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Mangrove plantation is a fundamental approach for the sustainable management

of tropical and subtropical coasts to capture and store atmospheric carbon.

However, it is unknown whether the carbon accumulation potential of planted

mangroves is as much as that of natural mangroves. Moreover, the effects of tree

species, forest age, and hydrodynamic conditions on carbon storage are still

unclear. This study investigated the carbon storage potential and influencing

factors for planted mangroves in Kaozhouyang, Huidong County, Guangdong

Province. The Vegetation carbon stock was calculated by community parameters

collected from field investigation, and ecosystem carbon stock was calculated by

the sum of vegetation and sediment. The results showed that mangrove

plantation significantly increased the carbon stock of the vegetation and soil

(vegetation carbon stock = 9.9645.06 t C/ha; soil carbon stock = 70.37-110.64 t

C/ha) compared with the nonvegetation mudflat (63.73 t C/ha). However, the

ecosystem carbon stock of the planting sites was still lower than that of natural

Avicennia marina (282.86 t C/ha), with the significant difference mainly reflected

on the soil carbon stock (p < 0.05). Further results revealed that carbon

accumulation was affected by forest age, tree species, and tidal level. The

vegetation biomass/carbon stock gradually increased with forest age (p < 0.05),

but the difference was not significant for soil carbon stock, which indicated that

the carbon accumulation was mainly concentrated on the vegetation at the early

stage of mangrove restoration. In addition, suitable habitat conditions (landward)

and fast-growing species (Sonneratia apetala) are more beneficial to carbon

accumulation. Our results suggest that mangrove plantations can achieve carbon

storage and sequestration in vegetation and soil for increasing carbon sinks with

suitable species selection and management.
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1 Introduction

As a typical coastal blue carbon ecosystem, mangrove forests play

an important role in the global carbon cycle (Atwood et al., 2017;

Alongi et al., 2009; Alongi, 2012). Although mangrove forests occupy

only 0.5% of the global coastal area, they account for 10%–15% of the

coastal carbon storage (Duarte et al., 2005) and may be responsible for

approximately 10% of the global terrestrial organic carbon (OC)

exports to coastal oceans (Jennerjahn and Ittekkot, 2002; Perez et al.,

2018; Peréz et al., 2022). Therefore, mangrove forests are among the

most carbon-dense coastal vegetation ecosystems, with higher

productivity and carbon capture efficiency in sediments than

terrestrial ecosystems (Kauffman et al., 2016; Kauffman et al., 2020;

Wang et al., 2019). However, approximately 35% of the world’s

mangroves have been lost in the last century due to the harvesting of

shrimp ponds, excessive timber harvesting, changing water flow

patterns, environmental pollution, and increasing urbanization (Ren

et al., 2010), with an estimated annual deforestation rate of 1%–3%

(Alongi, 2012). Globally, tidal wetlands (e.g., tidal flats, tidal marshes,

andmangroves) have lost nearly 4,000 km2 from 1999 to 2019 (Murray

et al., 2022). The deforestation and the degradation of mangrove forests

have accelerated the mineralization of OC in mangrove sediments,

leading to massive greenhouse gas emissions into the atmosphere

(Atwood et al., 2017).

Mangrove plantation is the most common approach to

restoration and afforestation (Lee et al., 2019). By 2020, the total

area of mangrove forests in China has been estimated to be 28,900

ha, with 33% being newly planted mangroves (Wang et al., 2021).

Furthermore, the area will be increased by 18,800 ha through

cultivation and restoration by 2025, according to “the Special

Action Plan for Mangrove Protection and Restoration (2020–

2025)” issued by the Chinese government. However, although

planting mangroves to offset carbon emissions has been

increasingly valued, there is limited understanding of whether this

would contribute to blue carbon services similar to natural forests.

Mangrove plantation is crucial to mitigating global climate

change (Ahmed et al., 2022). Many studies have indicated that

planting mangroves can increase the vegetation and soil carbon

storage (Ren et al., 2010; Osland et al., 2012; Lunstrum and Chen,

2014; Dung et al., 2016; Chen et al., 2018; He et al., 2018; Feng et al.,

2019). The vegetation biomass could reach maturity after planting

20 years (20a), but the soil carbon storage needs to take 70a or more

to reach maturity (Osland et al., 2012). Carbon storage is affected by

many factors, including forest age, tree species/density, tidal level,

growth mode, and other biological and abiotic factors (Aye et al.,

2023). Tree species are considered as important factors affecting

growth and biomass accumulation (Xiong et al., 2019), and growth

rates from high to low are observed in fast-growing arbor, arbor,

and shrubs (Hu et al., 2019a, 2019b). For example, the ecosystem

carbon stock of Sonneratia apetala (262.03 t C/ha) was higher than

that of native species such as Avicennia marina (212.88 t C/ha) in

Yingluo Bay, Guangdong Province, South China (Wang et al.,

2013). Another study also found that the biomass of Kandelia

obovata in arbor form was higher than that of A. marina in shrub

form of the same age in Luoyang River Estuary, South Fujian, China

(Chen et al., 2021a). In addition, forest age also significantly affected
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the carbon sequestration, and the vegetation carbon accumulation

rate (CAR) was higher than that of soil in the early stage of

mangrove plantation (Osland et al., 2012). In addition, the carbon

accumulation in mangrove ecosystems was also affected by tidal

levels, with mangroves at high tide generally having higher carbon

stocks (Wang et al., 2013). However, only a few studies have

comprehensively considered the influencing factors of carbon

accumulation in planted mangroves.

As one of the four 10,000-acre mangrove demonstration areas in

Guangdong Province, Kaozhouyang has conducted mangrove

restoration and plantation since 2011. Currently, more than 3,000

acre of mangroves have been planted in Kaozhouyang, and the tree

species mainly included Rhizophora stylosa, K. obovata, A. marina, and

S. apetala. In addition, natural A. marina are also present in

Kaozhouyang, with a forest age of over 60 years. In this study, the

carbon storage rates of planted and naturalA.marinawere systemically

compared to assess the carbon storage potential of planted mangroves

and to further explore the effects of tree species, forest age, and tidal

level on carbon sequestration at the early stage of mangrove restoration.
2 Study area and method

2.1 Study area

The study area is located at the “10,000-acre mangrove

Demonstration Zone of Kaozhouyang” in Huidong County,

Huizhou City, Guangdong Province. It was historically rich in

mangrove forests, most of which were destroyed before 2000 due

to aquaculture, seawall construction, and water pollution.

Fortunately, the Department of Natural Resources of Huizhou

Bureau organized and managed the plantation of native species

such as K. obovata, R. stylosa, and A. marina, as well as exotic

species of S. apetala, since 2011. At present, the mangrove forests in

Kaozhouyang are growing well, with the main tree species including

R. stylosa,A.marina,Aegiceras corniculatum, Bruguiera gymnorrhiza,

K. obovata, S. apetala, and other true and semi-mangrove plants.

The study area has a subtropical marine monsoon climate, with an

average annual temperature of 23.1°;C, average rainfall of 1,266.5 mm,

average wind speed of 2.7 m/s, and a total sunshine time of 2,335.3 h.
2.2 Field investigation

Field data [e.g., tree species, height, and diameter at breast height

(DBH)] were collected from six survey sites to estimate the vegetation

biomass and the carbon stock. The distribution of the survey sites is

shown in Figure 1. A mudflat without any vegetation was used as a

reference for pre-restoration. Three 10 m × 10 m quadrats were

investigated at each survey site as repetitions. All trees were

identified, and the number of trees of each species, the tree height,

the DBH/basal diameter, and the survival status (healthy or dead) were

recorded in each quadrat. No dead trees were found during this survey.

Vertical differences were measured to record the microtopographic

features using real-time kinematic (RTK), and the forest age was

determined based on historical remote sensing images and the data
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provided by the local government. All field investigations were

completed in August and September 2023. The elevation, location,

and community composition of the survey sites are shown in Figure 2

and in Tables 1, 2.
2.3 Vegetation biomass and carbon stock

The aboveground biomass (AGB) and the belowground biomass

(BGB) were calculated using the allometric growth equations of

specific tree species based on DBH/D0 and tree height (Table 3)

(Ren et al., 2010; Wang et al., 2013). The total forest biomass (TFB) is

equal to the sum of AGB and BGB. The carbon conversion

coefficients of AGB and BGB were set at 0.45 and 0.39,

respectively, to calculate the above- and belowground vegetation

carbon stocks according to the coastal blue carbon accounting

guidelines published by the International Union for Conservation

of Nature (IUCN) (Kauffman et al., 2011; Peng et al., 2023).

CAR can be calculated according to the difference in the carbon

stock before and after mangrove restoration. The calculation

formula for vegetation is as follows:

CAR = TBCt2 − TBCt1=(t2 − t1)

where TCBt2 represents the current vegetation carbon stocks and

TCBt1 represents the carbon stock before restoration, which is 0 t C/ha

in this study. t2 and t1 represent the different monitoring times.
2.4 Soil organic carbon content and stock

Three soil samples down to 50 cm were collected within each

quarter using a PVC pipe of 7 cm diameter, as the carbon

accumulation of newly planted mangroves is mainly concentrated

on the soil surface. Moreover, another three soil samples were also

collected from the mudflat far away from the mangroves. The soil
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samples were then divided into five layers of 0–10, 10–20, 20–30,

30–40, and 40–50 cm for bulk density and soil organic carbon

(SOC) analyses. The soil samples were freeze-dried and sieved to

0.15 mm to remove plant residues and roots. Subsequently, the SOC

was determined with the potassium dichromate (K2Cr2O7)

oxidation–external heating method, while bulk density was

determined by dividing the dry weight of the sample by the

volume. All parameters were assessed in triple repeated analysis.

The average SOC stock of the surface 50 cm was calculated

using the following formula (Yu et al., 2021; Zhu et al., 2012):

SOCS = Di�Mi�Hi

where SOCS is the soil stock of soil layer i, Di represents the bulk

density of soil layer i, Mi is the SOC content of soil layer i, and Hi

represents the depth interval of soil layer i.
2.5 Ecosystem carbon stock

Due to the negligible amount of litter in this investigation, the

ecosystem carbon stock was equal to the sum of the vegetation (both

aboveground and underground) and soil carbon stocks. Assessment

of the carbon stocks of restored mangroves will contribute to

marketable carbon stocks in China’s blue carbon transactions

(Macreadie et al., 2022).
2.6 Statistical analysis

The vegetation biomass, SOC content, SOC stock, and

ecosystem carbon stock were statistically analyzed using one-way

analysis of variance (ANOVA) with SPSS 27.0 software. Duncan’s

method was used to evaluate significant differences between the

mean values of the different mangrove communities at the 95%

confidence level.
FIGURE 1

Locations of the survey sites in this study. (A) Guangdong Province. (B) Huidong County. (C) Survey sites at Kaozhouyang.
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3 Results

3.1 Ecosystem carbon stocks for planting
and nature forests

In this study, the carbon stocks in the planting sites obviously

increased compared with that in the mudflat (63.73 ± 9.27 t C/ha).

Among them, the low-tide 6a-R. stylosa (6-year-old R. stylosa) and

11a-S. apetala had the largest carbon storage, with ecosystem

carbon stocks of 133.60 ± 7.42 and 144.01 ± 27.87 t C/ha,
Frontiers in Marine Science 04
respectively (Table 4, Figure 3). In addition, most of the carbon

was concentrated in the soil layers, accounting for 66.27% and

76.83%, respectively. The carbon stocks of 3a-R. stylosa and 6a-R.

stylosa at high tide and of 11a-K. obovata were 86.44 ± 4.27, 100.93

± 13.16, and 94.96 ± 8.90 t C/ha, respectively, while the proportions

of soil carbon stock were 85.72%, 69.72%, and 89.51%, respectively.

However, the ecosystem carbon stocks of the five planting sites

were obviously lower than that of natural A. marina (p < 0.05), and

the differences were mainly reflected in the vegetation and soil

layers. The vegetation, soil, and ecosystem carbon stocks of natural
FIGURE 2

Mangrove communities in the different survey sites. 3a/6a/11a represent the forest age of the mangrove communities. High and low tides are
distinguished by the elevation at the sampling site.
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A. marina were 43.49 ± 2.89, 239.37 ± 35.25, and 284.93 ± 32.55 t C/

ha, respectively, and nearly 85% of the carbon was stored in the soil.

Furthermore, the soil carbon stocks in all planting sites only

accounted for 37%–46% of natural A. marina, but the vegetation

carbon stocks in 11a-S. apetala (33.37 ± 5.22 t C/ha) and the high-

tide 6a-R. stylosa (45.06 ± 6.29 t C/ha) were relatively close to that of

natural A. marina (43.49 ± 2.89 t C/ha) (Table 4, Figure 4).
3.2 Ecosystem carbon stocks of different
forest ages

Variations of the ecosystem carbon stocks with forest age were

determined by comparing 0a-mudflat, high-tide 3a-R. stylosa, and

6a-R. stylosa (Table 4, Figures 3, 4). The results showed that the

ecosystem carbon stock of 0a-mudflat (63.73 ± 9.27 t C/ha) was

much lower than that of 3a-R. stylosa (86.44 ± 4.27 t C/ha) and 6a-

R. stylosa (133.60 ± 7.42 t C/ha; p < 005), and the proportion of soil

carbon stock gradually decreased from 100% to 66.27% with

increasing forest age. Furthermore, the vegetation carbon stock of

6a-R. stylosa (45.06 ± 6.29 t C/ha) was significantly higher than that

of 3a-R. stylosa (12.34 ± 3.99 t C/ha; p < 0.05), and the vegetation
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carbon stock increased by nearly three times with forest age from 3a

to 6a. However, the soil carbon stock only increased slightly from 3a

to 6a (from 74.10 ± 2.69 to 88.54 ± 2.52 t C/ha; p > 0.05).

The results showed that the vegetation, soil, and ecosystem

carbon stocks increased gradually with forest age (p < 0.05) at the

early stage of mangrove restoration. Furthermore, the vegetation

carbon stock increased by nearly three times with forest age from 3a

to 6a, while the soil carbon storage only slightly increased.
3.3 Ecosystem carbon stocks of different
tree species

The effect of tree species on carbon storage was determined by

comparing 11a-K. obovata and 11a-S. apetala at similar tidal levels

(Table 4, Figure 3). The vegetation, soil, and ecosystem carbon stocks of

11a-K. obovata (9.96 ± 2.54, 85.00 ± 6.73, and 94.96 ± 8.90 t C/ha,

respectively) were significantly lower than those of 11a-S. apetala (33.37

± 3.10, 110.64 ± 22.67, and 144.01 ± 27.87 t C/ha, respectively; p < 0.05).

As a pioneer species, S. apetala has been introduced since 2011 due to

its fast growth rate; therefore, the proportion of vegetation carbon stock

of 11a-S. apetala was higher than that of 11a-K. obovata.
TABLE 1 Community composition, elevation, and locations of the survey sites.

Survey site
Community
composition

Elevation (m) Longitude (deg) Latitude (deg)

A 3a-Rhizophora stylosa 1.28 114.92173 22.75072

B
6a-Rhizophora stylosa

(high tide)
1.34 114.94119 22.74682

C
6a-Rhizophora stylosa

(low tide)
0.67 114.93043 22.73253

D 11a-Sonneratia apetala 0.72 114.93132 22.73340

E 11a-Kandelia obovata 0.75 114.93182 22.73338

F Natural Avicennia marina 0.81 114.91616 22.72540

G Mudflat 0.43 114.92892 22.73305
3a, 6a, and 11a, denote 3, 6, and 11 years, respectively.
TABLE 2 Community structure of the different sampling sites.

Sampling site Tree species Density (trees/ha) Height (m) DBH (cm) Forest age (years)

A 3a-Rhizophora stylosa 3,160 1.94 ± 0.20 2.49 ± 0.26 3

B 6a-Rhizophora stylosa
(high tide)

10,833
3.59 ± 0.19 3.79 ± 0.43 6

C 6a-Rhizophora stylosa
(low tide)

9,733
3.01 ± 0.14 3.12 ± 0.29 6

D 11a-Sonneratia apetala 533 10.19 ± 0.87 13.82 ± 0.28 11

E 11a-Kandelia obovata 5,400 1.79 ± 0.06 6.81 ± 0.68 11

F Natural
Avicennia marina

367 6.18 ± 0.18 12.94 ± 0.51 >60
3a, 6a, and 11a, denote 3, 6, and 11 years, respectively.
DBH, diameter at breast height.
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3.4 Ecosystem carbon stocks of different
tidal gradients

The effect of tidal level on carbon storage was determined by

comparing 6a-R. stylosa at high tide and low tide (Table 4, Figure 3).

The carbon stock of high-tide 6a-R. stylosa (133.60 ± 7.42 t C/ha) was

much higher than that of low-tide 6a-R.stylosa (100.93 ± 13.16 t C/ha; p

< 0.05). In addition, the vegetation and soil carbon stocks of low-tide 6a-

R. stylosa were 30.56 ± 5.22 t C/ha (aboveground/belowground

vegetation carbon stock: 20.34 ± 4.90/10.22 ± 0.38 t C/ha) and 71.84

± 8.47 t C/ha, respectively, and the percentage of soil carbon stock was

close to 70%. In high-tide 6a-R. stylosa, the carbon stocks of vegetation

and soil were 45.06 ± 6.29 t C/ha (aboveground: 30.65 ± 4.74 and 14.41

± 1.57 t C/ha) and 88.54 ± 2.52 t C/ha, respectively, and the proportion

of soil carbon stock was 66%.

4 Discussion

4.1 Carbon storage effect of
mangrove plantation

Mangrove plantations can significantly increase the mangrove

area, vegetation biomass/stock, soil carbon stock, and soil accretion
Frontiers in Marine Science 06
(Ren et al., 2010; Lunstrum and Chen, 2014; Dung et al., 2016;

Pham et al., 2017; Chen et al., 2018; Wang et al., 2021). The carbon

storage of five planting sites was higher than that of the mudflat,

particularly that of 6a-R. stylosa and 11a-S. apetala, indicating that

mangrove plantation is beneficial for carbon storage. Among the

selected tree species, the carbon stock of 11a-S. apetala was higher

than that of 11a-K. obovata and 6a-R. stylosa, indicating that the

selected tree species affected the carbon storage (discussed in Section

4.3). In addition, the average biomass CAR (4.13 t C ha−1 a−1) was

higher than that of the soil (2.98 t C ha−1 a−1) in the present study.

Osland et al. (2012) found that the biomass CAR (global average =

4.56 t C ha−1 a−1) was higher than that of soil (global average =

2.64 t C ha−1 a−1) below 20a, which is consistent with the current

study. Therefore, the CAR of vegetation is higher than that of soil at

the early stage of mangrove plantation, and the selection of suitable

habitat conditions, tree species, and planting measures at the initial

stage of mangrove restoration can significantly enhance the carbon

sequestration effect and mitigate global climate change (Chen

et al., 2020).

However, the ecosystem carbon stocks of planted mangroves were

much lower than that of natural A. marina, and the differences were

mainly reflected in the soil layers. The soil carbon stock of mature

mangrove forests is approximately 230 t C/ha (Ouyang and Lee, 2020),
TABLE 3 Above- and belowground biomass equations for specific tree species.

Tree species Aboveground biomass (kg/ha) Belowground biomass (kg/ha)e

Kandelia obovata (He et al., 2017) Wtop = 0.05698 × D0
2 − 0.295595 WR = 0.009685 × (D0

2H) + 0.108358

Aricennia marina (Comley and McGuinness, 2005) Wtop = 0.076123 × (D0
2H) − 0.222424 WR = 0.040168 × (D0

2H) − 0.12623

Sonneratia apetala (Hu et al., 2019a; Hu et al., 2019b) Wtop = 0.034 × (DBH2H)0.966 WR = 0.003 × (DBH2H)1.119

Rhizophora stylosa (Tamai and Iampa, 1988; Fromard
et al., 1998)

Wtop = 0.2206 × DBH2.4292 WR = 0.261 × DBH1.86

General equation (Saenger and Snedaker, 1993) Wtop = 0.251 × r × DBH2.46 WR = 0.199 × r0.899 × DBH2.22
D0 is the base diameter, DBHmax is the maximum diameter at breast height, and r is the wood density.
TABLE 4 Summary of the aboveground biomass/carbon stock (AGB/AGBC), belowground biomass/carbon stock (BGB/BGBC), total biomass (TBC), soil
carbon stock (SOCD), and ecosystem carbon stock (TCS) at the different survey sites.

Sampling
plot

AGB
(t/ha)

BGB
(t/ha)

AGBC
(t C/ha)

BGBC
(t C/ha)

TBC
(t C/ha)

SOCD
(t C/ha)

TCS
(t C/ha)

3a-
Rhizophora stylosa

11.83 ± 3.92 a 17.18 ± 6.02 ab 7.73 ± 2.71 a 4.61 ± 1.53 ab 12.34 ± 3.99 a 74.10 ± 2.69 ab 86.44 ± 4.27 a

6a-Rhizophora
stylosa (high tide)

68.11 ± 10.54 c 36.94 ± 4.02 d 30.65 ± 4.74 c 14.41 ± 1.57 d 45.06 ± 6.29 c 88.54 ± 2.52 ab 133.60 ± 7.42 bc

6a-Rhizophora
stylosa (low tide)

45.20 ± 9.94 b 26.20 ± 2.8 c 20.34 ± 4.47 b 10.22 ± 1.09 c 30.56 ± 5.55 b 70.37 ± 8.21 a 100.93 ± 13.16 abc

11a-
Sonneratia apetala

61.15 ± 10.89 bc 15.00 ± 0.98 b 27.52 ± 4.90 bc 5.85 ± 0.38 b 33.37 ± 5.22 b 110.64 ± 22.67 b 144.01 ± 27.87 c

11a-Kandelia
obovata

+Avicennia marina
15.87 ± 4.35 a 6.81 ± 1.00 a 7.14 ± 1.96 a 2.66 ± 0.39 a 9.96 ± 2.54 a 85.00 ± 6.73 ab 94.96 ± 8.90 ab

Natural
Avicennia marina

66.66 ± 3.71 c 34.58 ± 3.84 d 30.00 ± 1.67 c 13.49 ± 1.50 d 43.49 ± 2.89 c 239.37 ± 35.35 c 282.86 ± 32.78 d

Mudflat 0 0 0 0 0 63.73 ± 9.27 a 63.73 ± 9.27 a
3a, 6a, and 11a, denote 3, 6, and 11 years, respectively.
Lowercase letters are notations, which used to indicate the significance and difference of statistical results.
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which is similar to that of the natural A. marina in this study. A

previous study found that more than 70a would be required for soil

layers for mangroves to reach maturity, with an average carbon

sequestration rate of approximately 1.74 t C ha−1 a−1 (Alongi, 2014).

In this study, the soil carbon storage in most planted sites was less than

100 t C/ha, indicating that the soil still has significant carbon

sequestration potential.
4.2 Effects of forest age on carbon storage

Carbon storage is mainly reflected in the vegetation and sediment

carbon pool of a mangrove ecosystem, while the carbon accumulation

in litter and dead wood is relatively low (Ouyang and Lee, 2020; Chen

et al., 2021a). The results showed that the aboveground, belowground,

and vegetation carbon stocks of 6a-R. stylosa were higher than that of

3a-R. stylosa, and the vegetation biomass/stock was close to that of the

natural A. marina forest, indicating that the vegetation biomass

accumulated much faster before maturity.

Carbon sequestration in a mangrove ecosystem is affected by many

factors (Duke, 2001; Pan et al., 2004; Damschroder et al., 2009), of which
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forest age can largely determine the accumulation of biomass and SOC

(Daniel et al., 2009; Hu et al., 2022). Several studies have suggested that

the increase of tree mass with forest age is accompanied by the

accumulation of biomass (Song et al., 2024). Zakaria et al. (2023)

demonstrated that the ecosystem carbon stock in different ages (i.e., 1a,

2a, 5a, 9a, 10a, and 21a) of planted mangroves increased with forest age,

with the 10a mangrove having the highest ecosystem carbon stock

(875.79 t C/ha). Yu et al. (2020) compared the differences in the

vegetation biomass/carbon stocks of S. apetala of different forest ages

(i.e., 1a, 4a, 9a, and 15a) and of native 40a-K. obovata and found a

positive and linear relationship between the vegetation biomass/carbon

stock and forest age of S. apetala, with 15a-S. apetala having a similar

biomass/carbon stock to that of natural 40a-K. obovata. Song et al. (2024)

demonstrated that the mangrove vegetation and root carbon stock in

Qinzhou Bay gradually increased with forest age and reachedmaturity at

15a. The global average carbon stock of mature mangrove vegetation is

approximately 200 t C/ha, which needs to take approximately 20a to

reach maturity. Therefore, the mangrove ecosystem in Kaozhouyang still

has a large carbon sequestration potential.

Although the SOC stocks for 3a-R. stylosa and 6a-R. stylosa

were higher than that of the mudflat, there was no significant

difference between the three sites, which may be due to a hysteresis

effect of soil carbon accumulation and the relatively shorter

monitoring time. The balance between carbon input and carbon

consumption/decomposition generally determines the carbon

sequestration and storage of mangrove ecosystems. In addition,

the reason for the unchanged SOC stock during the study period

could be that the SOC input was basically offset by carbon

consumption/decomposition (Lu et al., 2014). A previous study

showed that the soil develops more slowly than vegetation in the

early stage of mangrove plantation and that the accumulation of

SOC takes a longer time than vegetation (Osland et al., 2012). Chen

et al. (2021b) found that the sequestered OC was considerably less

in soil than in biomass before the vegetation has reached maturity

between 12a-K. obovata and 12a-A. corniculatum, and the

accumulation of OC in mangrove soil required 40a or longer to

reach equilibrium (237.4 t C/ha) at a global scale (Ouyang and Lee,

2020). Therefore, this study indicates that the accumulation of OC

is mainly concentrated in vegetation and that carbon accumulation

in soil is slower before the mangroves reach maturity.
FIGURE 3

Ecosystem carbon stocks of the different mangrove communities.
Capital letter represents survey sites.
FIGURE 4

Biomass and carbon stock of vegetation at the different investigation sites. Capital letter represents survey sites.
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4.3 Effects of tree species on
carbon storage

The vegetation and soil carbon stocks of 11a-S. apetala were much

higher than those of the 11a-K. obovata in this study, indicating that

the tree species significantly affected carbon storage. The growth rates

of the different mangrove tree species varied, and arborous species or

fast-growing mangroves showed higher growth rates than shrubs

(Chen et al., 2021b). S. apetala has characteristics of high biomass,

energy accumulation, and high return, and its productivity level is at a

higher level in China’s mangrove communities. Therefore, non-native

S. apetala plantations have been widely recommended for China’s

mangrove restoration (Wang et al., 2021). Recent estimates have

suggested that more than half of the total mangrove restoration area

in China is S. apetala (Ren et al., 2010; He et al., 2018).

In this study, the total biomass and the biomass carbon stock of

11a-S. apetala were 76.15 t/ha and 43.49 t C/ha, respectively, which

were higher than those of other planted native species such as K.

obovata and R. stylosa (Table 3). Previous studies have shown that

the total biomass of S. apetala in Yingluo Bay (294.32 t/ha) was

much higher than that of local native species such as K. obovata, R.

stylosa, A. marina, and B. gymnorrhiza (64.48–107.36 t C/ha)

(Wang et al., 2019a, Wang et al., 2019b, Wang et al., 2021), but

these studies did not mention whether the forest age of the different

tree species differed. However, another study showed that the

carbon stock of K. obovata (106.6 ± 1.4 t C/ha) was much larger

than that of S. apetala monocultures, which is contrary to our

results (He et al., 2020). Therefore, tree species should be selected

according to the hydrological conditions of the restoration area.

However, despite the higher biomass and biomass carbon stock

of 11a-S. apetala compared with 11a-K. obovata, there was no

significant difference in the soil carbon stock between the two

species, indicating that the soil carbon accumulation was

relatively slow in the early stage of mangrove plantation

(discussed in Section 4.1). In addition, the ecosystem carbon stock

of 11a-S. apetala was still relatively lower than that in other study

areas. For example, Wang et al. (2019a) demonstrated that the

average ecosystem carbon stocks of S. apetala at Dongzhai Harbor,

Yingluo Bay, and Dongjiang Estuary were 351.35, 306.93, and

162.04 t/ha, respectively, which were higher than the current

results in this study. This may be due to the younger forest age of

S. apetala and the SOC storage accounting for more than 85% of

ecosystem carbon stock being only estimated on the top 50 cm

sediment in this study. Therefore, the introduced S. apetala still has

high carbon storage potential in this study.
4.4 Effects of tidal gradient on
carbon storage

In this study, the vegetation carbon stock of 6a-R. stylosa at high

tide (45.06 ± 6.29 t C/ha) was significantly higher than that of 6a-R.

stylosa at low tide (30.56 ± 5.55 t C/ha). Previous studies found that

the ecosystem carbon stock was significantly influenced by the
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hydrogeomorphic settings associated with tidal hydrodynamics,

and the higher biomass carbon storage in landward mangrove

communities could be mainly attributed to the more stable

geomorphic settings and nutrient-richer soils (Wang et al., 2019a;

Hu et al., 2022). Similar results were also found in three estuarine

mangrove forests (Dongzhai Harber, Yingluo Bay, and Zhangjiang

Estuary) in China (Wang et al., 2019), Shenzhen in South China

(Mao et al., 2012), in Micronesia (Kauffman et al., 2011), and in

Vietnam (Tue et al., 2012, Tue et al., 2018). For example, Mao et al.

(2012) showed that the mangrove carbon stocks in Shenzhen Futian

Reserve decreased from 674.37 to 230.55 t C/ha along the landward-

to-seaward gradient. Tue et al. (2012) suggested that the ABG and

BGB carbon stocks ranged from 90.2 ± 15.8 to 115.2 ± 19.3 t C/ha

and from 629.0 ± 32.5 to 687.0 ± 29.2 t C/ha, respectively, and

slightly increased from the fringe toward the interior forest in

mangroves. Therefore, landward optimum habitats are more

conducive to mangrove growth.

Furthermore, although there was no significant difference in the

soil carbon stocks between the high- and low-tide survey sites, 6a-R.

stylosa at high tide had a higher SOC stock (88.54 ± 2.52) than 6a-R.

stylosa at low tide (70.37 ± 8.21). Wang et al. (2013) suggested that

the soil carbon stocks ranged from 188.07 to 279.04 t C/ha from low

tide to high tide in Yingluo Bay, Guangdong Province, which is

consistent with our results. The decomposition rate of SOC is

accelerated under anaerobic and sub-oxidation conditions, which

leads to a relatively lower soil carbon stock (Feng et al., 2019;

Walcker et al., 2019). On the contrary, the tidal erosion in a

mangrove ecosystem is less at the inner area than at the outer or

middle area, which is more beneficial to the accumulation of

vegetation biomass and SOC (Mao et al., 2012; Wang et al., 2019;

Wang et al., 2021). There may be two possible reasons. One is that

an increased productivity along tidal gradients leads to more

litterfall, root exudates, and root necromass being imported into

anaerobic soils (Mao et al., 2012; He et al., 2022). Secondly, the

extensive root system in the middle/high tide zone and the isolation

of the high tide zones from estuaries not only promote the retention

of organic materials but also accelerate the retention of fine soil

components with high OC concentrations (Sebastian and Chacko,

2006). Furthermore, increased plant litter and fine root biomass at

mid- and high-tide levels further results in nutrient-rich sediments

with high OC, which would be beneficial for mangrove growth.
5 Conclusion

The present study investigated the carbon storage potential and

the influencing factors of young mangrove plantations in

Kaozhouyang, Huidong County, Guangdong Province. The results

showed that the mangrove plantation significantly increased the

carbon sequestration/storage relative to the non-vegetation mudflat.

The vegetation biomass/carbon stock increased rapidly with forest

age (p < 0.05), but the soil carbon storage increased slowly from

planting R. stylosa for 3a to 6a. The ecosystem carbon stock of 11a-S.

apetalawas higher than that of the nativeK. obovata (p < 0.05), which

may be due to the high adaptability and rapid carbon accumulation of
frontiersin.org

https://doi.org/10.3389/fmars.2024.1439266
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Kang et al. 10.3389/fmars.2024.1439266
S. apetala. In addition, the vegetation biomass and the carbon stock of

6a-R. stylosa at high tide were obviously higher than those at low tide

(p < 0.05), indicating that a stable hydrological environment is more

conducive to carbon accumulation. The current results showed that

the optimal afforestation plan is to cultivate S. apetala and R. stylosa at

high tide, with carbon storage of 144.01 and 133.60 t C/ha,

respectively. However, ecological risks could occur with planting S.

apetala. Our results further revealed that mangrove plantation has a

significant carbon sink effect and that the plantation should be at a

high tidal level, particularly in aquaculture ponds where mangroves

are converted.
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