water masses, enriched

with high dissolved oxygen concentrations (DO), separate from the

atmosphere, they dip into the main thermocline and subsequently

follow the North Pacific Subtropical Circulation path over isodense

surfaces in a southwesterly direction (Nagano et al., 2016).

Therefore, Scomber japonicus is concentrated in the Kuroshio

Extension, and the gravity center of the fishing grounds shifts to

the southwest during the winter.

This study used re-analyzed data from the Copernicus Marine

Service (https://resources.marine.copernicus.eu/products) as the raw

marine environmental data. The time periods were all 2014-2022,

with a temporal resolution of days. The spatial ranges were 35°-45°

N and 145°-165°E, and the spatial resolutions were all 0.25°×0.25°.

Of these, Vgos and Ugos were used to calculate the ocean-

derived variable CV (Han et al., 2023), which is calculated in the

following way:

CV =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Vgos)2 + (Ugos)2

q

Where, Vgos means surface geostrophic northward sea water

velocity and Ugos means surface geostrophic eastward sea

water velocity.
2.2 Criteria for the classification of central
and non-central fishing grounds

The development of fishing grounds forecasting models with

finer temporal and spatial resolution is more beneficial to the fishery

in practice. It is more in line with the actual needs of fishery
Frontiers in Marine Science 05
producers (Yoon et al., 2020). However, it is worth noting that a

certain amount of data aggregation can reduce data bias, noise, and

overfitting, as well as enhance the generalizability and

transferability of the model (Zhou et al., 2022). Therefore, in this

study, the catches were summarized according to temporal

resolution (day) and spatial resolution (0.25°×0.25°), which were

defined as fishing grounds.

Northwest Pacific light purse seine fishing vessels are installed

with commercial echo-sounder, and before operations, the captains

use the marine environment map (e.g., sea surface temperature,

etc.) and commercial echo-sounder to search for the most suitable

Scomber japonicus fishing grounds for their operations. This step

essentially excludes a large number of non-fishing grounds with low

catches (Han et al., 2023), so this article only explored the

prediction study of the central and non-central fishing grounds.

Given that climate, stock condition, and fishing effort vary from

year to year, to improve the fit of the model and the validity of the

classifications, this study has bi-classified the fishing grounds

summarized above by date. The fishing grounds that were greater

than or equal to the median catches of fish per day were defined as

central fishing grounds (label 1), and the other fishing grounds were

defined as non-central fishing grounds (label 0) (Figure 2).
2.3 Modeling and evaluation indicators

2.3.1 Random forest model
The RF model, which uses multiple decision trees to train and

predict samples, is an integrated learning method proposed by

Breiman (2001) and can accommodate unknown nonlinearities and

complex feature interactions with minimal feature engineering

(Biggs et al., 2023). It has the advantages of error balancing, high
FIGURE 2

Sample size distribution of labels 0 and 1 on the three datasets.
frontiersin.org

https://resources.marine.copernicus.eu/products
https://doi.org/10.3389/fmars.2024.1451104
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Han et al. 10.3389/fmars.2024.1451104
generalization ability, and fault tolerance (Xu et al., 2024). Its results

are compelling and are obtained by voting or averaging from

multiple weak decision trees (Wang et al., 2021a). It is also a

simple, easy-to-implement, and computationally inexpensive

algorithm (Zhu et al., 2020) that is faster for processing big data

with multidimensional variables. It has almost no parameters to be

adjusted (Biggs et al., 2023) and strong adaptability (Han et al.,

2022). The RF model is well suited for the quantification of complex

non-linear relationships and has been widely used in fisheries

research (Brownscombe et al., 2021; Han et al., 2022; Liu et al.,

2021) in recent years with the following formula:

Vi =  
1

Ntree
ov∈SXi

G(Xi, v)

In the context of the RF model, Vi denotes the explanatory

power of the variable Xi, while Ntree represents the total number of

trees, ranging from 1 to 500, as specified in this study. SXi signifies

the set of nodes divided by Xi within the Random Forest model

comprising Ntree trees. Additionally, G (Xi, V)indicates the Gini

information gain associated with Xi at the splitting node v,

representing the selection of the explanatory variable that yields

the highest information gain.
2.3.2 Light Gradient Boosting Machine Model
LightGBMmodel is an open-source, efficient, distributed model

released by Microsoft in 2017 (Ke et al., 2017), an improved

gradient boosting decision tree (GBDT) algorithm to handle

large-scale data and high-dimensional features effectively. It is

structurally similar to the XGBoost (eXtreme Gradient Boosting)

model. However, the LightGBM model constructs the tree in an

intelligent way that reduces the computational load and

eigenvalues, dramatically improving the model’s computational

speed and prediction accuracy (Nagano and Yamamura, 2023;

Ouyang et al., 2023; Sun et al., 2020). Due to its high

computational efficiency, low memory consumption, and

satisfactory accuracy, it has been widely used in recent years for

problems such as categorical regression in fisheries research

(Chernienko and Chernienko, 2021; Gong et al., 2021; Nagano

and Yamamura, 2023; Ospici et al., 2022). The basic idea is to merge

M weak regression trees into a single strong regression tree, one

after the other, and the calculation formula is as follows (Shakeel

et al., 2023):

F(x) =  oM
m=1fm(x)

The setting of hyperparameters can significantly affect the

classification effect of the LightGBM model (Jafari and Byun, 2023;

Ouyang et al., 2023; Shakeel et al., 2023; Xia et al., 2019; Yang et al.,

2023b). At the same time, reasonable hyperparameter settings can

also effectively improve the model forecast accuracy and

computational efficiency, avoid overfitting, and reduce the time

and costs associated with manual trial-and-error (Han et al., 2024).

Therefore, the hyperparameters in this paper were set as follows: 1)

Number of trees, num_trees: 1-500; 2) Maximum depth of tree,
Frontiers in Marine Science 06
max_depth: 7, 9, 11, 13, 15, 17, 20; 3) Number of leaves for one tree,

num_ leaves: 30, 50, 70; 4) learning rate, learning_rate: 0.01, 0.05, 0.1.

2.3.3 Spatiotemporal modeling strategy
Han et al. (2024) showed that the lack of consideration of

spatiotemporal information could lead to an inability to accurately

assess the impact of data bias caused by the light fishing vessels

operational characteristics on model performance. Therefore,

considering that neither the RF nor LightGBM models in this

study could extract spatiotemporal information, we focused on

fitting spatiotemporal with environmental variables.

Feature filtering helps to reduce training time and further

optimizes prediction performance (Xia et al., 2019), with

correlations between features approaching 1/-1, meaning that

some features are redundant for model training (Caponi et al.,

2023; Wang et al., 2021a). The Pearson’s correlation coefficients of

the fitted variables in this study were tested to be less than 0.9, and

there was no collinearity, so they were all retained (Figure 3).

In order to quantitatively assess the performance of the models,

in this study, the data were divided into a training dataset (to train

the models) and a test dataset (to evaluate the model performance)

at 80%:20%. Cross-validation is often the primary method used to

evaluate the predictive ability of models in fisheries research,

reducing the risk of overfitting the model and producing a more

generalized model (Coelho et al., 2020; Han et al., 2024; Meeanan

et al., 2023). A grid search method and a 5-fold cross-validation

method were used to determine the optimal parameters for each

model (Song et al., 2023).

The two modeling approaches in this study were those based on

light purse seine vessel operational characteristics (Approach One)

and those not based on light purse seine vessel operational

characteristics (Approach Two). Approach One: The Dataset C

was divided into two subsets, no moonlight days (Dataset A) and

bright moonlight data (Dataset B), based on moonlight conditions,

and these two subsets were modeled; Approach Two: Unlike

Approach A, this approach did not distinguish between no

moonlight days and bright moonlight data, but rather modeled

and analyzed dataset C as a whole.

2.3.4 Evaluation criteria for model
prediction performance

Confusion matrices can be used in machine learning to describe

the predictive performance of classification models, especially in

statistical classification problems (Daviran et al., 2023). The F1-

score is the harmonic average of recall and precision (Han et al.,

2023), this research used the F1-score as the only index to evaluate

the predictive performance of the fishing grounds prediction model,

which was calculated by the following formula:

Precision =  
TP

TP + FP

Recall =  
TP

TP + FN
frontiersin.org

https://doi.org/10.3389/fmars.2024.1451104
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Han et al. 10.3389/fmars.2024.1451104
F1 − score =  
2� recall� precision
recall + precision

Where, TP (True Positive): The actual value and the predicted

value are the same, both were Label 1; TN (True Negative): Actual

and predicted values are the same for the non-central fishing

ground (Label 0); FP (False Positive): Actual value labeled 0 was

incorrectly predicted to be labeled 1; FN (False Negative): Actual

value labeled 1 was incorrectly predicted to be labeled 0.
3 Results

3.1 Changes in Scomber japonicus catches
and fishing days in the northwestern
Pacific Ocean during periods of no
moonlight days and bright moonlight days

As can be seen in Figure 4, the catches and the number offishing

days devoted to bright moonlight days as a percentage of the total

catches and fishing days during the period from 2014 to 2022 range

from 26.95% to 34.24% and from 28.9% to 32.87%, respectively. The

results of this investigation show that the relationship between the

number of fishing days and the catches is not positively

proportional, e.g., in years such as 2018, a higher percentage of
Frontiers in Marine Science 07
fishing days did not result in an equivalent increase in the catches,

suggesting that other factors influenced the catch quantities.

During the period 2014-2022, in terms of the trends in catch

changes between the no moonlight days and bright moonlight days.

Although they maintained a generally consistent inter-annual

trend, but some differences in the magnitude of changes were still

observed (e.g., in 2021, the growth rates of the no moonlight days

and bright moonlight days catches were 29.97% and

3.59%, respectively).
3.2 Differences in the results of two
models under the two
modeling approaches

As shown in Table 1, 1) on the same datasets A, B, and C, the RF

and LightGBMmodels trained using different modeling approaches

present different prediction results. After meticulously comparing

the F1 scores of various models across different datasets under

different modeling approaches, we found that the LightGBM model

trained under modeling Approach One achieved the best prediction

results on all three datasets; 2) The correct modeling approach

(those based on the light fishing vessels operational characteristics)

and model selection are crucial for the prediction performance of

dataset C. Optimal prediction performance can only be achieved
FIGURE 3

Pearson correlation coefficient values between different variables on the three datasets.
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through the correct approach and selection of appropriate models.

Choosing the wrong modeling approach may lead to incorrect

model selection and thus affect the prediction performance. Overall,

Approach One achieved a more satisfactory prediction

performance, with the optimal prediction performance on the

complete dataset C improving from 65.02% (F1 score of the RF

model, approach Two) to 66.52% (F1 score of the LightGBMmodel,

approach One).

On dataset C, a visual analysis of the prediction-accurate

samples under the two modeling approaches revealed that
Frontiers in Marine Science 08
(Figure 5): The RF and LightGBM models predicted the same

dataset under the two modeling approaches, and while the

samples with accurate predictions were mostly consistent, there

was still some degree of prediction discrepancy, which was

particularly evident in the predictions of the LightGBM model.
3.3 Difference in variable importance
between LightGBM and RF models under
two modeling approaches

The importance of datasets A and B was obtained by modeling

Approach One, and dataset C was obtained by modeling Approach

Two. Figure 6 showed that 1) there is some difference in the

importance ranking of variables under the two different modeling

approaches. Especially for the LightGBM model, the importance

difference is more significant compared to the RF model; 2) in terms

of the importance rankings of datasets A, B, and C, there was a higher

degree of similarity between datasets A and C; and 3) both modeling

approaches showed that the overall importance of environmental

variables is greater than that of spatiotemporal variables.

From the optimal model LightGBM model trained by the

optimal modeling Approach One (Figure 6A), although there are

some similarities in the variables in dataset A and dataset B, the

differences should not be ignored. The specific patterns were as

follows: 1) From the perspective of environmental variables, the

most important ones in dataset A were CV, SLA, and SSS, and the

most important ones in dataset B were CV, DO, and SLA. Taken

together, the least important one on datasets A and B was Chla, and

meanwhile, SST has a weaker influence on the decision of the

LightGBM model; 2) From the perspective of temporal variables,
FIGURE 4

Changes in annual catches and annual fishing days on no moonlight days and bright moonlight days in the Pacific Northwest, 2014-2022.
TABLE 1 Difference in predictive performance between RF and
LightGBM models on three datasets under two modeling approaches.

Dataset Modeling
approach

Model Precision Recall F1-score

A

One
RF 61.67 66.42 63.96

LightGBM 59.95 70.07 64.61

Two
RF 62.10 66.36 64.16

LightGBM 61.06 67.21 63.99

B

One
RF 68.60 66.18 67.37

LightGBM 65.15 76.40 70.32

Two
RF 66.67 66.91 66.79

LightGBM 65.14 69.10 67.06

C

One
RF 63.81 66.34 65.05

LightGBM 61.68 72.18 66.52

Two
RF 63.56 66.55 65.02

LightGBM 62.38 67.84 65.00
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year and l were more critical; 3) In terms of spatial variables, both

datasets A and B indicate that lon was more important than lat.
4 Discussion

4.1 An analysis of the effect of month
relative to Scomber japonicus catches and
fishing days in the Northwest
Pacific Ocean

Over the period 2014 through 2022, the overall trend showed

that the percentage of fishing days on bright moonlight days was

higher than the percentage of catches on bright moonlight days in

most years. This suggested that fishermen could obtain higher

catches with fewer fishing days on no moonlight days. The main

reason for this phenomenon is that light fishing vessels induce chub

mackerel aggregation mainly using visual stimulation (Lee et al.,
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2019). However, the catch of the Light Fishing Vessel is easily

affected by the lunar phase, especially when the full moon and the

moonlight are shone on the water’s surface. Under the effect of

moonlight, the effective trapping range of the artificial light source is

narrowed, and this difference affects catches (Arifin et al., 2020;

Chen et al., 2006). Moonlight intensity affects the vertical migration

of pelagic fish, which prefer to stay in deeper waters during the day,

rise to surface waters at dusk, feed at night, and then return to

deeper waters as daylight approaches (Battaglia et al., 2017). When

the moonlight is at its peak, this may have a similar effect to that of

sunlight – that fish tend to migrate deeper during the night.

Regarding interannual variability, there are some differences in

the percentage of catches and fishing days between no moonlight

days and bright moonlight days. The light purse seine in the

Northwest Pacific Ocean is less affected by the lunar phase

compared to the results of Han et al. (2024) study on light falling

gear on the high seas of the Indian Ocean. The influence of lunar

phases on different fish species is a complex and multifaceted
FIGURE 5

Samples correctly predicted by LightGBM (A) and RF (B) models in both modeling approaches on dataset C (Pink + Yellow: number of samples
predicted accurately based on Approach One; Green + Yellow: number of samples predicted accurately based on Approach Two; Yellow: the
number of identical samples in the samples accurately predicted by each of Approaches One and Two).
FIGURE 6

Importance differences on datasets A, B, and C in LightGBM (A) and RF (B) models (1) the farther from the center, the more important; 2) l: lunar phase).
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phenomenon, the magnitude of which is affected by the following

factors: cloudiness [thick cloud cover counteracts the effects of

intense moonlight (Giri et al., 2019; Milardi et al., 2018)], biomass,

phototropic characteristics, and life stages of the main catches

(Lee et al., 2019; Yan et al., 2015).
4.2 Predictive performance analysis of
models under different
modeling approaches

This study further shows that there is no one-size-fits-all

modeling approach or model that can bring about better

prediction results without considering the light fishing vessels’

operational characteristics and that the correct modeling

approach (those based on the light fishing vessels operational

characteristics) and model selection are essential for improving

the prediction performance of the Scomber japonicus

fishing grounds.

The LightGBM model has been shown to improve further the

forecasting accuracy of the Scomber japonicus fishing grounds in the

Pacific waters of the Russian Federation (Chernienko and

Chernienko, 2021), and the LightGBM model trained under

modeling Approach one in this study, achieved the best

prediction results on all three datasets. However, the LightGBM

model did not show an overwhelming trend on three datasets under

Approach Two. This is consistent with Guo et al. (2023) conclusion

that although the LightGBMmodel performs well on unbiased data,

it does not necessarily perform better than other models when the

data are biased. This is mainly due to LightGBM’s tendency to cause

overfitting (Xia et al., 2019). In contrast, the RF model focuses

primarily on variance reduction. While this helps to reduce the

effects of overfitting and improves stability (Xia et al., 2019), the

performance of the underlying learners limits RF model accuracy.

Thus, the difference in predictive performance under the two

modeling approaches was slight. Meanwhile, the LightGBM

model can provide a more effective ranking of variable

importance than the RF model (Saberi et al., 2022), which may be

the main reason why the LightGBM model outperforms the RF

model on datasets A and B (under the modeling Approach One).

In this study, there was a slight gap in prediction performance

compared to the 3D convolution-al neural networks (3DCNN)

model based on temporal scale (month) and spatial scale (1° × 1°)

by Han et al. (2023). This is mainly because the fine spatial (0.25° ×

0.25°) and temporal scales (day) used in this study are most similar

to the needs offishery production (Yoon et al., 2020). However, they

are not the optimal modeling scales for Scomber japonicus (Li et al.,

2019) and thus were still affected to a greater extent by data bias

(e.g., factors such as differences in decision-making among

fishermen and differences in the production capacity of fishing

vessels). Therefore, subsequent studies could be based on balancing

the prediction performance and production needs and could

consider expanding the spatial and temporal scales to some extent

to reduce these data biases. On the other hand, the LightGBM

model is a non-time-series model, which is prone to overfitting past

data and not adapting well to regime shifts (Nagano and
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Yamamura, 2023). In the later stage, and further research should

be conducted by combining the spatiotemporal 3DCNN model

(Ji et al., 2013), Convolutional LSTM network (ConvLSTM) model

(Shi et al., 2015) and vision Transformer model (Dosovitskiy et al.,

2020). However, it is worth noting that models such as 3DCNN

require more data to train the model to ensure satisfactory

prediction performance.
4.3 Analysis of the significance of
the variables

LightGBM model merges mutually exclusive features in

fisheries and marine environmental data using a histogram

algorithm. It constructs a histogram and traverses the data based

on its discrete values to find the optimal split point of the decision

tree. Since the decision tree is a weak classifier, the use of a

histogram algorithm will have the effect of regularization and can

effectively prevent overfitting (Alshboul et al., 2024; Boutahir et al.,

2022; Gong et al., 2021; Ke et al., 2020; Saberi et al., 2022). This may

be the reason why the LightGBM model has more significant

variable importance variability on three datasets than the RF

model. Feature importance is mainly dependent on the training

dataset (Boutahir et al., 2022), and in this article, the importance

was highly similar in datasets A and C. This further illustrates that

taking a modeling approach in the Northwest Pacific that does not

take into account the operational characteristics of the light fishing

vessels can misguide fisheries during the bright moonlight days.

Meeanan et al. (2023), studying the prediction of the short

mackerel (Rastrelliger brachysoma) fishing grounds in Thailand

(Andaman Sea: 6°N-10°N, 97°E-100°E), noted that spatial

variables are more important than environmental variables

because there is little variation in temperature, chlorophyll-a, near

the coast. Unlike the results of the study by Meeanan et al. (2023),

environmental variables were more critical than spatiotemporal

variables in this research. This is mainly because this study is on the

high seas (sea areas beyond 200 nautical miles from the baseline of

the Sea of the Japanese Islands), where environmental variables are

considered to be the direct determinants driving changes in the

spatial and temporal distribution of the Northwest Pacific offshore

Scomber japonicus fishing ground (Han et al., 2023).

In this study, the important variables on datasets A and B were

CV, SLA, DO, and SSS, while those that were not important were

SST and Chla. Overall, CV was the most important environmental

variable affecting the distribution of the center fishing ground. The

current velocity (CV) has a crucial impact on the distribution of

central fishing grounds (high catches) (Dai et al., 2017; Liu et al.,

2023). The Oyashio Cold Current and the Kuroshio Warm Current,

which carry materials and energy, converge and merge in the

northwest Pacific Ocean, providing a favorable environment for

the reproduction and survival of Scomber japonicus (Liang et al.,

2024; Liu et al., 2023; Sun et al., 2024). Relative to sea surface height

(SSH), SLA overlaid with fisheries data can effectively explore the

effects of mesoscale eddies on the Scomber japonicus fishery (Tian

et al., 2022). The SLA in this article significantly affects the fishing

grounds since Scomber japonicus is a warm-water pelagic fish with
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habitat water temperatures typically ranging from 10 to 27°C (Han

et al., 2023). The “eddy edge habitat” had the highest larval

abundance and number of taxa and consisted mainly of coastal

pelagic and demersal species (Sánchez-Velasco et al., 2013). The

Kuroshio front appears to act as an environmental barrier for fish

(Saitoh et al., 1986), so Scomber japonicus fishing grounds are

usually located at the edge of warm-core eddies (Tian et al.,

2022). However, it is worth noting that the results of Han et al.

(2023) based on large spatial and temporal scales (temporal scale:

month; spatial scale: 1° × 1°) were contrary to the present study.

After an in-depth visualization of a three-dimensional

convolutional neural network (3DCNN)-based Scomber japonicus

fishing ground forecasting model, Han et al. (2023) revealed that

SLA not only has a detrimental effect in predicting the location of

the center fishing ground but also that it relative importance was

rather limited. This is mainly due to the fact that the differences

between SLA are relatively small at monthly time scales, and thus

the effect is not significant for categorical projections. DO affects the

metabolic rate and swimming speed of Scomber japonicus, while the

low-oxygen environment tends to cause the death of eggs and

juveniles, which affects the reproduction of fish. Liang et al. (2024)

pointed out that DO is one of the critical environmental factors

affecting the distribution and abundance of Scomber japonicus in

the Northwest Pacific Ocean, which is consistent with the present

study. SSS is an important variable affecting fish migration,

clustering, and habitat distribution, and it has a large influence on

the behavioral characteristics of fish at all stages of growth. This

research was consistent with previous studies that although SSS has

a significant effect on Scomber japonicus, it is not the most

important variable (Sun et al., 2024; Xue et al., 2024).

Chla is a proxy indicator of biomass and productivity, and

although Scomber japonicus does not prey primarily on

phytoplankton, small- and medium-sized fish located in the

middle of the food chain are affected by chla distribution

(Smith et al., 1986). Therefore, chla is an important indicator for

studying the resources and distribution of Scomber japonicus (Fan

et al., 2020; Han et al., 2023; Sun et al., 2024; Zhu et al., 2024). Chla

is an extremely important environmental variable at coarse scales

(e.g., time scales of months and spatial scales of 1° by 1°) (Han et al.,

2023; Sun et al., 2024). However, at fine scales, Chla is not an

important variable; the reason Chla was not important may have to

do with the fact that Scomber japonicus eats shrimp and copepods

(Cui et al., 2021). At the fine scale, the spatial extent covered by the

fishing vessels is not large enough (time scale in days). There is only

a slight variation in Chla concentration and minor differences in the

primary productivity of the sea surface (Song et al., 2020). As a

result, the disparity in Chla levels between the central fishing

grounds and the non-central fishing grounds in the study is

minor, exerting limited influence on the model’s classification

performance. SST has an essential effect on the spatial and

temporal distribution of the fishing grounds and resource

abundance of Scomber japonicus (Xiao, 2022; Zhao, 2022), and in

this study, contrary to the conventional view, we found that the

effect of sea surface temperature (SST) on predicting the spatial and

temporal distribution of the fishing grounds of Scomber japonicus

was not the most important. The main reason for this finding was
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that during the operation of light purse seine fishing vessels, the

captains usually choose their fishing locations based on real-time

maps of environmental variables and their personal experience. The

sea surface temperature values in the central and non-central

fishing grounds will be similar to some extent due to this choice

(Han et al., 2023). However, when the sea surface temperature has

similar values in the central and non-central fishing grounds, it will

not be conducive to the prediction of an accurate classification of

the fishing grounds. At the same time, it should be noted that there

were some differences in the importance of environmental variables

on datasets A and B. This is mainly due to the fact that lunar phases

may affect fish distribution and behavior, among other factors,

through changes in environmental factors such as moonlight

intensity and tides (Li et al., 2023; Nguyen and Vang, 2017).

Temporal and spatial variables were ranked almost equally in

importance on datasets A and B. Therefore, in the subsequent study, we

will mainly strengthen the exploration of environmental variables. By

analyzing datasets A and B, we will select the most suitable

environmental variables for modeling based on the datasets.

Although this study used traditional methods (Importance

interpretation method built into the model) to visualize the

importance of each variable, it failed to accurately analyze the impact

of each sample and each feature on central and non-central fishing

grounds prediction, which is undoubtedly a key research direction that

is missing in current fishing grounds prediction research and should be

further analyzed in conjunction with SHapley Additive exPlanations

(SHAP) algorithms based on game theory at a later date (Huang et al.,

2024; Wang et al., 2024; Wen et al., 2021).
5 Conclusion

In this study, based on commercial catches data of Scomber

japonicus in the Northwest Pacific Ocean from 2014 to 2022, the

following two aspects were explored: (1) differences in catches and

fishing days under different lunar phases (no moonlight days and

bright moonlight days); and (2) differences in predictive

performance and importance of variables under two modeling

approaches, one based on the light purse seine fishing vessels

operational characteristics and the other not based on the light

purse seine fishing vessels operational characteristics. The main

conclusions were as follows:
1. There is an effect of moonlight intensity on catches, with

most years showing a trend of a higher percentage of

fishing days on bright moonlight days than catches

percentage, i.e., no moonlight days resulted in higher

catches with lower operation days.

2. The modeling Approach One (those based on the operational

characteristics of light purse seine fishing vessels) achieved

more satisfactory prediction performance, with the optimal

prediction performance on the complete dataset C improved

from 65.02% (F1-score of the RF model, Approach Two) to

66.52% (F1-score of the LightGBM model, Approach One).

3. Under the optimal modeling approach (Approach One)

and the optimal model (LightGBM model), the differences
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Fron
in the importance of variables on the dataset A (no

moonlight days) and dataset B (bright moonlight days)

were mainly centered on environmental variables, with CV,

SLA, and SSS being the most important in dataset A, and

CV, DO, and SLA being the most important in dataset B.
The finer spatial and temporal scale modeling may provide more

accurate and reliable practical production guidance effects for fishing

ground prediction decisions. Compared with previous traditional

modeling approaches that ignored the possible data bias caused by

lunar phase variations, this study recommends a scientifically sound,

fine spatial and temporal scale modeling approach to guide fishermen

in selecting operating areas and operating times more accurately.
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