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of large-mouth black bass
based on low-dimensional
acoustic features
Shijing Liu1,2*, Shengnan Liu3, Renyu Qi1, Haojun Zheng3,
Jiapeng Zhang1, Cheng Qian1 and Huang Liu1*

1Fishery Machinery and Instrument Research Institute, Chinese Academy of Fishery Sciences,
Shanghai, China, 2Sanya Oceanographic Institution, Ocean University of China, Sanya, China,
3School of Navigation and Naval Architecture, Dalian Ocean University, Dalian, China
Introduction: The eating sounds of largemouth black bass (Micropterus

salmoides) are primarily categorized into swallowing and chewing sounds,

both intensities of which are closely correlated with fish density and feeding

desire. Therefore, accurate recognition of these two sounds is of significant

importance for studying fish feeding behavior.

Methods: In this study, we propose a method based on low-dimensional

acoustic features for the recognition of swallowing and chewing sounds in fish.

Initially, utilizing synchronous audio-visualmeans, we collect feeding sound signals

and image signals of largemouth black bass. By analyzing the time-frequency

domain features of the sound signals, we identify 15 key acoustic features across

four categories including short-time average energy, average Mel-frequency

cepstral coefficients, power spectral peak, and center frequency. Subsequently,

employing nine dimensionality reduction algorithms, we select the Top-6 features

from the 15-dimensional acoustic features and compare their precision in

recognizing swallowing and chewing sounds using four machine learning models.

Results: Experimental results indicate that supervised feature pre-screening

positively enhances the accuracy of largemouth black bass feeding feature

recognition. Extracted acoustic features demonstrate global correlation and

linear characteristics. When considering feature dimensionality and

classification performance, the combination of feature dimensionality

reduction and recognition model based on the random forest model exhibits

the best performance, achieving an identification accuracy of 98.63%.

Discussion: The proposed method offers higher assessment accuracy of

swallowing and chewing sounds with lower computational complexity, thus

providing effective technical support for the research on precise feeding

technology in fish farming.
KEYWORDS

largemouth black bass, feature selection, feature dimensionality reduction, recognition,
machine learning models
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1 Introduction

Precision feeding technology has long been a focal point in

aquaculture research, directly impacting the profitability of

aquaculture operations (Bank, 2013). Currently, feeding decisions

in aquaculture primarily rely on manual intervention, typically

employing timed or quantified feeding methods (Li et al., 2020).

However, these methods lack the ability to automatically adjust feed

quantities based on the actual dietary requirements of fish, often

resulting in overfeeding or underfeeding (Melo et al., 2021).

Consequently, the analysis and quantification of fish feeding

behavior have emerged as paramount tasks in precision feeding

research within aquaculture.

Vocalization represents a crucial behavior in fish, accompanying

various activities such as reproduction, territorial behavior, foraging,

and swimming (Rountree et al., 2006; Mok and Gilmore, 1983; Chen

et al., 2020). Thus, analyzing and quantifying the feeding acoustic

signals of aquaculture organisms to determine the feeding sound

characteristics could offer theoretical guidance for intelligent feeding

systems in aquaculture (Pěnka et al., 2023). Sound signals produced by

the giant tiger prawn (Penaeus monodon) during feeding exhibit a

linear correlation with feed consumption and have been utilized to

identify feeding activities (Smith and Simon, 2013). The shrimp

(Litopenaeus vannamei) demonstrates characteristic differences in

chewing sounds, enabling the determination of the onset and

duration of feeding processes. Additionally, feed consumption levels

can be assessed based on the frequency and peak values of the

generated acoustic signals (Hamilton et al., 2023; Lagardère et al.,

2004). While research progress in crustaceans has been notable, studies

focusing on precise feeding technology based on passive acoustic

techniques in fish are still in their infancy. Silva et al. discovered that

during feeding, both the turbot (Scophthalmus maximus) (Lagardère

and Mallekh, 2000) and trout (Oncorhynchus mykiss) (Lagardère et al.,

2004) predominantly concentrate their feeding sounds within the 2-5

kHz range, with variations in sound pressure levels ranging from 15 to

20 dB, reflecting changes in feeding sound intensity (Silva et al., 2019).

Such variations hold promise for the development offish feeding sound

detectors. Cao et al. discovered that the sound produced by largemouth

bass during feeding is primarily concentrated in the frequency range of

4.2 to 7.4 kHz (Cao et al., 2021). Additionally, there are significant

differences in the resonance peaks and Mel-frequency cepstral

coefficients of the feeding sound signals across different feeding

stages. This finding suggests that these two parameters have the

potential to serve as candidate features for identifying feeding sounds.

In terms of automatic sound recognition research, there is

limited research on fish feeding sounds, but relevant studies have

been conducted in other agricultural fields (Nunes et al., 2021). In

the direction of livestock and poultry sound recognition, extensive

research has been conducted on the classification of pig cough

sounds, and machine learning techniques have gradually been

applied to the field of pig cough sound recognition. By optimizing

feature selection and classifiers, the recognition accuracy has

significantly increased, with pig cough classification rates

increasing to 94.0%-95.4% (Ji et al., 2022; Yin et al., 2023).

Automatic recognition technology is also employed in the study

of grazing behavior among pasture animals. These researches utilize
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integrated audio and video analysis techniques to accurately

pinpoint the temporal sequence characteristics of sounds such as

chewing, biting, and rumination produced by animals like horses

(Nunes et al., 2021) and cattle (Deniz et al., 2017) during feeding.

And then utilizing recursive networks with time-series analysis

capabilities, these sounds are identified, achieving an average

recognition accuracy exceeding 80%. In the domain of bird sound

recognition, intelligent recognition techniques based on Support

Vector Machines (SVMs), Artificial Neural Networks (ANNs), and

Deep Learning algorithms have been gradually implemented

(Kumar et al., 2022; Lauha et al., 2022). The adoption of multi-

feature fusion recognition methods has exhibited higher recognition

accuracy in this field, with an average recognition accuracy ranging

between 93% and 96%. Furthermore, there is minimal variance in

performance among different recognition algorithms. This further

substantiates the significance of sound feature selection in bird

sound recognition (Yang et al., 2022).

In conclusion, in order to improve the classification

performance of fish feeding sounds and reduce the complexity of

sound recognition, this study focuses on largemouth black bass and

proposes a recognition algorithm for fish swallowing and chewing

sounds. The proposed method utilizes a combined analysis of audio

and video, enabling accurate temporal segmentation of the sound.

Subsequently, key sound features that exhibit significant

differentiation are selected through feature analysis, and a low-

dimensional acoustic feature dataset is constructed using different

feature selection algorithms. Finally, by comparing the accuracy of

different recognition algorithms and the extent of feature dimension

reduction, the most suitable feature selection and recognition

algorithm are determined.

The novelty of this work lies in:
1. We first apply machine learning method to the recognition

of fish swallowing and chewing sounds.

2. The present study find that the features used to identify the

feeding sounds of largemouth black bass exhibit linearity

and global characteristics, which provide valuable clues for

further research.

3. By utilizing low-dimensional features, it has achieved the

competitive results in swallowing and chewing sound

recognition, providing an important foundation for

acoustic-based research on fish feeding behavior.
2 Materials and methods

2.1 Experimental subject

This experiment utilized largemouth black bass as the

experimental material, with fingerlings purchased from Acoman

(Shanghai) Agriculture Co. We selected four fish for the

experiment, labeled as A1, A2, A3, and A4. These fish had an

average body length of 26.5 ± 3.5 cm and an average body weight of

255 ± 53 g. The water temperature is maintained at 30.1 ± 2.6°C,

dissolved oxygen at 7.0 ± 2 mg/L, and pH at 7.8 ± 0.3. Hard pellet
frontiersin.org
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extruded feed (produced by Huzhou Yishen Aquatic Feed Co., Ltd.)

is used to feed the experimental fish.
2.2 Acoustic signal acquisition

The acoustic signal acquisition system for largemouth bass is

shown in Figure 1. The main equipment for this experiment

includes a test tank with a filtration pool and a small recirculating

water system (dimensions: 1.5 m × 1 m × 1.5 m), a pressure-

sensitive detector (model: AQH-020; frequency range: 20 Hz-20

kHz), a preamplifier (model: Aquafinger IV; gain control: 20-70

dB), an external sound card (model: UA-55), and a recording device

- SPORTS CAMERA 4K high-definition image stabilization digital

camera (model: QOER V70). In this study, video and audio are

recorded simultaneously, with a sampling frequency set at 9.6 kHz,

a sampling precision of 24 bits, a single-channel sampling, and a

signal-to-noise ratio of 50 dB. The recording periods are 7:00-8:00

and 19:00-20:00, and each feeding is conducted at 3% of the fish’s

body weight.
2.3 Acoustic signal pre-processing

The feeding sound signals of large mouth black bass

encompass noises such as background noise. To effectively

extract feeding acoustic signals, the following operations are

performed as Cao et al. (2021):

Pre-emphasis: In the feeding sounds of largemouth black bass,

high-frequency components are usually more susceptible to noise

interference. Pre-emphasis can effectively reduce the relative impact

of low-frequency noise, thereby improving the clarity of the feeding

sounds. The calculation formula is as follows.

y(n) = x(n) − a � x(n − 1) (1)

where x(n) is the input audio signal, x[n] is the pre-emphasized

signal, and a is the pre-emphasis coefficient (set to 0.97 in

this study).
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Feeding frame splitting: Since Feeding sounds are often brief and

transient. By splitting the audio into frames, small segments can be

focused on and these short-duration sounds can be captured more

effectively. Specifically, the length of the frame is set to 100 ms and

the frame shift (overlap) is set to 50 ms. Further, to correlate feeding

sound signals with feeding behaviors, it is necessary to further

segment the feeding sound into key segments corresponding to the

feeding behaviors. In this work, Adobe Audition 2020 is used to

precisely isolate the feeding frames by referencing the

corresponding feeding videos.

Applying window function: When the audio frames is spitted,

the edges of the truncated signal can cause frequency representation

distortions, making it challenging to accurately analyze and identify

feeding sounds. By applying a window function, the edges of the

signal segments can be smoothed, reducing discontinuities. In this

work, the Hamming window is used because it effectively reduces

spectral leakage while maintaining a relatively narrow main lobe

(Zheng et al., 2007). The formula is as follows:

w(n) = 0:5 1 − cos
2pn
N + 1

� �
,   1 ≤ n ≤ N

� �
(2)

y(n) = x(n) � w(n) (3)

where n represents the sample index within the window and

ranges from 0 to N, N is the total number of samples in the window,

also known as the window length. w(n) is the weight or value of the
Hamming window at the n-th sample. x(n) is the input audio signal,

y(n) is the processed signal.

Audio Subspace Spatial Acoustic Source Enhancement (ASSASE)

(Ephraim and Van Trees, 1995): The ASSASE method decomposes

the signal space into two subspaces: the noise subspace and the noisy

sound signal subspace. The noise subspace is then removed. When

the signal is affected by noise, the characteristic vectors in the pure

sound signal subspace are disturbed, forming a signal space that

overlaps with the noise subspace. The remaining part of the originally

pure signal space becomes the pure noise space. Therefore, by

appropriately eliminating the pure noise subspace and using the

most effective algorithm to estimate the signal in the noisy sound
FIGURE 1

Schematic diagram of signal acquisition system.
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signal subspace, the original pure signal subspace can be recovered as

much as possible, thereby improving the signal-to-noise ratio (SNR).
2.4 Feature selection

For machine learning, a large amount of input data can lead to

the curse of dimensionality, which affects learning efficiency and

can result in overfitting. This study selected several typical acoustic

analysis features (Barroso et al., 2023; Abdul and Al-Talabani,

2022), such as short-time average energy, mean Mel-frequency

cepstral coefficients, and power spectrum, for analysis.

Subsequently, nine dimensionality reduction algorithms suitable

for different data types are used to further reduce the dimensionality

of the preselected data, aiming to discover low-dimensional features

that can effectively represent the eating sound.

2.4.1 Short-time average energy
Short-time average energy is an essential parameter in time-

domain analysis of sound signals, capable of reflecting the

characteristics of energy fluctuations (Cao et al., 2021). As

illustrated in Figure 2, fluctuations in the spectrum occur after

largemouth black bass ingest feed, and the amplitudes can be

effectively captured. Furthermore, there exists a positive

correlation between amplitude and energy, which to some extent,

reflects the strength of the energy. Figure 3 (Qi, 2023) illustrates the

probability distribution and significance analysis of the short-time

average energy for four largemouth black bass. From Figure 3, it can

be observed that there is no significant difference in the swallowing

and chewing sounds among different largemouth black bass.

However, there is a significant difference between the swallowing

and chewing sounds. Hence, the short-time average energy can be

utilized as an acoustic classification feature for largemouth black

bass, as expressed by the formula:

En =
1
n o

N−1

m=0
x2n(m) (4)
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where xn(m) represents them-th sample point of the n-th frame

of the sound signal.

2.4.2 Average Mel-frequency
Cepstral Coefficients

Average Mel-frequency Cepstral Coefficients (AMFCCs) is a

commonly used acoustic feature extraction method that has been

widely applied in the field of speech analysis due to its resemblance

to human auditory perception and its good information

compression capability.

To highlight the universality of the experimental samples, this

paper randomly selects 15 instances of swallowing and chewing

sounds from four fish to construct the AMFCCs variation curves.

As shown in Figure 4, both swallowing and chewing sounds of the

four fish exhibit a pronounced peak at the 2nd coefficient. However,

for the chewing sounds, there is a distinct peak at the 5th coefficient

in the AMFCCs, and the 6th and 7th coefficients show similar

changing trends, which are significant features differentiating

chewing sounds from swallowing sounds. Additionally, there are

overall differences in the trend of the AMFCCs between swallowing

and chewing sounds. These differences can be used to distinguish

and recognize different sound characteristics. Therefore, in order to

fully utilize the diversity among the data, this paper selects all 12

dimensions of the AMFCCs as the acoustic features for the

classification of feeding sounds. The formula for calculating the

AMFCCs is as follows:

M =
1
To

T

I=1

Ci(ti) (5)

where i = 1, 2,…, 12, is the first reception coefficient of frame,

and T is the number of ingestion signal frames.
2.4.3 Power spectrum
The power spectral response refers to the variation of signal

power with frequency. The feeding sounds of largemouth bass are

considered stochastic signals, whose power spectra can describe
FIGURE 2

Noise reduction of feeding sound: (A) Waveform diagram of 4 feeding processes; (B) Speech spectrum diagram of 4 feeding processes.
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swallowing sounds and exhibit the power distribution of different

frequency components (Parhi and Ayinala, 2014).

In this study, the periodogram method is first used to estimate

the power spectral density of the largemouth black bass swallowing

sounds. Subsequently, the parabolic interpolation technique (Xuan

et al., 2015) is employed to extract the peak values and peak

frequencies of the power spectra of feeding sounds. Specifically,

each windowed frame is first subjected to a Fast Fourier Transform

(FFT) to convert the time-domain signal into a frequency-domain

signal. The squared magnitude of the FFT coefficients is then

calculated to obtain the periodogram of the current frame,

thereby estimating the power spectral density. For a frame x(n) of

length N, the periodogram is represented as follows:

P(w) =
1
N o

N−1

n=0
x(n)e−jwn

����
����
2

(6)

Then, the index k0 of the maximum value in the periodogram

P(w) is identified. The values of the periodogram at k0−1, k0, k0+1 are

then determined. Parabolic interpolation is performed based on the
Frontiers in Marine Science 05
points (k0−1,   Pk0−1), (k0,   Pk0), and (k0−1,   Pk0+1). The interpolation

calculation formula is as follows:

fpeak =
fs
N

� (k0 +
1
2
� Pk0−1 − Pk0+1
Pk0−1 − 2Pk0 + Pk0+1

) (7)

Ppeak = Pk0 −
(Pk0−1 − Pk0+1)

2

8(Pk0−1 − 2Pk0 + Pk0+1)
(8)

where N is the number of FFT points, and fs is the

sampling frequency.

From Figure 5 (Qi, 2023), it can be observed that the primary

peaks of the power spectra of swallowing sounds in largemouth

bass occur with the highest probability within the range of -60 to

-70 dB, while the primary peaks of chewing sounds occur with

the highest probability within the range of -70 to -80 dB.

Although there is some overlap between the two, they still

possess certain differences. Furthermore, the primary peak

frequencies of swallowing and chewing sounds in largemouth

bass are notably distinct at around 4 kHz, as shown in Figure 6.
FIGURE 4

AMFCCs largemouth black bass sounds. A1-A4 swallowing sound of AMFCCs (A); B1-B4 chewing sound of AMFCCs (B). The different colored curves
in the figure represent the characteristic parameters of one swallow.
FIGURE 3

Short-time mean energy analysis of largemouth black bass feeding sounds. (A) Probability distribution of short-time average energy of largemouth
black bass feeding sound. (B) Significance analysis of swallowing and chewing sounds in largemouth black bass. S represents the swallowing sound
and C represents the chewing sound in the picture.
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Therefore, the peak values and peak frequencies of the power

spectra of feeding sounds are chosen as the acoustic features for

the classification of feeding sounds in this study.

2.4.4 Feature dimensionality reduction
Dimensionality reduction techniques aim to map high-

dimensional data into lower-dimensional spaces while preserving the

main structure and information of the data and reducing the feature

dimensions. Due to the diversity in data structures and types, it is

challenging in visual analysis to determine a dimensionality reduction

method that fits without any adjustments. The common practice is to

adapt standard dimensionality reduction methods to specific

application scenarios interactively. Currently, data dimensionality

reduction methods are mainly divided into three categories. Based

on the characteristics of the data, they can be classified into linear and
Frontiers in Marine Science 06
nonlinear dimensionality reduction. Depending on whether they

consider and utilize the supervised information of the data, they can

be divided into unsupervised, supervised, and semi-supervised

dimensionality reduction. According to the preservation of data

structure, they can be categorized into global preservation, local

preservation, and global-local consistent preservation, etc.

This study selected a series of sound features with distinct

characteristic differences, including short-time average energy, 12-

dimensional average Mel-frequency cepstral coefficients, power

spectrum peak value, and peak frequency. These features encompass

both complex data differentiations in the time-frequency domain and

data with relatively good linear relationships. Although these features

exhibit strong correlations with the feeding sounds of largemouth

black bass, the feature dimensions are still relatively high, potentially

harboring implicit correlations. Therefore, to further improve
FIGURE 5

Power spectrum analysis chart of swallowing sound (A) and chewing sound (B). The main peak value distribution of the power spectrum of
swallowing sound and chewing sound.
FIGURE 6

The primary peak frequency distribution of the power spectrum of swallowing sound and chewing sound. S represents the swallowing sound and C
represents the chewing sound in the picture.
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algorithmic computational efficiency, it is necessary to reselect the

selected features and identify the key features suitable for this task. To

achieve this goal, the study employed nine different types of

representative feature reduction methods. Table 1 lists the nine

dimensionality reduction methods and their parameter

configurations, among which PCA, LPP and SVD (Imani, 2023) are

linear dimensionality reduction methods, RF (Arashi et al., 2022) is a

supervised dimensionality reduction method, LE and LPP are local

preserving dimensionality reduction methods, and PCA, KPCA, LLE,

ISOMAP, and MDS are global preserving dimensionality reduction

methods (Anowar et al., 2021).
2.5 The evaluation of acoustic features
and classifiers

Five classifiers including Error Minimized Extreme Learning

Machine (EM-ELM), Genetic Algorithm Support Vector Machine

(GA-SVM), Particle Swarm Optimization Multi-Layer Perceptron

(PSO-MLP), and Random Trees (RF) are used to verify the

performance of the features (Balasundaram, 2011; Huang et al.,

2021; Moradi et al., 2023; Macaulay et al., 2021). Table 2 lists the

main parameter settings of each classifier. In order to mitigate the

impact of random errors on the classification results, the average of

10 predictions is utilized as the model’s classification outcome.

Additionally, the classification performance of the model is assessed

using four metrics: Precision, Recall, F1 score, and Accuracy (Jiang

et al., 2021).
Frontiers in Marine Science 07
3 Results

3.1 Results for acoustic signal
pre-processing

Figure 2 (Qi, 2023) illustrates the waveforms and spectrograms

of four types of largemouth black bass swallowing sounds after sub-

audio segment cutting and processing with the subspace speech

enhancement algorithm. It is evident that the subspace speech

enhancement algorithm can effectively reduce noise interference.

Using the aforementioned methods, a total of 753 valid sound signal

segments are obtained, including 564 swallowing sound samples

and 189 chewing sound samples.
3.2 Results for feature selection

This paper employs nine feature dimensionality reduction

algorithms to reselect the original features and showcases the

retained dimensions and cumulative variance contribution rates for

each algorithm in Figure 5. The results demonstrate that RF, MDS,

PCA, and SVD excel in extracting key features. Their first and second

principal components contribute toapproximately40%and20%of the

total variance, with MDS, PCA, and SVD exhibiting closely similar

cumulative contribution rates. In contrast, other methods show

relatively minor discrepancies in feature contribution rates. Methods

such as KPCA, LPP, and LE fail to reach 90% of the total variance with

their Top-10 features, indicating less prominent feature extraction

effects. Considering the objectives of feature dimensionality reduction

and the performanceoffeature selection, it is found thatwhen selecting

six features, RF, MDS, PCA, and SVD all achieve cumulative

contribution rates exceeding 80%, with RF even surpassing 90%.

Since the remaining methods have similar feature contribution rates,

their advantage in feature contribution rate is minimal, and the

dimensionality reduction effect is not significant. Adhering to the

principles of simplifying the model, improving computational

efficiency, and maintaining feature representativeness, this study

selects the Top-6 features ranked by feature contribution rate for

subsequent machine learning tasks.
3.3 Results for different classifiers

3.3.1 Top-6 classification results
To validate the effectiveness of the extracted Top-6 features, this

study conducted experiments using four classifiers. The classification
TABLE 2 Main parameter settings of classifier.

Methods Main Parameter Settings

EM-ELM Hidden layer nodes:30

GA-SVM Automatic parameters search

PSO-MLP Automatic parameters search

RF Max Deep:10 Trees:100
TABLE 1 Feature dimensionality reduction methods and their main
parameter settings.

Types Methods
Main Parameter
Settings

Linear

Principal Components
Analysis(PCA)

Matrix Decomposition
Method: SVD

Locality Preserving
Projections(LPP)

Standard Measure: Euclidean
Distance
Weight Calculation:
Heat Kernel

Singular Value
Decomposition (SVD)

/

Nonlinear

Multidimensional
Scaling, MDS

Standard Measure:
Euclidean Distance

Isometric Mapping, ISOMAP Number of Neighbors: 5

Locally Linear
Embedding, LLE

Number of Neighbors: 10

Laplacian Eigen-maps, LE
Weight Calculation:
Heat Kernel

Kernel PCA( KPCA)

Kernel: Radial Basis Function
(RBF)
Kernel Function
Parameter: 15.00

Random Trees( RF) Max Deep:10 Trees:100
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results of different classifiers are shown in Table 3. FromTable 3, it can

be observed that there are significant differences among the

classification results of different classifiers, with the EM-ELM

method performing the worst, while the results of the other three

methods are relatively close. Apart from the EM-ELM classification

method, the classification results of the Top-6 features extracted by

different dimensionality reduction methods are similar, and the

accuracies all exceed 90%. The RF dimensionality reduction method

achieves the highest accuracy in classifying the Top-6 features, with an

average classification accuracy exceeding 98%. Although the

contribution rates of the ISOMAP, KPCA, LE, LEE, and LPP

dimensionality reduction methods are relatively low, the recognition

accuracy of the extracted Top-6 features is comparable to that ofMDS

and PCA. The classification accuracies based onGA-SVM, PSO-MLP,

and RF methods are all above 94%.
Frontiers in Marine Science 08
3.3.2 Optimal classification results
To compare the capability of each dimensionality reduction

method in embedding discriminative features, we noted the classifier

and feature dimensions used to achieve the highest classification

accuracy values. As depicted in Table 4, the highest recognition

accuracy of all dimensionality reduction methods exceeded 90%. The

classification accuracy for eating soundsachieved itspeakwith random

forest feature extraction and random forest classifiers, reaching

99.44%. Similarly, the classification accuracy based on KPCA and

SVD dimensionality reduction methods surpassed 99%, standing at

99.07% and 99.14%, respectively. ISOMAP, LPP, and MDS

dimensionality reduction methods attained their best classification

accuracy at dimensions 8, 11, and 12, respectively, all below 99%,

indicating their relatively poor ability to embed discriminative features

for distinguishing large-mouthed black bass eating sounds.
TABLE 3 Classification accuracy of Top-6 features with different dimensionality reduction classification methods.

Dimensionality
Reduction Methods

Classifier Precision (%) Recall (%) F1-score (%) Accuracy (%)

LLE

EM-ELM 78.16 96.80 86.41 77.55

GA-SVM 96.43 96.43 96.43 94.74

PSO-MLP 96.67 99.15 97.89 96.69

Random Forest 98.41 99.02 98.71 98.07

Isomap

EM-ELM 98.31 96.55 97.41 96.09

GA-SVM 96.55 98.24 97.39 96.02

PSO-MLP 99.31 97.98 98.64 97.88

Random Forest 97.87 98.44 98.14 97.23

MDS

EM-ELM 97.27 92.36 94.72 92.38

GA-SVM 97.34 98.21 97.78 96.69

PSO-MLP 96.64 98.29 97.46 96.03

Random Forest 97.91 97.45 97.67 96.51

KPCA

EM-ELM 98.15 94.45 96.26 94.50

GA-SVM 98.01 99.33 98.67 97.88

PSO-MLP 95.00 97.44 96.20 94.04

Random Forest 97.45 98.14 97.79 96.66

PCA

EM-ELM 97.84 94.66 96.18 94.44

GA-SVM 96.74 100.00 98.34 97.35

PSO-MLP 97.97 97.31 97.64 96.29

Random Forest 97.35 98.28 97.81 96.72

LPP

EM-ELM 94.74 98.62 96.61 94.70

GA-SVM 98.18 96.43 97.30 96.03

PSO-MLP 98.28 97.44 97.85 96.69

Random Forest 96.28 97.49 96.87 95.30

(Continued)
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4 Discussion

4.1 Effectiveness of feature selection
method based on artificial prior

The article employs an empirically-based feature selection

method, identifying short-time average energy, AMFCC, peak

power spectrum value, and peak frequency as acoustic features with

significant characteristic differences for the identification of

largemouth bass. As can be seen from Table 3, except for the ELM
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method, the other three classification methods achieve high accuracy

using original features, with accuracy of 98.15%, 98.41%, and 99.44%

respectively. Since the RF-based feature reduction method is a feature

selection method that does not alter the original features, and both

the Top-6 features extracted using the RF method and the global

feature classification accuracy are the highest, it demonstrates that

empirical preliminary feature screening plays a positive role in

enhancing feature recognition capability. This is consistent with the

approach taken by Cheng et al., who improved the accuracy of

ground subsidence prediction using a feature selection-based scheme

(Cheng et al., 2022), and Ali et al., who achieved multi-stage

classification of Gyrodactylus species using a multi-stage feature

selection scheme (Ali et al., 2011). This indicates that in

new research areas with limited data, an experience-based

feature selection approach can effectively improve model

prediction accuracy.
4.2 Adaptability of dimensionality
reduction method

Similar to other data analysis techniques aimed at practical

applications, acoustic-based studies of fish behavior also face the

challenge of processing large volumes of high-dimensional data.

Therefore, a systematic comparison of existing analysis methods

can help provide appropriate dimensionality reduction techniques

for specific applications. As shown in Figure 7, there is a significant

difference in the cumulative contribution rate of features extracted

by the selected nine dimensionality reduction methods. Methods
TABLE 3 Continued

Dimensionality
Reduction Methods

Classifier Precision (%) Recall (%) F1-score (%) Accuracy (%)

RF

EM-ELM 97.55 98.50 98.02 97.02

GA-SVM 98.45 99.22 98.83 98.41

PSO-MLP 99.14 98.29 98.71 98.01

Random Forest 99.22 98.96 99.09 98.63

LE

EM-ELM 78.98 94.17 85.87 76.49

GA-SVM 96.39 99.07 97.71 96.68

PSO-MLP 97.92 96.64 96.96 95.23

Random Forest 97.11 97.32 97.21 95.81

SVD

EM-ELM 93.40 96.86 95.05 92.32

GA-SVM 97.25 98.15 97.70 96.69

PSO-MLP 97.43 97.43 97.43 96.03

Random Forest 97.70 97.96 97.82 96.73

None
Reduction

EM-ELM 92.78 96.86 94.74 91.85

GA-SVM 99.09 100.00 99.54 98.15

PSO-MLP 99.32 98.65 98.98 98.41

Random Forest 99.26 99.09 99.17 99.44
TABLE 4 Optimal classification results of different dimensionality
reduction methods.

Dimensionality
Reduction
Methods

Classifier
Number of
dimensions

Accuracy (%)

LLE RF 14 98.48

ISO-MAP RF 8 97.42

MDS GA-SVM 12 98.08

KPCA GA-SVM 15 99.07

PCA PSO-MLP 14 98.87

LPP GA-SVM 11 98.94

RF RF 15 99.44

LE GA-SVM 15 97.94

SVD RF 14 99.14
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such as RF, MDS, PCA, and SVD, which focus on global feature

reduction, have higher feature contribution rates, demonstrating

that dimensionality reduction methods based on local feature

similarity contribute less to the extraction of feeding

characteristics. MDS is a nonlinear learning method, but when

the feature data is predominantly linear, MDS can be equivalent to

the PCA method (Anowar et al., 2021), which is consistent with the

feature contribution curves of MDS, PCA, and SVD in Figure 7,

proving that the extracted largemouth bass feeding sound features

have distinct linear characteristics. Oksanen et al. conducted a

systematic analysis of methods such as MDS and PCA, revealing

a potential consistency between MDS and PCA dimensionality

reduction techniques, which aligns with the findings of this study

(Oksanen, 1983). Furthermore, from Figure 7, it can be seen that

methods suitable for high-dimensional manifold data such as ISO-

MAP, LLE, and LE do not perform well in dimensionality

reduction; however, compared to the global approaches like ISO-

MAP and KPCA, local methods like LLE and LE show relatively

better feature extraction results. The LPP method, suitable for linear

local features, outperforms LLE and LE in feature extraction, further

proving the linear correlation of the extracted largemouth black

bass feeding sound features. In fact, the linear correlation of features

is a common issue associated with the acoustic signals discussed in

this study (Darch et al., 2007). Similar to the conclusions of Kaya

et al. and Koizumi et al., when the initial features have a high degree

of matching with the classification results, it is preferable to use

feature selection for dimensionality reduction (Kaya et al., 2014;

Koizumi et al., 2017). As seen in Table 3, although the

dimensionality reduction effects of different algorithms vary

significantly, the differences in classification accuracy between

methods are minor. The combination of RF-based dimensionality

reduction and classification methods achieves the highest

classification accuracy.
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4.3 Compatibility of classification methods

Compared to standard large datasets, the largemouth bass

swallowing and chewing sound dataset constructed in this paper

is unevenly distributed (swallowing sounds account for 75% of the

total data, while chewing sounds make up 25%), requiring

classification algorithms to adaptively balance the classification.

Compared to three other classification algorithms under the same

conditions, the EM-ELM algorithm shows little difference in

Precision but has lower Accuracy. The confusion matrix from

Figure 8 indicates a significant overfitting issue with EM-ELM

when predicting swallowing sounds, with a disproportionately

high number of chewing sounds predicted as swallowing sounds.

This demonstrates the limited capability of the EM-ELM model in

adaptively balancing classification In previous research, Yu et al.

thoroughly discussed this characteristic of the ELM classifier, which

is consistent with the findings of this study (Yu et al., 2018).

Therefore, EM-ELM does not meet the requirements for

classifying fish feeding sounds with uneven data characteristics.

GA-SVM, PSO-MLP, and RF classification models demonstrate a

strong ability to adapt to uneven data, with the RF method showing

high recognition accuracy in both Top-6 features and global

features. However, a comprehensive comparison of the results in

Tables 3 and 4 reveals that, despite the introduction of model

parameter optimization algorithms such as EM, GA, and PSO, there

are still differences in the recognition accuracy of largemouth bass

swallowing and chewing sounds among different dimensionality

reduction methods and classification method combinations.

Therefore, to achieve better classification results, it is necessary to

consider the characteristics of the data for preliminary

model selection, while also fully considering the optimal

compatibility of the model to ensure the best solution for specific

application scenarios.
FIGURE 7

Cumulative contribution rate of features of different dimensionality reduction methods.
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4.4 Analysis of the correlation of
acoustic features

Data quality is an important factor affecting machine learning.

This paper utilizes a supervised method based on artificial priors to
Frontiers in Marine Science 11
extract acoustic features with distinct differences between

swallowing and chewing sounds. Experimental results indicate

that data selection methods based on experience positively

influence classification accuracy. However, it is important to note

that the hidden attributes of differentiated data are difficult to
FIGURE 9

Characteristics contribution rate based on RF method.
FIGURE 8

Confusion matrix of different classification methods of Top-6 features extracted by RF. 0. represents swallowing sound, 1. represents
chewing sound.
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discern through subjective observation. Therefore, to further

analyze and extract data characteristics, we employed the RF

method to rank the importance of data. As seen in Figure 9, there

is a significant variance in the contribution rates of the extracted 12-

dimensional AMFCC parameters, with the 5th, 7th, and 3rd

coefficient features having higher contribution rates, consistent

with the findings in Figure 4. However, the power spectrum peak

frequency and short-term average energy, which also exhibit

noticeable differentiation, show substantial differences in their

feature contribution rates, where the power spectrum peak

frequency has a contribution rate exceeding 55%, while the short-

term average energy contributes only about 4%. Given the Random

Forest algorithm’s effective handling of feature correlation and non-

linearity, it is plausible that the power spectrum peak frequency and

short-term average energy of largemouth bass swallowing and

chewing sounds have potential correlations, with the power

spectrum peak frequency playing a more pronounced role in

distinguishing between swallowing and chewing sounds. Similarly,

it is reasonable to assume that there is a data correlation between the

notably distinct AMFCC 6th coefficient and the 5th and 7th

coefficients. Additionally, the feature contribution rates calculated

using the RF method for the power spectrum peak values, which

have distinct and overlapping characteristics, are very low. An

analysis combined with Figure 5 indicates that features with

overlapping characteristics have an unclear impact on

classification tasks and may even introduce noise errors. The

findings of Li et al. and Urbanowicz et al. in previous research are

consistent with the conclusions of this study, demonstrating the

necessity of removing overlapping features during the feature

selection process (Li et al., 2017; Urbanowicz et al., 2018).
5 Conclusions

This paper proposes a method for recognizing fish swallowing

and chewing sounds based on low-dimensional acoustic features.

This method involves an initial supervised feature selection based

on artificial experience combined with secondary feature dimension

reduction, identifying the Top-6 features that characterize the

feeding sounds of largemouth bass. Four classification methods

are used to validate the effectiveness of the selected features. The

experimental results show that supervised preliminary feature

selection positively impacts the accuracy of identifying

largemouth bass feeding characteristics. When considering feature

dimensions and classification performance, the combination of

feature reduction and recognition models based on the Random

Forest model performed the best, achieving a recognition accuracy

of 98.63%. Additionally, this study found that the features of the

largemouth bass feeding sound extracted exhibit linearity and

globality. The linearity of the sound features suggests they may be

related to specific dynamics of the feeding behavior, while their

global nature indicates that they can function across different times

and spaces. These findings provide a basis for further understanding

the acoustic characteristics of fish feeding behavior. Future research
Frontiers in Marine Science 12
could explore the correlation between these features and feeding

behaviors further and validate them across different species and

environmental conditions, thereby deepening the understanding of

fish sound classification and behavior.
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