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GWSM4C-NS: improving the
performance of GWSM4C in
nearshore sea areas
He Zhang, Quan Jin*, Feng Hua and Zeyu Wang

Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou
University, Shantou, China
Predicting nearshore significant wave heights (SWHs) with high accuracy is of

great importance for coastal engineering activities, marine and coastal resource

studies, and related operations. In recent years, the prediction of SWHs in two-

dimensional fields based on deep learning has been gradually emerging.

However, predictions for nearshore areas still suffer from insufficient resolution

and poor accuracy. This paper develops a NS (NearShore) model based on the

GWSM4C model (Global Wave Surrogate Model for Climate simulations). In the

training area, the GWSM4C -NS model achieved a correlation coefficient (CC) of

0.977, with a spatial Root Mean Square Error (RMSE), annual mean spatial relative

error (MAPE), and annual mean spatial absolute error (MAE) of 0.128 m, 10.7%,

and 0.103 m, respectively. Compared to the GWSM4C model’s predictions, the

RMSE and MAE decreased by 59% and 60% respectively, demonstrating the

model’s effectiveness in enhancing nearshore SWH predictions. Additionally,

applying this model to untrained sea areas to further validate its learning

capability in wave energy propagation resulted in a CC of 0.951, with RMSE,

MAPE, and MAE of 0.161m, 12.9%, and 0.137m, respectively. The RMSE and MAE

were 43% and 39% lower than the GWSM4C model’s interpolated predictions.

The results shown above suggest that the newly proposed model can effectively

improve the performance of GWSM4C in nearshore areas.
KEYWORDS

significant wave height, nearshorewaves, convolutional neural networks, deep learning,
wave forecasting
1 Introduction

Nearshore waves are among the most critical dynamic factors in the coastal marine

environment, posing threats to the safety and stability of coastal structures, causing coastal

sediment movement, coastal changes, and nearshore water exchanges (Song et al., 2009).

The accurate calculation of nearshore waves can effectively prevent marine disasters

(Mahjoobi and Mosabbeb, 2009), guide aquaculture (Waseda et al., 2012), and ensure

the safety of vessel navigation (Waseda et al., 2014), among other benefits. Significant wave

height (SWH) is an indispensable parameter for assessing wave energy and critical
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meteorological conditions in marine activities. Traditional methods

solve the spectral balance equation, including source and sink

terms, to obtain SWH. Currently, the most mature models are

third-generation wave models, such as SWAN, Wave Watch III,

and MASNUM-WAM (Yuan et al., 1991, 1992). Traditional

numerical prediction methods have the advantages of physical

simulation and data-driven capabilities (Wei et al., 2013);

however, they consume significant computational resources and

time, making timely predictions difficult in emergencies and

limiting the ability to predict wave developments quickly

and accurately.

In recent years, rapid advancements in machine learning have

provided technical support for addressing complex physical

mechanisms, leveraging its strong nonlinear capabilities.

Numerous researchers have applied machine learning techniques

to the task of predicting SWH, noting their ability to make rapid

predictions without requiring extensive computational resources.

The application of machine learning in wave height prediction is

becoming increasingly widespread, but most applications have been

limited to single-point predictions (Makarynskyy, 2004; Londhe,

2008; Jin et al., 2019; Fan et al., 2020; Hu et al., 2021). In practical

applications, it is often necessary to understand the wave conditions

within a region. Zhou et al. (2021) used the ConvLSTM model,

inputting historical SWH data to achieve short-term predictions of

SWHs in China’s nearshore areas. Han et al. (2022) and Kim et al.

(2022) improved the accuracy of SWH predictions by using

historical wind fields and historical wave field elements as inputs

to ConvLSTM. Qu et al. (2022) achieved ocean-scale wave element

forecasts with accuracy comparable to numerical forecasts. Cao

et al. (2023) improved the spatiotemporal prediction algorithm

based on the Recurrent Neural Network (PredRNN) by integrating

wind and wave elements from both historical and future time steps

as model inputs. This enhancement aims at predicting SWH,

thereby improving the forecast accuracy for extended periods

ranging from 12 hours to 72 hours.

From the above literature, it can be seen that two-dimensional

field SWH predictions often use historical wind fields and wave-

related elements as inputs, using ConvLSTM and PredRNN as the

base model to extract temporal and spatial features of waves and

achieve SWH predictions (Shi et al., 2015; Wang et al., 2022). This

can achieve good prediction results over moment; however, the

process of automatic feature extraction by the model does not

correspond to the respective processes of wave generation,

propagation, and dissipation. Additionally, the time-series-based

approaches used in wave simulations still rely heavily on the given

initial wave states, which can result in cumulative errors beyond

control with increasing iterations. Recently, the GWSM4C (Global

Wave Surrogate Model for Climate simulation) model has been

proposed (Jin et al., 2024), it is an economical and feasible wave

model. GWSM4C overcomes such limitation by generating initial

condition for each prediction moment simultaneously as the

simulation is going on. Therefore, cumulative errors due to a fix

initial state can be avoided. The current version of GWSM4C

focuses on the global ocean, only land and sea points can be

identified, and the refraction effects of water depth on wave

propagation in nearshore areas are ignored.
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Furthermore, since nearshore areas require higher resolution

and accuracy in practical applications, the GWSM4C is not good

enough results for nearshore regions. To predict SWHs with high

spatial resolution and improve the accuracy of GWSM4C in

nearshore areas, this study establishes a NS (NearShore) model

based on GWSM4C with the consideration of physical mechanisms

of wave propagation and depth variation in intermedia waters.

The remainder of this paper is structured as follows: The

“Materials and Methods” section introduces the data we used,

and describes the theoretical methods and model construction, as

well as evaluation metrics. The “Results” section presents the

model’s prediction results and analyzes the model’s effectiveness

from multiple perspectives. Finally, our “Discussion” section

primarily discusses the model’s generalization capability in non-

training areas and proposes future research suggestions.

The remainder of this paper is organized as follows. In Section

2, the dataset, model structure, evaluation metrics, and details

regarding the training and testing of the GWSM4C-NS are

presented. Section 3 provides a comprehensive evaluation and

analysis of the prediction ability of GWSM4C-NS, and Section 4

discusses certain key characteristics of GWSM4C-NS. Finally, the

conclusions are presented in Section 5.
2 Materials and methods

2.1 Data and preprocessing

The Data adopted in this study is listed in Table 1. As shown in

this table, wind field data are sourced from the ECMWF’s ERA-5

dataset (the fifth generation European Centre for Medium-Range

Weather Forecasts atmospheric reanalysis of the global climate), with

a spatial resolution of 1/4°. The topographic data come from the

ETOPO1 global relief model published by the US National

Geophysical Data Center. The initial wave field (IWF) are

generated using the GWSM4C with a spatial resolution of 1/2°.

The SWH data of the target (TAR) are obtained through simulations

using the MASNUM-WAM, employing the aforementioned wind

and topographic data as inputs, simulating a SWH within the

geographic extent of 90°E to 150°E and from 10°S to 50°N, with a

spatial resolution of 1/32°. It is important to note that this range is

broader than the study area defined in this paper, ensuring that the

simulated SWH data contain ample information about the swells.

The study area is defined as a portion of nearshore areas of the East

China Sea and the South China Sea (areas with water depth less than

or equal to 200m are considered nearshore), including the coastal

areas from 116°E to 126°E and from 19°N to 29°N. The study periods

are the years 2018 and 2020. Data time resolution is one hour.

To improve the quality of the training dataset, the data

underwent several preprocessing steps, including interpolation,

masking, normalization, and dataset division. The specific

procedures are as follows: Initially, the data resolution was

standardized by linearly interpolating wind field data, bathymetry,

and IWF data to 1/32°. Then, considering that the research area of

this paper is a nearshore region which is not a regular area, in order

to ensure the clarity and accuracy of the coastline, the data
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underwent masking processing. This involved assigning a value of 0

to the land part of the data, retaining only the original data of the

marine part. In addition, for deep-water areas where the impact of

topography on waves is not significant, a similar masking process

was applied to the topographic data for areas with depths exceeding

200 m, assigning a value of 200. Subsequently, Min-Max

normalization was performed to eliminate the effects of different

units of measurement across data types. Finally, the NS model input

consists of three consecutive time steps of wind field data (e.g., 1:00,

2:00, 3:00), IWF data (1:00), and bathymetry data. The 2018 data

were used to generate the training dataset, and the 2020 data were

used to create the testing dataset, ensuring relative independence

between the training and testing datasets.
2.2 The structure of GWSM4C-NS model

The overall structure of the GWSM4C-NS model is shown in

Figure 1, including information extraction module and wave

propagation module. The symbols U and V represent the wind

field data. The network input consists of 8 channels; the first six

channels represent the wind field data, including u and v

components at times t-2, t-1, and t. IWF data at the time of t-2

are in the seventh channel and the last one in the datasets is the

water depth data. The output for this network comprises only SWH

at time t. The NS model can learn the variable information to obtain

instantaneous features by using information extraction module at

different moments. These features will be further passed to the
Frontiers in Marine Science 03
propagation module to get spatiotemporal feature. Through

integrating these features, the SWH in nearshore sea areas will

be simulated.

Receptive field is an important consideration in handling pixel-

level prediction problems, where rich contextual information in

images significantly influences predictive performance, and such

information is extracted through large receptive fields. In this study,

the range of wave propagation module receptive fields is determined

based on wave propagation, enabling the model to possess a

reasonable range of perception for SWH prediction.

The PM spectrum (Pierson, 1964), which is derived from fully

developed wind seas, is defined using two dimensionless

parameters, a and b, expressed as follows (Equation 1):

S(w) =
ag2

w5 exp −b
w0

w

� �4
� �

(1)

Wh e r e i n , a = 8:1� 10−3, b = 0:74,w0 = g=U , a n d t h e

corresponding peak frequency:

wp =
4
5

� �0:25

·
g · b0:25

U
(2)

In Equation (2), U is the wind speed at 19.5m above sea surface,

g =9.81m/s2 is the gravitational acceleration.

Additionally, the frequency w satisfies the dispersion relation

under deep water conditions, which states:

w2 = gk (3)
FIGURE 1

Schematic diagram of the NS prediction model based on convolutional neural networks.
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This relationship is related to the wave number k. By combining

Equation (2) and Equation (3), the group velocity cg is obtained,

which is the propagation speed of wave energy at the peak frequency:

cg =
∂w
∂ k

jw=wp
=
1
2
·

U

(4=5)0:25 · b0:25 (4)

Equation (4) represents the maximum propagation speed

corresponding to the maximum wind speed.

The aforementioned deductions are based on the dispersion

relations in deep water environments. As waves propagate from deep

to shallowwater, their speed is not only influenced by gravity and inertia

but also by friction with the seabed and water pressure, leading to a

gradual reduction in wave speed. Therefore, the maximum propagation

speed in nearshore areas does not exceed that in deep water conditions.

The information extraction module utilizes 1x1 convolutional

kernels to extract local information from each grid point, enhancing

the non-linear expression capability of the output features. For the

wave propagation module, we set the number of convolutional

layers appropriately based on the maximum propagation distance

of wave energy (see Section 4.1). Due to multiple inputs for the
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model, we add wind field and IWF together as well as concatenating

them with bathymetry. This combination method is shown in

Figure 2, which allows bathymetry data to engage deeply in the

process of wave simulation at each moment. Therefore, it is

beneficial for the network structure to be aligned with the

physical process of wave propagation closely.
2.3 Optimizer

As the input data is a regular square matrix containing both

oceanic and terrestrial components, during the model training

process, multiple layers of convolution may result in non-zero

values near the ocean-land boundary, where the grid values

originally representing the land portion may no longer be zero,

thereby causing coastline misalignment. To ensure the accuracy of

the coastline, a masking process is applied after each convolution

and batch normalization, reassigning the land portion of all output

channels to zero.

The model determines the direction for gradient descent by

computing the discrepancy between the results and the labels,

considering only the loss values from the marine parts to

eliminate the impact of terrestrial regions on the experiments.

The learning rate, which determines the magnitude of gradient

descent, follows a dynamically changing scheme proposed in the

formulas, varying from 1.0 to 0.1 as the number of epochs increases,

thereby gradually reducing the learning rate (Equation 5).

Huber Loss =
1
2 yi − f (xi)ð Þ2, yi − f (xi)j j ≤ d

d yi − f (xi)ð Þ2− 1
2 d

2, yi − f (xi)j j > d

(
(5)

Loss =oI
iHuber Loss i∈Nearshore _ areaf g (6)
FIGURE 2

Method of combining different types of data.
TABLE 1 The introduction of the data.

Name
Temporal
Resolution

Spatial
Resolution

Time

10 m U-V
component of wind

1h 1/4°
2018,
2020

IWF 1h 1/2°
2018,
2020

Bathymetry – 1/60° –

TAR 1h 1/32°
2018,
2020
“–”, default value.
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In Equation (6), “Nearshore_area” represents the nearshore

study area, i denotes samples from the nearshore study area, and I

represents the total number of sample points in the nearshore study

area.

Learning Rate =
1
2

1 + cos
m� p
Epoch

� �� �
� (1 − 0:01) + 0:1 (7)

In Equation (7), Epoch represents the number of training

iterations, and m indicates the current training iteration.

GWSM4C-NS was trained on a machine with NVIDIA GeForce

RTX 3090 GPU (24 GB). The NS model was trained for 500 epochs,

the batch size during training was set to 6.
2.4 Evaluation indicators

To appropriately evaluate our model, this paper selects a range of

commonly usedmetrics for assessing the accuracy of SWHpredictions.

These include Differential Error (DR), Root Mean Square Error

(RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage

Error (MAPE), and Correlation Coefficient (CC). MAE and MAPE

quantify the proportionality of errors relative to the true label values,

whereas RMSE measures the dispersion between the predicted values

and the label values. The CC is used to assess the correlation between

predicted values and label values. Due to the unique characteristics of

the studymarine areas, statistical calculations are performed exclusively

for the nearshore regions. The mathematical equations for these

evaluation metrics are as follows (Equations 8–12):

DR(i, j) = hp(i, j) − hm(i, j)
�� �� (8)

MAE =
1
I · Jo

1

i=1
o
J

j=1
hp(i, j) − hm(i, j)
�� �� (9)

MAPE =
100%
K · I · J o

K

k=1
o
I

i=1
o
J

j=1

hp(i, j, k) − hm(i, j, k)
�� ��

hm(i, j, k)
(10)

RMSE =
1
K o

K

k=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
I · Jo

I

i=1
o
J

j=1
hp i, j, kð Þ − hm i, j, kð Þ
 �2s

(11)

CC =
o
K

k=1

hp(i, j, k) − hp(i, j, k)

 �

hm(i, j, k) − hm(i, j, k)

 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
K

k=1

hp(i, j, k) −  hp(i, j, k)

 �2s

·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
K

k=1

hm(i, j, k) −  hm(i, j, k)

 �2s

(12)

where i and j denote the coordinates of space lattice points, k

denotes cases, n represents the total number of cases, I denotes the

total number of latitudinal lattice points, and J denotes the total

number of meridional lattice points. DR(i,j) is the error value of a

certain point in space, hp(i, j) is the SWH value predicted based on

the model, and hm(i, j) is the MASNUM-WAM SWH value

corresponding to a certain point in space, hp(i, j, k) represents the

model-predicted SWH at a certain point in the case space, hp(i,j,k)
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represents the mean SWH predicted by the model at a certain point

in the case space, and hm(i, j, k) represents the SWH of MASNUM-

WAM at a certain point in the case space. hm(i,j,k) represents the

mean SWH of MASNUM-WAM.

3 Results

3.1 Validation and analysis results from
GWSM4C-NS

Figure 3 presents the seasonal average SWH for 2020 simulated

by the MASNUM-WAM and GWSM4C-NS, along with the

distribution of the DR between them. It can be observed that the

GWSM4C-NS (Figures 3A-D) demonstrates good consistency in

both the numerical values and spatial distribution of SWHs in

nearshore areas compared to the results simulated by the

MASNUM-WAM (Figures 3E-H). Figures 3I-L indicates most

nearshore areas exhibit prediction errors less than 0.15m, with

only some coastal and island areas showing relatively higher point-

like distributed errors and the errors in autumn are higher than

those in spring, summer, and winter. Additionally, the error

distribution under different SWH is shown in Figure 4, the

absolute error probability density under various SWHs displays a

quasi-normal distribution. For SWHs between 0-1m, the

probability density curve peaks sharply around zero, indicating a

high accuracy in predictions for lower wave heights. As SWH

increases (1-2m, 2-3m, and 3-4m), the curves maintain a quasi-

normal distribution, with a slight shift to the right, suggesting an

increase in the absolute error but still concentrated around low

error values. The probability density curve for SWHs greater than

4m exhibits a broader spread and a lower peak, indicating a higher

absolute error in predictions for larger wave heights. Overall, under

conditions of low wave heights, the predictions tend to be smaller

and the errors relatively minor, whereas at high wave heights, the

errors are comparatively larger.

To verify the model’s improvement on the nearshore result of

GWSM4C, i.e., the IWF data, we use the result of MASNUM-WAM as

the target. Figures 5A-C displays the error and correlation coefficient

betweenMASNUM-WAM and the GWSM4C, showing similar spatial

distributions of RMSE (Figure 5A) and MAE (Figure 5B), particularly

high near the depth of approximately 200m in the East Sea and

surrounding coastal and island areas, while the CC (Figure 5C) shows

the opposite (due to extremely high MAPE in coastal areas, reaching

100% or more, it is inconvenient to annotate contour lines and

statistics, hence the MAPE of GWSM4C data is not displayed).

Figures 5D-F displays the error and correlation coefficient between

MASNUM-WAM and the NS model.
3.2 Impact of bathymetry data on
model predictions

Figure 6 quantifies the improvements in model simulation

results based on GWSM4C data, with RMSE reduced from
frontiersin.org
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0.312m to 0.128m, a 59% decrease; MAE reduced from 0.263m to

0.103m, a 60% decrease; and CC increased from 0.941 to 0.977. It

can be observed that the predictions of the NS model show

significant improvements compared to the GWSM4C. In

contrast, Figure 7 highlights the impact of the NS without the

inclusion of bathymetry data. Comparing this with the seasonal
Frontiers in Marine Science 06
distribution data, it is evident that bathymetry data significantly

enhance prediction accuracy, particularly in coastal and island

regions. Statistical analysis reveals that incorporating

bathymetry data reduces the RMSE of the model predicted

SWH by 12%, decreases MAE by 11%, and increases the CC

from 0.973 to 0.977.
FIGURE 3

Comparison of simulation results between MASNUM-WAM and GWSM4C-NS. (A-D) GWSM4C-NS simulate SWH, (E-H) MASNUM-WAM simulate
SWH, (I-L) DR of model predictions versus MASNUM -WAM simulation, for seasonal averages in spring (February, March, April), summer (May, June,
July), autumn (August, September, October), and winter (November, December, January).
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4 Discussion

4.1 Effects of different
convolution strategies

In this study, the maximum wind speed in the training dataset is

32 m/s (at 19.5m above sea level). According to the theoretical

derivation of section 2.2, the maximum propagation speed of the

waves is calculated to be 18.24 m/s. This implies that within a 1-
Frontiers in Marine Science 07
hour interval, the farthest distance the waves can travel is

approximately 65 km, which is equivalent to about 19 grids with

a spatial resolution of 1/32°. Therefore, in the wave propagation

simulation module, the maximum distance that the waves can travel

per hour can be represented by setting the receptive field range to no

less than 39.

We employ simulation experiments with three different sizes of

convolutional kernels to determine the optimal scheme for

accurately simulating nearshore SWH. As shown in Table 2, in all
FIGURE 4

Probability density of absolute errors in SWH predictions across different SWH ranges. The SWH ranges are categorized as follows: 0-1m (gray), 1-2m
(green), 2-3m (yellow), 3-4m (red), and greater than 4m (blue).
FIGURE 5

Annual mean contour distributions of (A) RMSE, (B) MAE, and (C) CC between MASNUM-WAM simulated SWH and GWSM4C model predicted SWH,
Annual mean contour distributions of (D) RMSE, (E) MAE, and (F) CC between MASNUM-WAM and the GWSM4C-NS model.
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three experiments, the theoretical receptive field of each

propagation module covers the maximum distance that waves can

travel in one hour. Experiment 1 continuously uses 19 consecutive

3x3 small convolutional kernels; experiment 2 utilizes a network

structure based on Hybird Dilated Convolution (HDC) (Lei et al.,

2019) that effectively addresses the “grid artifacts” issue found in

standard holey convolution models; Experiment 3 continuously

uses 7 consecutive 7x7 convolutional kernels.

Figure 8 illustrates that the SWHs predicted by setups one

(Figure 8A) and two (Figure 8B) are notably lower than those

simulated by the MASNUM-WAM (Figure 8D), especially in the

Taiwan Strait area, whereas the predictions of setup three

(Figure 8C) closely align with the MASNUM-WAM in terms of
Frontiers in Marine Science 08
numerical values. Table 3 demonstrates that setup three achieves

the best statistical performance, with an RMSE of 0.128m, a MAPE

of 10.7%, and an MAE of 0.103m, which are the lowest among all

setups. Additionally, setup three attains the highest CC of 0.977.

Given its superior numerical predictions, the network structure of

experiment 3 is selected for the propagation module in this paper.
4.2 Suitability of non-training areas

The GWSM4C-NS model proposed in this paper is based on the

wave propagation mechanisms, theoretically endowing it with a

certain degree of regional generalization capability. We selected the
FIGURE 7

Comparison of simulation results between MASNUM-WAM and the GWSM4C-NS without Bathymetry data input. (A) MASNUM-WAM simulated SWH,
(B) predicted SWH without Bathymetry data, (C) annual mean distribution of DR between Model prediction and MASNUM-WAM simulation.
FIGURE 6

Annual mean statistics of RMSE, MAPE, MAE, and CC between GWSM4C, without bathymetry data input, and GWSM4C-NS model versus MASNUM-
WAM simulation results.
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coastal area ranging from 111°E to 118°E and from 18°N to 25°N

(referred to as Area 2) for testing. We discussed the predictive

capability of the model in non-training areas, which further

validates the model’s ability to learn about wave propagation

processes. Figure 9 illustrates the seasonal average SWH in 2018

simulated by the MASNUM-WAM (Figures 9E-H) and the

GWSM4C-NS model (Figures 9A-D) within Area 2, as well as the

DR between the two. It is evident that the model demonstrates good

consistency in the predicted SWH values and spatial distribution

compared to the MASNUM-WAM simulation results in the

nearshore areas, although the predicted values are slightly

underestimated. Statistical analysis (as shown in Figures 10, 11)

reveals that in Area 2, the RMSE, MAPE, MAE, and CC between the

model predictions and MASNUM-WAM simulations are 0.161m,

12.9%, 0.137m, and 0.951, respectively. The RMSE and MAE have

decreased by 43% and 39% compared to the predictions by the

GWSM4C model. This signifies an improvement in the prediction

of nearshore SWH based on the GWSM4C model.

Therefore, the physically based NS model proposed in this

paper is capable of predicting in untrained areas, saving the

computational time and resources required for training.
5 Conclusion

In recent years, deep learning has been widely applied in the

field of wave prediction. Compared to the widely used neural
Frontiers in Marine Science 09
networks that combine convolutional and recurrent elements,

pure convolutional neural networks are less prone to the

accumulation of errors over time. The recently published

GWSM4C model can update initial conditions simultaneously as

the simulation is going on, thus, the accumulation of errors from a

fixed initial wave state can be avoided, and long-term simulation
TABLE 2 Parameter settings for wave propagation schemes.

Experiment
Convolution

Kernel

Number of
Convolution

Layers

Dilation
Rate

1 3 19 1

2 3 10
Alternating

1,3

3 7 7 1
fr
TABLE 3 Statistical results of prediction for different wave
propagation schemes.

Experiment
RMSE
(m)

MAPE MAE (m) CC

1 0.141 11.6% 0.118 0.975

2 0.141 11.5% 0.114 0.976

3 0.128 10.7% 0.103 0.977
FIGURE 8

Annual mean statistical results of SWH simulation for different schemes (A) Experiment 3, (B) Experiment 2, (C) Experiment 3, (D) MASNUM-WAM.
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based on deep learning algorithms become possible. Building upon

the foundation of GWSM4C, the newly proposed GWSM4C-NS

model incorporates the effects of water depth on wave propagation,

yielding more accurate SWH in nearshore regions. The “Results”

section demonstrates the test results, and the conclusions are

as follows:
Frontiers in Marine Science 10
1.Compared to networks using 3×3 convolution kernels and

dilated convolutions based on the HDC framework, the network

structure with 7×7 convolution kernels provide a more accurate

simulation of the wave propagation process. Additionally,

bathymetry data in nearshore areas can improve the accuracy of

predicted SWH, specially in regions around islands and coasts.
FIGURE 9

Comparison of simulation results between MASNUM-WAM and the NS model in area 2. (A-D) GWSM4C-NS Model-Predicted SWH, (E-H) MASNUM-
WAM simulated SWH, (I-L) DR between model predictions and MASNUM-WAM predictions for seasonal averages in spring (February, March, April),
summer (May, June, July), autumn (August, September, October), and winter (November, December, January).
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FIGURE 10

Annual mean contour distributions of (A) RMSE, (B) MAE, and (C) CC between MASNUM-WAM simulated SWH and GWSM4C model predicted SWH,
Annual mean contour distributions of (D) RMSE, (E) MAE, and (F) CC between MASNUM-WAM and the GWSM4C-NS model in area2.
FIGURE 11

Annual mean statistics of RMSE, MAE, and CC between GWSM4C, the GWSM4C-NS model results, and MASNUM-WAM simulation results.
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2. Compared to the MASNUM-WAM simulation results, the

prediction results of the NS model show RMSE, MAPE, MAE, and

CC values of 0.128m, 10.7%, 0.103m, and 0.977, respectively. And

further comparison with the original GWSM4C predictions, the

RMSE and MAE are reduced by 59% and 60%, respectively.

Therefore, the new NS model can effectively improve the

performance of GWSM4C in nearshore areas.

3. The NS model can also conduct predictions in other

untrained sea areas. Although the prediction results in the

untrained region might be not as accurate as those in the trained

one, they still achieve an acceptable level of agreement with the

MASNUM-WAM’s outputs.
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