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Zhangxi Xiong3, Lujie Song3 and Ming Lv4

1School of Optics and Photonics, Beijing Institute of Technology, Beijing, China, 2Fujian Key
Laboratory of Spatial Information Perception and Intelligent Processing, Yango University,
Fuzhou, China, 3School of Information and Electronics, Beijing Institute of Technology, Beijing, China,
4School of Computer Science and Technology, Xinjiang University, Urumqi, China
Hyperspectral target detection has a wide range of applications in marine target

monitoring. Traditional methods for target detection take less consideration of

the inherent structural information of hyperspectral images andmake insufficient

use of spatial information. These algorithms may experience degradation in

efficacy during complex scenarios. To address these issues, this study

introduces a hyperspectral target detection approach based on tensor adaptive

reconstruction cascade spatial-spectral fusion, named as TRSSF. First, the

position of the pixel that best matches the prior spectrum is obtained. Second,

tensor decomposition and reconstruction of the original hyperspectral data are

performed. Linear total variation smoothing is used to acquire the principal

components in the spatial dimensionality unfolding of data, and correlation

regularization robust principal component analysis is employed to derive the

spectral dimensionality unfolding’s principal components of data. Finally, the

spatial-spectral fusionmethod is proposed for detecting hyperspectral targets on

the reconstructed data. The use of multi-morphological feature fusion can fully

utilize the spatial features to complement the spectral detection results and

improve the integrity of target detection. The experiments conducted on the

publicly available dataset and collected datasets demonstrated the effective

detection achieved by the proposed method.
KEYWORDS

marine target monitoring, hyperspectral target detection, tensor adaptive
reconstruction, robust principal component analysis, spatial-spectral fusion
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1 Introduction

The transport, distribution, and accumulation of marine targets,

such as oil pollution and wake (as shown in Figure 1), have a

significant detrimental effect on marine ecosystems. Hyperspectral

imaging (HSI) offers the advantage of abundant spectral

information, enabling the differentiation of marine targets of

similar shapes and sizes but varying materials (Zou and Shi, 2015;

Sun et al., 2024a). As hyperspectral remote sensing has advanced,

hyperspectral image super-resolution (Li et al., 2022a, 2023a, b,

2024) and target detection technology have become increasingly

important. Of these, target detection technology has found

extensive applications in civilian and military domains

(Nasrabadi, 2013; Hou et al., 2022; Wang et al., 2024). In the

civilian field, the technology can be used in plant disease detection,

insect pest detection, mineral detection, medical detection, etc. In

the military field, it can be used in landmine detection, sea target

detection, and ground camouflage hidden target detection (Coorey,

2018; Wang et al., 2023).

As hyperspectral technology has progressed, numerous

traditional strategies for hyperspectral imagery target detection

have long been formed (Chen et al., 2011; Li and Du, 2016; Liu

et al., 2021a). Hyperspectral target detection methods are

categorized based on the amount of information fed into spectral-

based, spatial-spectral, and deep feature extraction methods (Du

and Zhang, 2010; Zhao et al., 2020c; Hou et al., 2021; Gao et al.,

2023). Numerous hyperspectral target detection approaches rely on

spectral domain data. The constrained energy minimization (CEM)

technique devises a filter capable of minimizing information output

while adhering to constraints imposed by the prior target spectrum

(Farrand and Harsanyi, 1997). Spectral angle mapper (Kruse et al.,

1993) can detect the targets without information distribution

assumptions and is considered one of the most straightforward

detection mechanisms. Spectral matching filter (MF) (Manolakis

et al., 2009) defines target detection as a hypothetical test and has

good detection performance in a simple background. Orthogonal

subspace projection is a subspace model detection algorithm in a

linear mixed model (Harsanyi and Chang, 1994). Adaptive cosine
Frontiers in Marine Science 02
estimation is a probability statistical algorithm that employs various

techniques to extend detection statistics, improving the

differentiation between the target and the background (Manolakis

et al., 2003). Spectral information divergence calculates the

information divergence between two spectrums (Chang, 1999).

Lin et al. proposed a multi-target band selection method for

hyperspectral target detection, based on an ideal solution

optimization strategy (MOBS), with the aim of selecting bands

with greater target separation and stronger robustness for different

application scenarios (Sun et al., 2024b).

With the increase in spatial information in hyperspectral images,

hyperspectral target detection methods that integrate spatial and

spectral information have emerged (Wei et al., 2019). Yang and Shi

(2016) proposed a method that uses a target pixel to execute target

detection and total variation to smooth the space of an image. Zhao

et al. (2021b) designed a fractional adaptive CEM. The initial data is

processed with fractional Fourier, and then a locally CEM is used for

target acquisition. Gao et al. introduced the tree-structured encoding

approach to locate targets in hyperspectral data (Sun et al., 2020).

Yang et al. introduced the sparse spatial constraint energy

minimization (Yang et al., 2019; Zhao et al., 2020b). Sun et al.

proposed an information entropy estimation target detection

method based on point set topology. The method consists of

constructing a parallel topological space to sort the raw HSI data

and introducing information entropy estimation in combination with

a priori information about the target (Sun et al., 2024c).

In the realm of adopting deep feature algorithms, Zhang et al.

presented a hyperspectral target detection neural network, which

uses deep features (Li and Du, 2016; Zhang et al., 2020). The novel

deep spatial-spectral network was developed by Shi et al. as an

unsupervised detection means. This network incorporates a typical

detector and an edge-preserving filter to identify targets (Shi et al.,

2020). Generally, traditional methods often overlook the inherent

structural characteristics of hyperspectral data and underutilize

spatial information. Dong et al. presented a lightweight

convolutional neural network (LCNN) (Dong et al., 2023) for

reducing computational complexity. In deep learning approaches,

the limited samples pose challenges in training deep networks.
A B

FIGURE 1

Water surface oil pollution (A) and wake (B).
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In recent years, some new methods of using tensors have

attracted the interest of researchers. Tensor extends the concepts

of vectors and matrices to accommodate higher-order data so that

multidimensional datasets can be treated as a whole. Tensor

representation can provide a convenient and accurate strategy for

capturing the interrelationship between multiple dimensions

(Kolda and Bader, 2009). HSI encompasses both spatial and

spectral dimensions, thus is recognized as a third-order data cube

(Zhao et al., 2021a). The tensor representation technique has found

applications in various hyperspectral image processing tasks, such

as the noise reduction algorithm (Renard and Bourennane, 2008;

Guo et al., 2013; Liu et al., 2021b), unmixing algorithm (Veganzones

et al., 2015), and classification algorithm (Renard and

Bourennane, 2009).

There are few studies using the tensor representation method for

hyperspectral target detection. Chen et al. introduced the technique

called tensor principal component analysis through Fourier

transform (TRPCAF), which considers the hyperspectrum,

including principal components and residuals (Chen et al., 2018;

Chen and Wang, 2019). Li et al. introduced the prior tensor

approximation (PTA) technique to detect anomalies in

hyperspectral images (Li et al., 2020; Feng et al., 2021). Gu et al.

introduced tensor matched subspace detector (TMSD) (Liu et al.,

2016). Zhao introduced a hyperspectral target detection algorithm

employing dictionary learning, leveraging Tucker tensor

decomposition (TTDL) (Cai et al., 2010; Zhao et al., 2020a). Chen

et al. proposed a spectral graph contrast clustering assignment and

the spectral graph transformer method for hyperspectral target

detection. This method includes constructing pixel spectra into

spectral graphs and proposing a new spectral graph comparison

cluster allocation method for providing the model with good spectral

recognition ability (Chen et al., 2024). Dong et al. developed a novel

deep space-spectral joint sparse prior coding network. This network

skillfully integrates the domain knowledge of hyperspectral target

detection into the neural network and has clear interpretability (Dong

et al., 2024). However, these methods cannot choose the appropriate

principal components in tensor decomposition and reconstruction

and do not fully use spatial information. Hence, this study introduces

a hyperspectral target detection method termed tensor adaptive

reconstruction cascade spatial-spectral fusion (TRSSF). The

primary contributions of this study include:
Fron
1. A tensor adaptive reconstruction cascade spatial-spectral

fusion model is proposed. The model not only extracts

intrinsic features of the target background spectrum to

increase its discriminatory capability but also maximizes

the use of spatial-spectral information to increase target

detection rates. The maximum improvement in detection

rates over the four datasets ranged from 32% to 81%

compared with the state-of-the-art method.

2. The linear total variation is employed in the matrix

processing of unfolding hyperspectral spatial dimensions,

mitigating noise effects and increasing the accuracy of

decomposing sparse and low-rank matrices. When

analyzing the principal components of hyperspectral
tiers in Marine Science 03
spectral dimension unfolding matrices, correlation

regularization can bring the data target spectra closer to

the prior spectra.

3. Adaptive CEM and similarity multiple morphological profile

strategies are used in the spatial-spectral fusion approach. In

these techniques, the use of multiple morphological feature

fusion allows for the combined use of spatial features to

complement the spectral detection results, thereby

improving the overall target detection integrity.
This article is structured as follows. Section 1 constitutes the

introduction, which mainly introduces the research background,

research methods, and contributions of the study. Section 2

introduces the proposed hyperspectral target detection framework

based on the tensor adaptive reconstruction cascade spatial-spectral

fusion strategy in detail. Section 3 details the experimental results as

well as analysis conducted on four hyperspectral datasets. Section 4

contains the conclusion of the study.
2 Proposed target detection method

The framework of the proposed TRSSF is depicted in Figure 2.

First, the MF is used to obtain the position of the most similar target

to the prior target spectrum within the image. Second, the tensor

decomposition and adaptive reconstruction approach is introduced

for the original hyperspectral data with the aim of deriving the

principal components of the hyperspectral spatial and spectral

dimensions (Dian et al., 2017; Zhao et al., 2023). For the spatial

orientation, linear total variation is used to process the data, and the

robust principal component technique is used to obtain the principal

components. In the spectral dimension, the robust principal

component method with the prior and measured spectrum’s

smallest energy difference is used to obtain the principal

components. After obtaining the principal components, the data

are restructured. Finally, to take full advantage of the spatial and

spectral features, a novel spatial-spectral fusion method is proposed.
2.1 Most similar target position acquisition

The matched filter is employed to locate similar target pixels in

images (DiPietro et al., 2012). The likelihood ratio L(h) is

determined by the Equation 1:

L(h) =
p(hjTp)
p(hjTa) , (1)

where Tp means target present and Ta means target absent. If

L(h) exceeds the threshold, Tp is accepted, otherwise, Ta

is accepted.

The probability density function follows a normal distribution

model, which is expressed as Equation 2:

H0 : h ∼ N(ub,Sb) Ta

H1 : h ∼ N(ut,St) Tp,
(2)
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where ub and ut are the mean of the target and background,

respectively. Sb and St represent the covariance matrix of the target

and background, respectively. The matched filter based on

background statistics is as Equation 3 (Akhter et al., 2014):

rMF(h) =
(t − ut)

TS−1
b (h − ub)

(t − ut)
TS−1

b (t − ut)
, (3)

where t denotes the prior spectrum, h denotes the pixel-tested

spectrum, and S−1
b refers to the background matrix inversion operation.

Based on the similarity obtained, the target with the highest degree of

similarity to the prior information is selected to obtain the target’s position

within the image. The spectrum of the reconstruction data in this position

is used as follow-up prior spectrum. The formula is as Equation 4:

po = find(rMF == max(rMF)), (4)

where po is the position of the subsequent need.
2.2 Tensor decomposition and adaptive
reconstruction of the hyperspectral data

In Figure 3, the hyperspectral image along with the expansion’s

singular value distributions for modes 1, 2, and 3 are displayed. The

rapid convergence of the curves shows that each mode’s

decomposition possesses a low rank. The low rank characteristic

can apply to hyperspectral tensor adaptive reconstruction.
2.2.1 Decomposition of the tensor using
tucker decomposition

The hyperspectral image is represented as the tensor D ∈
RT1�T2�T3 , where T1, T2 and T3 represent the row, column, and
Frontiers in Marine Science 04
band, respectively (Hou et al., 2021). Owing to the influence of

several factors (topography, illumination, etc.), there are certain

differences in the target spectral curve in the complex

background. Tucker decomposition can effectively preserve the

three-dimensional structural details of the data and eliminate

other impurity signals, which is essential for the background

complex hyperspectra l images . They prov ide s imple

compression to maintain the principal components of the

different factor matrices, thus increasing the distinction

between target and background in complex background

images. Therefore, Tucker decomposition and reconstruction

of hyperspectral datasets is performed to obtain more stable

feature-enhanced target and background separability. The

Tucker decomposition formula is as Equation 5:

D   ≈ G �1 P �2 Q�3 W , (5)

where G ∈ RT1�T2�T3 denotes the core tensor, signifying the

degree of interaction among distinct components P ∈ RT2T3�T1 ,

Q ∈ RT1T3�T2 and W ∈ RT1T2�T3 denote three factor matrices.

They are the principal components for each mode. It is optimized

as Equation 6:

arg min
G,P,Q,W

D−G �1 P �2 Q�3 Wk k2

s : t :

G ∈ RT1�T2�T3

P ∈ RT2T3�T1 ,  Q ∈ RT1T3�T2 ,  W ∈ RT1T2�T3

PTP = I1,  Q
TQ = I2,  W

TW = I3

8>><
>>:

: (6)

The equation above is typically solved using the alternating

least squares method. When the two matrices remain constant, an

additional factor matrix is acquired through characteristic

value decomposition.
FIGURE 2

The target detection framework of the proposed TRSSF algorithm includes most similar target position acquisition, tensor decomposition and
adaptive reconstruction, and spatial-spectral combined detection. The most similar target position acquisition uses an MF. Tensor decomposition
and adaptive reconstruction use a linear total variation and correlation regular robust principal component analysis model. Spatial-spectral combined
detection uses adaptive CEM and multiple morphological profile strategies.
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2.2.2 Linear total variation smoothing robust
principal component analysis

Tucker decomposition provides a simple compression method

and can retain the most important information (Li et al., 2018; Xu

et al., 2019). Because each factor matrix has different eigenvalues,

their capacity to capture significant information also varies.

Determining the appropriate numbers for ri (i is 1, 2, 3) is crucial
for distinct factor matrices (P,Q,W).

To mitigate the influence of noise on principal component

extraction, this article applies total variation processing to the

spatial dimension of the hyperspectral data. Total variation is

defined as the difference between adjacent pixels (He et al., 2015).

The total variation formula is as Equation 7:

V(i, j) =
V(i + 1, j) − V(i, j)  if  i < m

V(1, j) − V(i, j)  if  i = m
,

(
(7)

where m denotes the number of columns of V . The total

variation formula of P is as Equation 8:

PTV(i, j) =
P(i, j + 1) − P(i, j),  if j < T1

P(i, 1) − P(i, j),  if j = T1

:

(
(8)

The total variation formula of Q is as Equation 9:

QTV(i, j) =
Q(i, j + 1) − Q(i, j),  if  j < T2

Q(i, 1) − Q(i, j),  if  j = T2

:

(
(9)

In the hyperspectral image, the background components are

highly correlated; therefore, it is considered low rank. After the

spatial dimension is smoothed, the robust principal component

analysis method (RPCA) is used to acquire the data’s rank. Its

formula is as Equation 10:
Frontiers in Marine Science 05
min
T ,M

 rank(M) + l ‖T ‖0

s : t : M + T = X,
(10)

where M ∈ RT1T3�T2 represents the low rank matrix, T ∈
RT1T3�T2 represents the sparse matrix, X ∈ RT1T3�T2 represents

the unfolding of the original data, and l denotes a positive

parameter regulating sparsity. Relaxing Equation 10 yields a

manageable optimization problem. The L1 norm is used to

replace the L0 norm, while the nuclear norm is used to replace

the rank. It can transform into solving the Equation 11:

min
T ,M

M ‖* +l
��� ���T ‖1

s : t : M + T = X :

(11)

The original RPCA work in Candès et al. (2011) introduced an

iterative thresholding method of low complexity with poor

convergence. The alternating direction method of multipliers strategy

is extensively used in optimization problems, which has good

convergence (Kang et al., 2015). Therefore, it is adopted to solve this

issue. It is as Equation 12:

L(M,T,Y ,m) = M ‖* +l
��� ���T ‖1 + 〈Y ,X −M − T 〉

+ m
2 ‖X −M − T ‖2F

= M ‖* +l
��� ���T ‖1 + m

2 X −M − T + Y
m

��� ���2
F
− 1

2m Y ‖2F ,
��

(12)

where Y denotes the Lagrangian multiplier matrix, m denotes

the positive penalty scalar, 〈  , 〉 is the inner product, and kk2F
signifies the Frobenius norm. The adopted algorithm involves

updating the variables M, T and Y by minimizing function L

while keeping the other variables fixed.

(1) Updating Mk: when other parameters are fixed, Mk is

obtained by solving the Equations 13 and 14:
FIGURE 3

The singular value distribution of the hyperspectral image is unfolded across modes 1, 2, and 3.
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Mk+1 ← arg min 
A

1
m

M ‖k +
1
2

����
����X −M − Tk +

Y1

m
‖2F , (13)

Mk+1 = Qm−1
k
(X − Tk + m−1

k Yk), (14)

where Q denotes the singular value threshold operator and k is

the number of iterations.

(2) Updating Tk: when other parameters are fixed, Tk is

obtained by solving the Equations 15 and 16:

Tk+1 ← arg min 
E

l
2m

‖T ‖1

+ 1
2 ‖X −Mk+1 +

Y1
m ‖2F

, (15)

Tk+1 = Slm−1
k
½X −Mk+1 + m−1

k Y k�, (16)

where Slm−1
k

is the shrinkage operator (He et al., 2011); it is

expressed as Equation 17:

SƐ(x) = sgn(x) max( xj j − Ɛ, 0) : (17)

(3) Updating Y k and mk: they are obtained by solving the

Equations 18 and 19:

Yk+1 = Yk + mk(X −Mk+1 − Tk+1), (18)

mk+1 = rmk : (19)

By solving the above formula, the low rank matrix M (P̂ or Q̂ )

is acquired. The appropriate rank of the matrix is adaptively

obtained. The outlined workflow is encapsulated in Algorithm 1.

2.2.3 Correlation regular robust principal
component analysis

In the direction of expansion along a spectral dimension, to

obtain the target that is closer to the prior spectrum, the minimum

regular constraint for the tested and prior spectrums’ difference is

added to the RPCA. It is as Equation 20:

min
M,T

M ‖* +l
��� ���T ‖1 +b H ⊙T − Dk k

s : t :  M + T = X,
(20)
Fron
Input: Data matrix X (P or Q), l > 0

Output: The optimal solution M (P̂ or Q̂ )

1: Initialize: M0  =  T0 = 0, Y = X=max ( Xk k2, l−1 Xk k∞), m0 =   

1:25= Xk k2,mmax = m010
7, k=0, tol=10−7

2: The P is processed using Equation 8;

3: The Q is processed using Equation 9;

4: while X −Mk − Tkk kF= Xk kF<  tol do

5: Compute variable Mk+1 using Equation 14;

6: Compute variable Tk+1 using Equation 16;

7: Compute variable Y using Equation 18;

8: Compute variable µ using Equation 19;
tiers in Marine Science 06
9:  k← k +  1;

10: end while
Algorithm 1. The linear total variation smoothing framework.

where ⊙ is the Hardman product, H is the spectral all-one

matrix of the prior position, and D is the prior spectral matrix. The

formula is displaced as Equation 21:

min
M,T

M ‖k +lk kT ‖1 +b H ⊙U − D ‖2F
��

s : t :  M + T = X,  U = T :
(21)

The augmented Lagrangian function is as Equation 22:

L(M,T ,U ,Y1,Y2)

= M ‖* +l
��� ���T ‖1 +b H ⊙U − D ‖2F

��
+ 〈Y1,X −M − T 〉+ 〈Y2,T − U 〉

+ m
2 (kX −M − T 2

F+
�� ��T − U 2

F)
��

= kM ‖* +l T ‖1 +bk kH ⊙U − D ‖2F

− m
2m ( Y1k k2F+ Y2k k2F)

+ m
2 X −M − T + Y1

m

��� ���2
F
+ T − U + Y2

m

��� ���2
F

� �

(22)

where Y1 and Y2 are the Lagrangian multiplier matrices, b and

µ are the positive penalty scalar, kk2F symbolizes the Frobenius

norm, and 〈  ,   〉 denotes the inner product. The solution involves

updating the variables M, T, U, Y1 and Y2 by minimizing L while

keeping other variables fixed.

(1) UpdatingMk: when other variables are fixed,Mk is obtained

by computing the Equations 23 and 24:

Mk+1 ← arg min 
1
m

M ‖* +
1
2

����
����X −M − TK +

Y1

m
‖2F , (23)

Mk+1 = Q(X − Tk + m−1
k Yk) : (24)

(2) Updating Tk: when other parameters are fixed, Tk is

obtained by solving the Equations 25 and 26:

TK+1 ← arg min  l
2m ‖T ‖1 +

1
2 T − 1

2 UK − Y2
m + X −MK+1 +

Y1
m

� ���� ���2
F
,

(25)

Tk+1 = Sl=(2m)
1
2

UK −
Y2

m
+ X −MK+1 +

Y1

m

� �
:

�
(26)

(3) Updating Uk: when other parameters are fixed, Uk is

obtained by solving the Equations 27 and 28:

Uk+1 ← arg min 
U

b
m
‖H ⊙U − D ‖2F +

1
2

U − Tk+1 −
Y2

m

����
����2
F
, (27)

Uk+1 =
1

H + O

� �
⊙ D + Tk+1 +

Y2

m

� �
, (28)
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where O is a matrix of all ones.

(4) Updating Y1, Y2 and mk: Yk and mk are obtained by solving

the Equations 29–31:

Y1 ←Y1 + mk (X −Mk+1 − Tk+1), (29)

Y2 ←Y2 + mk (Tk+1 − Uk+1), (30)

mk+1 = rmk : (31)

By solving the above formula, the low-rank variable U(Ŵ ) is

obtained, and the appropriate rank of the matrix is adaptively

obtained. The outlined method is summarized in Algorithm 2.
Fron
Input: The spectral imagery X(W), parameters l > 0, b   > 0Output: The
optimal solution M (Ŵ)

1: Initial ize: M0 = T0 = U0 = 0,  Y1 = X=max ( Xk k2, l−1 Xk k∞), 
  Y2 = 0,m0 = 1:25= Xk k2,

mmax = m010
7, k = 0, tol1 = 10−7, tol2 = 10−3

2: while X −Mk − Tkk kF= Xk kF<  tol do

3: Compute variable Mk+1 using Equation 24;

4: Compute variable Tk+1 using Equation 26;

5: Compute variable U k+1 using Equation 28;

6: Compute variable Y1 using Equation 29;

7: Compute variable Y2 using Equation 30;

8: Compute variable mk+1 using Equation 31;

9: k← k +  1;

10: end while
Algorithm 2. The framework of correlation regular robust principal
component analysis.

In the adaptive acquisition of the rank (r1, r2 and r3) of the

three factor matrices, tensor restoration is used to recover the

hyperspectral three-dimensional images in which it is easy to

detect the target. The reconstructed data have the same spectral

dimension and are calculated as Equation 32:

~D ≈ Gr �1 Pr1 �2 Qr2 �3 W r3, (32)
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where Pr1 = P( :, 1  : r1),Qr2 = Q( :, 1  : r2),Wr3 = W( :, 1  : r3)

and Gr = G (1: r1, 1: r2, 1: r3).

The ri (i ∈  1, 2, 3) signifies the count of principal

components in distinct factor matrices.

The intrinsic features of the hyperspectral image can be

effectively retained by tensors. In Figure 4, spectral curves of a

randomly chosen target-target, as well as target-background pixels,

are presented from the pollution dataset before and after tensor

reconstruction. The legend O denotes the original data spectral

profile and T denotes the reconstructed data spectral profile. In the

60 to 80 band of Figure 4A, the separation between the black lines is

less than the separation between the red lines. In the 60 to 80 band

of Figure 4B, the separation between the black lines is greater than

the separation between the red lines. This confirms that after tensor

processing, the distinction between the background and target

spectra is increased.
2.3 Spatial-spectral combined detection

Existing hyperspectral target detection algorithms use less spatial

information. To make up for these deficiencies and improve the

performance of target detection, this study adopts a spatial-spectral

combined detection method for reconstruction data.

In the spectral domain, an adaptive CEM detection method is

proposed. Its design needs to satisfy the Equation 33:

min
q
 qTRq

qTd = 1
,

8<
: (33)

where q is the filter, d denotes the prior position spectrum, and

R denotes the correlation matrix. The optimal solution is as

Equation 34:

q* =
R−1d

dTR−1d
(34)

After derivation, the spectral domain result raci is as

Equation 35:
A B

FIGURE 4

The spectral curves of target-target and target-background pixels are randomly chosen from the pollution dataset before and after Tucker
decomposition and reconstruction. (A) The target-target pixel spectral curves. (B) The target-background pixel spectral curves.
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raci = eq*Txi = e
dTR−1xi
dTR−1d

, (35)

where xi represents the reconstructed data’s spectrum and e

represents the mean of L2 norm of the difference value between the

pixels tested and its four neighborhoods.

In the spatial domain, similarity multiple morphological profile

feature extraction is proposed. The similarity value is obtained by

fusing the Pearson correlation coefficient with the prior spectrum’s

Euclidean distance from the reconstructed data using the

Equation 36:

rsi = xi − dk k2+
cov xi, dð Þ
dxi dd

, (36)

where kk2 is the L2 norm, cov denotes the covariance, d denotes
the standard deviation, dxi denotes the standard deviation of xi, and
dd denotes the standard deviation of d. Multiple morphological

profiles obtain a multilevel representation of an image by

constructing maximum and minimum trees and then using a

series of attribute filtering operations, which can extract spatial,

structural, and textural features in the image (Hou et al., 2021). The

method has been applied in hyperspectral image classification

(Aptoula et al., 2016; Bao et al., 2016). To maximize the use of

spatial features for increased detection performance, the

morphological feature extraction method is used to process the

similarity results of the previous step. The multiple morphological

profile formula adopted is as Equations 37–41:

Area (C) = #l j l ∈ Cf g, (37)

Height (C) = max
l∈C

 f (l) −min
l∈C

 f (l), (38)

Volume (C) = o
l∈C

max
l∈C

 v(l) − v(l)

� �
, (39)

Diag (C) =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(xl,max − xl,min)

2 + (yl,max − yl,min)
2

q
, (40)
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Std (C) =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Area   (C) o∀l∈C

(f (l) − Kgray−level (l))

s
, (41)

where C is the connected region, # is the number of pixels in

the connection area, l represents the pixel within the connected

region, f (l) denotes the function to obtain the value of the l pixel,

and v = ±f , xl,min, xl,max and yl,min, yl,max denote these extremes for

the horizontal and vertical coordinates of the region that is

connected, respectively. Kgray−level denotes the average intensity

of pixels within the connected region.

The multiple morphological feature fusion is as Equation 42:

RMMF = Rkk,min − Rll,max, (42)

where RMMF is the result of the fusion of multiple

morphological features, Rkk,min   and Rll,max   denote smaller

pruning for attribute kk and larger pruning for attribute ll,

respectively. kk and ll belong to the above five morphologies.

Figure 5 demonstrates pruning and reconstruction using multiple

morphological attributes (area and height) of the maximal tree.

Target features can be preserved by using the fusion of area 5 with

height 1 pruning value 5 results. Therefore, targets can be extracted

using this multiple morphological feature fusion.

After obtaining the spectral and spatial domain results, the

spatial-spectrum fusion is realized by the Equation 43:

R = bRac + (1 − b)RMMF, (43)

where b is the weighting factor, Rac is the result of spectral

detection, and RMMF is the result of spatial detection. The

framework of TRSSF is summarized in Algorithm 3.
Input: The spectral imagery X, prior target spectrum d.

Output: The result R =  ½r1;⋯; rN�.
1: for i = 1… N do

2: Compute po using Equation 4;

3: Compute principal component of P and Q using

Algorithm 1;

4: Compute principal component of W using Algorithm 2;
FIGURE 5

Schematic of pruning and fusion using multiple morphological attributes.
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Fron
5: Compute ~D using Equation 32;

6: Compute raci using Equation 35;

7: Compute RMMF using Equation 42;

8: Compute R using Equation 43;

9: end for
Algorithm 3. The framework of the proposed TRSSF.

Figure 6 illustrates the receiver operating characteristic curve

(ROC) of the tensor adaptive restruct spectral feature (TS), tensor

adaptive restruct morphological feature (TM), and proposed

TRSSF. Across the four datasets, the ROCs of the proposed

methods TS, TM, and TRSSF all reside near the upper left

corner, indicating a strong performance for all the proposed

algorithms. Out of the four images, the TRSSF algorithm’s ROC

curves are closest to the upper left, indicating a superior

performance for the tensor adaptive restructured and spatial-

temporal fusion algorithm. From Table 1, it can also be

observed that the spectral characteristics and morphological

features have high area under the curve (AUC) values, and the

spat ia l spectra l fus ion method AUC values increase

very significantly.

In summary, a tensor adaptive reconstruction cascade spatial-

spectral fusion algorithm is proposed for hyperspectral target

detection. First, the matched filter method is adopted to acquire

the position of the pixel that best matches the prior spectrum.
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Second, tensor Tucker decomposition and reconstruction by linear

total variation smoothing robust principal component analysis and

correlation regular robust principal component analysis are used to

improve the differentiation between the target and background.

Finally, the spatial-spectral fusion method is proposed to acquire

the required target pixels.
3 Experiments and analysis

3.1 Hyperspectral datasets

The first data were collected by airborne HSI system

SPECTIR sensors. The spatial resolution and spectral
A B

C D

FIGURE 6

The ROC curve for different datasets. (A) Ship. (B) Wake. (C) Pollution. (D) Floating object.
TABLE 1 AUC values of the tensor adaptive restruct spectral feature
(TS), tensor adaptive restruct morphological feature (TM), and TRSSF on
four datasets.

Image TS TM TRSSF

Ship 0.9791 0.9380 0.9998

Wake 0.9774 0.9547 0.9934

Pollution 0.9972 0.9800 0.9986

Floating object 0.9294 0.9986 0.9993
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resolution of the sensor were 1 m and 5 nm, respectively. The

target is the ship and the background is the nearshore water

(Giannandrea et al., 2013). The target spectra were obtained

from the images. The detailed description of the datasets can be

found in row 1 of Table 2. In addition, the false-color image (PI)

and ground truth image (GT) of these datasets are displayed in

rows 1 and 2 of Figures 7A, B.

The second to fourth hyperspectral datasets were collected

by the Dualix spectral imaging instrument GaiaSkymini2. Its

spectral range spans from 400 nm to 1,000 nm, the spatial

resolution is 0.14 m, and the spectral resolution is 3.5 nm.

Targets include wake, oil, and floating objects. The background

includes the sea at different times or in different situations.

Prior target spectra are collected in advance from these targets

in real scenes. A detailed description of the dataset is presented
Frontiers in Marine Science 10
in rows 2 to 4 of Table 2. The PI and GT for the dataset are

presented in Figures 7A, B within rows 3 to 8.
3.2 Evaluation indicators and analysis

To conduct qualitative and quantitative analyses, we used the

detection result map, compared target-background separability, and

introduced metrics such as detection probability (PD), false alarm

probability (PF), and ROC.

Detection result maps are presented in grayscale, in which

brighter shades indicate a proximity to the target. These maps

provide a direct depiction of the target’s location. The algorithm’s

performance is assessed based on the count of correct and

erroneous pixels.
TABLE 2 Detailed description of the hyperspectral datasets.

Datasets Collection date Spectral resolution Size (pixels) Sensor

Ship 20/09/2012 5.0 ± 0.5nm 150×150×360 SpeTIR

Wake 01/02/2018 3.5 ± 0.5nm 150×150×176 GaiaSkymini2

Pollution 11/07/2018 3.5 ± 0.5nm 150×150×176 GaiaSkymini2

Floating object 01/02/2018 3.5 ± 0.5nm 150×155×176 GaiaSkymini2
A B C D E F G H I J K L

FIGURE 7

The pseudo-color image, ground truth map, and detection results of 10 methods in the four datasets. (A) Pseudo-color image. (B) Ground truth
map. (C) CEM. (D) MF. (E) MOBS. (F) IEEPST. (G) LCNN. (H) DSC. (I) TRPCAF. (J) PTA. (K) TTDL. (L) Proposed.
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In the box plot, the central line denotes the median value

and the box’s upper and lower edges denote 75% and 25% of the

maximum values, respectively. The “whiskers” represent the

extreme values of the detection results. The red box delineates

the target value in detection results, whereas the green box

delineates the background value in detection outcomes. The

separation ability of the target background for the detection

results is indicated by the distance between the green and red

boxes (Hou et al., 2021). A larger distance signifies better

algorithm performance.

Points on the ROC curve indicate the PDs at various PFs. The

proximity of the ROC curve to top-left corner of the coordinate axis

indicates superior detection results for the algorithm. PD quantifies

the proportion of correctly detected pixels relative to the overall count

of target pixels. PF denotes the proportion of background pixels

erroneously classified as targets relative to the background pixel count

(Li et al., 2021, 2022b). At a given PF value, higher PD values signify

better algorithm performance (Zhao et al., 2022; Liu et al., 2023;

Ge et al., 2024). The PD and PF can be calculated by Equations 44, 45:

PD =
Nd

Nt
, (44)
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PF =
Nf

Nb
, (45)

where Nd , Nt , Nf , and Nb represent the number of correctly

detected pixels, actual target pixels, pixels erroneously detected,

and background pixels in the image, respectively. After getting an

array corresponding to the PD and PF, the AUC is displayed as

Equation 46:

AUC =
1
2
�o

nn

i
(PFi − PFi−1)� (PDi + PDi−1), (46)

where nn denotes the number of thresholds, i ∈  1, 2,…, nn.
3.3 Detection performance

The parameters in this experiment encompass l and b. In the

spatial dimensionality unfolding of data, the value of l is 1=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2T3 � T1

p
or 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T1T3 � T2

p
. In the spectral dimensionality

unfolding of data, the value of l is 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T1T2 � T3

p
, and the value

of b range is [101, 102, 103, 104, 105]. It is found through experiments

that these two parameters have little effect on the experimental

results, and the value of b used in this experiment was 101. T1, T2
A B

C D

FIGURE 8

Statistical separability analysis of 10 methods in the four datasets. (A) Ship. (B) Wake. (C) Pollution. (D) Floating object.
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and T3 represent the rows, columns, and bands for the hyperspectral

image, respectively. The comparison algorithms used in this study

were as follows: CEM (Farrand and Harsanyi, 1997), MF (Manolakis

et al., 2009), MOBS (Sun et al., 2024b), IEEPST (Sun et al., 2024c),

LCNN (Dong et al., 2023), DSC (Zhang et al., 2020), TRPCAF

(Chen and Wang, 2019), and PTA (Li et al., 2020), TTDL (Zhao

et al., 2020a).

Figure 7 visually depicts the detection results using different

algorithms across the four datasets. The proposed TRSSF algorithm

demonstrates superior detection capability, identifying more target

pixels across these datasets with minimal false alarms. In contrast,

other comparison methods exhibit poor detection results. In rows 1

and 2 (Figure 7I), TRPCAF can barely detect the target. In rows 1

and 2 (Figures 7C–E, H, J), CEM, MF, MOBS, DSC, and PTA

identify some correct pixels. In rows 1 and 2 (Figures 7F, G, K),

IEEPST, LCNN, and TTDL can detect more target pixels but some

error pixels are also detected. In rows 3 and 4 (h) and (i) of Figure 7,

DSC and TRPCAF detect very few correct pixels. In rows 3 and 4

(Figures 7C–G, J, K), CEM, MF, MOBS, IEEPST, LCNN, PTA, and

TTDL identify more correct pixels, albeit with numerous erroneous

background pixels also detected. In rows 5 and 6 (Figures 7C–G, J,

K), CEM, MF, DSC, TRPCAF, and PTA detect fewer correct pixels.
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In rows 5 and 6 (Figures 7E–G, K), MOBS, IEEPST, LCNN, and

TTDL can check more target pixels but also identify numerous false

positives. In rows 7 and 8 (Figure 7I), TRPCAF detect fewer correct

pixels. In rows 7 and 8 (Figures 7C–H, J, K), CEM, MF, MOBS,

IEEPST, LCNN, DSC, PTA, and TTDL can identify more target

pixels but also identify numerous false positives. Therefore, the

proposed TRSSF has good detection performance.

Figure 8 shows a box plot diagram comparing the detection

results across the four datasets using different methods. In

Figure 8B, the green and red boxes’ distance of LCNN and

IEEPST are greater than the proposed TRSSF algorithm. In

Figure 8C, the green and red boxes’ distance of IEEPST is greater

than the proposed TRSSF algorithm. However, the red and green

boxes’ distance in TRSSF are greater than those with the other

algorithms. In Figures 8A, D, the green and red boxes separation of

the TRSSF algorithm is greater those of the other algorithms, which

can easily obtain the desired target from the images. Some of the

remaining algorithms even have a partial overlap in the green and

red boxes of the detection results. Therefore, the TRSSF’s separation

is better.

Figure 9 displays the ROC for various algorithms used to

detect the results across the four datasets. In Figure 9A, when
A B

C D

FIGURE 9

The ROC curve with different datasets. (A) Ship. (B) Wake. (C) Pollution. (D) Floating object.
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the PF was approximately 0.1, the corresponding PD for TRSSF

was approximately 1.0000. The PDs for all comparative

methods (CEM, MF, MOBS, IEEPST, LCNN, DSC, TRPCAF,

PTA, and TTDL) were 0.6167, 0.6000, 0.8667, 1.0000, 0.7500,

0.8417, 0.8250, 0.6000, and 0.8167, respectively. In Figures 9B–D,

when the PFswere all 0.1, the PDs for TRSSF were 0.9902, 1.0000, and

1.0000. The biggest PDs among other baseline methods were 0.9805,

1.0000, and 0.9231. The proposed method’s ROC curves were

consistently closest to the upper left of the coordinate axis. The

efficacy of the TRSSF algorithm was confirmed through an evaluation

using the aforementioned four hyperspectral datasets.

Table 3 presents the AUC values for the aforementioned ten

algorithms. On four different datasets, the TRSSF’s AUCs were

0.9998, 0.9934, 0.9986, and 0.9993, respectively. The maximum

AUC values for all comparison algorithms across the four real

scenarios were 0.9979, 0.9908, 0.9935, and 0.9376, respectively. The

minimum AUC values for all comparison methods across the four

real scenarios were 0.6338, 0.7539, 0.5518, and 0.6208, respectively.

All of them were lower than the AUC value of the TRSSF. The

TRSSF’s detection performance is optimal.

Table 4 presents the execution times of all the methods in

different datasets. The times consumed by TRSSF were 41.5543 s,

20.3282 s, 41.0718 s, and 21.6437 s. The longest time consumed by

the other methods on these datasets were 86.1928 s, 49.0279 s,

42.7094 s, and 51.9833 s, respectively. The time consumed by PTA

was the longest. The time consumed by TRSSF was more than the

traditional methods but less than the spatial-spectral fusion

methods. The proposed TRSSF not only exhibits excellent

detection performance for complex scenes but also does not take

long to execute. All algorithm tests were conducted using MATLAB

on a computer with an Intel Core i7-8700 h CPU and 8GB of RAM.
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4 Conclusion

This study proposed a tensor adaptive reconstruction cascade

spatial-spectral fusion (TRSSF) method for marine pollutants

detection. First, the position of the pixel with the highest degree

of matching with the prior spectral curve was obtained. This

position could obtain the prior spectrum of the subsequent

matching detection. Second, the tensor decomposition and

reconstruction method based on the total variation and prior

constraint was processed to the initial hyperspectral image. In the

spatial dimensionality unfolding of the data, the linear total

variational RPCA method was employed to obtain its rank. In the

spectral dimensionality unfolding of data, similarity regularization

RPCA was employed to obtain its rank. The data were

reconstructed according to an adaptively chosen rank. Finally, the

spatial-spectral fusion method was used to select the optimal target

from the reconstructed data. Experiments performed on publicly

available and laboratory-collected hyperspectral datasets showcased

the effective detection performance of the proposed approach.

In the future, as the application scenarios become more

complex, the data will become increasingly larger. Too many

bands in the hyperspectral data will result in the data containing

a large amount of redundant information, which makes data

processing and analysis more complicated and reduces the

efficiency and detection rate of target detection. Therefore,

hyperspectral target detection based on band selection will be

the direction that will be studied in the next phase. At the same

time, some existing hyperspectral moving targets have rich

temporal information; therefore, the study of combining spatial

and temporal information can further improve the target

detection rate.
TABLE 3 AUC values of different methods on four datasets.

Image CEM MF MOBS IEEPST LCNN DSC TRPCAF PTA TTDL Proposed

Ship 0.6338 0.6385 0.8948 0.9979 0.7490 0.8556 0.9241 0.6472 0.8431 0.9998

Wake 0.7832 0.9020 0.7539 0.9876 0.9908 0.7989 0.8235 0.9898 0.9728 0.9934

Pollution 0.6534 0.5518 0.5994 0.9935 0.9856 0.7120 0.8692 0.9898 0.9573 0.9986

Floating
object

0.9756 0.6208 0.9374 0.8440 0.7957 0.7179 0.9376 0.9374 0.8615 0.9993
TABLE 4 Execution time of different methods on four datasets (unit: s).

Image CEM MF MOBS IEEPST LCNN DSC TRPCAF PTA TTDL Proposed

Ship 0.2339 0.2944 27.0741 15.2673 39.5312 6.5724 9.4338 86.1928 8.9818 41.5543

Wake 0.0828 0.116 15.1249 9.5659 4.3388 6.9591 3.0757 49.0279 6.5166 20.3282

Pollution 0.0765 0.1332 17.0592 5.4641 3.8812 5.3499 3.1292 42.7094 6.6764 41.0718

Floating
object 0.1348 0.1299 14.8006 17.792 12.8928 11.889 2.5724 51.9833 7.2435 21.6437
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