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Monitoring monthly mortality of
maricultured Atlantic salmon
(Salmo salar L.) in Scotland
I. Dynamic linear models at
production cycle level
Carolina Merca1*, Annette Simone Boerlage2,
Anders Ringgaard Kristensen1 and Dan Børge Jensen1

1Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of
Copenhagen, Frederiksberg, Denmark, 2Center for Epidemiology and Planetary Health (CEPH), SRUC
School of Veterinary Medicine, Inverness, United Kingdom
The mortality of Atlantic salmon is one of the main challenges to achieving its

sustainable production. This sector benefits from generating many data, some of

which are collated in a standardized way, on a monthly basis at site level, and are

accessible to the public. This continuously updated resource might provide

opportunities to monitor mortality and prompt producers and inspectors to

further investigate when mortality is higher than expected. This study aimed to use

the available open-source data to develop production cycle level dynamic linear

models (DLMs) for monitoring monthly mortality of maricultured Atlantic salmon in

Scotland. To achieve this, several production cycle level DLMs were created: one

univariate DLM that includes just mortality; and various multivariate DLMs that

include mortality and different combinations of environmental variables. While

environmental information is not collated in a standardized way across all sites,

open-source remote-sensed satellite resources provide continuous, standardized

estimates. By combining environmental and mortality data, we seek to investigate

whether adding environmental variables enhanced the estimates of mortality, and if

so, which variables were most informative in this respect. The multivariate model

performed better than the univariate DLM (P = .004), with salinity as the only

significant contributor out of 12 environmental variables. Both models exhibited

uncertainty related to the mortality estimates. Warnings were generated when any

observation fell above the 95% credible interval. Approximately 30% of production

cycles and more than 50% of sites experienced at least one warning between 2015

and 2020. Occurrences of these warnings were non-uniformly distributed across

space and time, with the majority happening in the summer and autumn months.

Recommendations for model improvement include employing shorter time periods

for data aggregation, such as weekly instead of on a monthly basis. Furthermore,

developing a model that takes hierarchical relationships into account could offer a

promising approach.
KEYWORDS

salmon, mortality, dynamic linear models, aquaculture, open-source data,
environmental data, state-space models, warnings
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1 Introduction

Over the past few decades, farmed Atlantic salmon has been a

major contributor to the growth of international trade in fisheries

and aquaculture products. It is an important global food source with

a key role to play in food security and nutrition (FAO, 2022).

Scotland is the third largest farmed salmon producer in the world

with a production share of 7.6%, behind Norway (55.3%) and Chile

(25.4%) (Iversen et al., 2020). Scottish salmon is amongst the top

food export products of the UK (Department for Environment,

Food & Rural Affairs, 2023), and the industry generates income in

remote areas with few other opportunities (Murray et al., 2021).

The production of farmed salmon consists of two distinct

phases: freshwater and seawater. To transition between these

phases, salmon undergo a process called smoltification, during

which they develop the ability to move from freshwater to

seawater, becoming smolts (FAO, 2004). In this study, only the

seawater phase was considered. Initially, salmon are raised in large

tanks of freshwater for about 10 to 16 months and then moved to

open net pens in seawater for about 14 to 22 months (Walde et al.,

2023). There has been a tendency to keep smolts as long as possible

in freshwater, where they face fewer challenges (Bjørndal and

Tusvik, 2018; Hilmarsen et al., 2018). The farms in the open sea

are usually referred to as sites and contain one generation offish at a

time, with the time between stocking and harvesting being one

production cycle. A production cycle refers to a site-level period in

which at least one pen on a site is occupied consecutively (Boerlage

et al., 2017). It is recommended to fallow a site (entire site has no

fish) for a minimum of 4 weeks before a new generation of salmon is

introduced again (Scottish Salmon Producers Organisation, 2014).

In 2022, around 55.2 million smolts were put to sea in

Scotland, resulting in a total annual production of 169,194 tons

(Munro, 2023).

Mortality rates are one of the main constraints to the

sustainability of the industry. In Scotland, the mortality rates in

the marine phase were approximately 24% in 2020, 26% in 2019 and

23% in 2018 (Munro, 2023). Mortality represents a significant

economic loss to the producers and is considered an indicator of

suboptimal fish welfare (Noble et al., 2018). Due to the open net-

pen structures in which salmon are cultured, salmon are exposed to

the natural environment that directly impacts their well-being.

Salmon mortality can be influenced by several factors, including

infectious and non-infectious agents. Examples of the most

important infectious contributors are sea lice and sea lice

treatments (Boerlage et al., 2024), and gill disease and

cardiomyopathies (Mowi, 2022). Non-infectious agents are algal

blooms, predators and the natural environmental conditions of the

water (Sommerset et al., 2022). Optimal ranges have been

determined for environmental variables, such as sea surface

temperature, salinity, pH and dissolved oxygen requirements

(Noble et al., 2018). Outside of these ranges, health and welfare of

salmon may be impacted, resulting in increased mortalities.

Salmon aquaculture has become one of the most technologically

advanced industries (FAO, 2022), with an increasing accumulation

of data collected. Most producers have sensors that monitor the
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environment continuously. Additionally, all companies collect and

store mortality data in their management programs. Some

governments, such as in Scotland, collect and collate monthly

mortality data from all aquaculture producers of all sites, in a

standardized way, which is subsequently made publicly accessible.

This valuable, continuously updated resource might provide an

opportunity to develop an industry-wide monitoring model for

mortality that does not require additional administrative

complexities. Such a monitoring model could help identify events

where mortality is higher than expected and prompt producers and

inspectors to investigate the event further. Including environmental

information into the monitoring model could enhance the

predictions. Although salmon sites monitor and record many

environmental variables, such information is not collated in a

standardized way. A promising solution emerges from the

widespread availability of open-source environmental data

derived from satellites, which are standardized and publicly

available (Thakur et al., 2018).

Using open-source databases collected by governments to

model mortality of maricultured salmon has been done before.

Recent studies have used different modelling methods, each with a

different approach regarding the relevant variables to include.

Moriarty et al. (2020) included only sea temperature and fish

biomass, while others, such as Oliveira et al. (2021) and Tvete

et al. (2022) included a wider range of variables such as sea

temperature, sea salinity, fish weight at stocking, sea lice

information or the occurrence of pancreas disease. These studies

found sea temperature and salinity to be key drivers of farmed

salmon mortality. However, these models assumed a fixed

relationship between the response variable and the predictors,

which may not hold over time as the underlying process changes.

Dynamic linear models (DLMs), a special case of state-space

models, allow for time-varying parameters, which enables the model

to adjust to changes in the underlying processes that generate the data

over time (West and Harrison, 1997). DLMs can easily incorporate

exogenous variables and it is possible to include terms to model

trends and seasonality to improve the predictions. In addition, DLMs

utilize a Bayesian framework where historical knowledge is combined

with current data to detect changes within an observed process. This

approach enables a more comprehensive understanding of the

situation, facilitating well-informed decision-making (Kristensen

et al., 2010). Thus, the use of DLMs is a promising approach to

monitor farmed salmon mortality. In other farmed animal species,

DLMs have been applied and proven effective in monitoring animal

production (Dominiak et al., 2019a, 2019b; Jensen et al., 2016, 2017;

Skjølstrup et al., 2022). To the farmed salmon industry, they have

been applied only to a limited extent. One example of using such

models for salmon aquaculture modelling is by Elghafghuf et al.

(2020) who compared different state-space models in estimating the

sea lice infestation pressure in salmon sites. Furthermore, a state-

space monitoring model for salmon mortality and movement has

been developed for wild Pacific salmon (Newman, 1998).

The purpose of this study was to use the available open-source

mortality and environmental data to develop production cycle level

DLMs for monitoring monthly mortality of maricultured Atlantic
frontiersin.org
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salmon in Scotland. We intended to assess if these already existing

resources can give valuable information to be used in the

surveillance of mortality for Scottish salmon aquaculture, by

triggering warnings when mortality is higher than expected. This

can inform producers, veterinarians and inspectors, alerting them

to further investigate. More specifically, we had four objectives: (1)

to create a univariate production cycle level DLM using mortality

data from salmon sites in Scotland; (2) to create multivariate

production cycle level DLMs combining both mortality and

environmental data. With this combination, we investigated if

adding environmental data improved the estimates of mortality;

(3) to compare the univariate and multivariate models and select

the best model for monitoring salmon mortality; (4) to create

warnings when observed mortality exceeded the expected levels.
2 Materials and methods

Data cleaning, manipulation andmodelling were performed using

the statistical programming environment R (R Core Team, 2022) and

RStudio (Posit team, 2022). The time-series analysis workflow is freely

accessible (https://doi.org/10.5281/zenodo.10617901).
2.1 Data sources

We used two different types of data: salmon production data

and environmental data.

Scotland’s Aquaculture website (https://aquaculture.scotland.

gov.uk/; last accessed 9 February 2023) hosts an open access

database containing various datasets with information on the

aquaculture industry of Scotland. This study utilizes data from

the “Fish Farm Monthly Biomass and Treatments” dataset owned

by the Scottish Environment Protection Agency (SEPA). This

dataset contains information about all fish species produced in

Scotland and is submitted by all producers on a monthly basis. The

salmon production data used in this study consists exclusively of

data of Atlantic salmon (Salmo salar L.) from the period between

2002 and 2020 (entire period available at the time of extraction).

The environmental data used in this study is remotely sensed data

from satellites. The environmental variables included were:

temperature, salinity, concentration of phytoplankton, chlorophyll,

dissolved oxygen, precipitation, concentration of dinoflagellates,

diatoms, nanophytoplankton, picophytoplankton, pH and

concentration of nitrate. Precipitation data (Huffman et al., 2019)

was obtained from NASA’s Earthdata platform (https://

urs.earthdata.nasa.gov; last accessed on 9 February 2023). The

other variables were obtained from E.U. Copernicus Marine

Service Information (Tonani et al., 2022a, 2022b) and

downloaded through Copernicus Marine Environment

Monitoring Service (https://marine.copernicus.eu/services-

portfolio/access-to-products/; last accessed on 9 February 2023).

All environmental data are open-source and reported daily. To

match the production data, the time period downloaded was from

2002 to 2020.
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2.2 Data cleaning and data manipulation

The descriptive statistics of the variables used throughout the

study are shown in Table 1.

2.2.1 Production data
All active marine salmon sites in Scotland between 2002 and

2020 were part of the dataset. Not all sites were active during the

entire study period, either because they started production after the

beginning of the study period, or because they discontinued it

during the study period. Therefore, some sites made a first

appearance in the study after 2002 and others disappeared before

2020. It resulted in a total of 402 sites and 2138 production cycles.

Scotland is geographically divided into six regions: Highland,

Argyll & Bute, Shetland Islands, Eilean Siar, Orkney Islands, and

North Ayrshire (Figure 1). The region North Ayrshire only has one

site, therefore, we grouped it with the nearest region (Argyll & Bute)

and only the remaining five regions were considered.

During the data cleaning process, some sites and production

cycles were excluded from the study. First, production cycles for

which it could not be guaranteed that they were in the dataset from

stocking to harvesting were removed from the study. Production

cycles with persistently missing or zero values for mortality (kg) or

biomass (kg) throughout the entire production cycle were also

excluded (92 production cycles). Records that did not meet the

standard production cycle for commercial purposes, which we

defined as between 6 and 36 months, were dropped (224

production cycles). Sites with less than 2 years of reported data

(24 months) in the study period were also removed (24 sites).

Finally, incoherent production cycles where information from some

months was not reported were excluded from the study (33

production cycles).

The mortality reported corresponded to the number of kilograms

of dead salmon per month per site (Table 1). We converted mortality

to a proportion to take the production size into account, using the

reported biomasses. Estimating biomasses at fish farming sites is

based on management program algorithms and food intake data,

typically periodically adjusted through sampling to determine the

average fish weight. This average weight is then multiplied by the

number of existing fish on the site, calculated as the initial number of

fish put into the sea minus the countable dead fish (Costa et al., 2006).

Mortality values for analysis were calculated as:

Mortality =
Dead   salmon   (kg)

Biomass   (kg)
: (1)

We regarded some mortality proportions as unrealistic. Reasons

possibly included data entry mistakes; or stocking, harvesting or

moving fish between sites in the middle of a month, which timing

and quantity of fish moved were not available to us. This absence of

movement data introduced a source of error in our proportion

estimates, as the reported biomasses were a snapshot of the

biomasses at the end of the month, while mortality accounts for

the cumulative mortalities throughout the month. Moving fish from

a site during the month leads to lower biomasses reported at the end

of a month relative to the mortalities observed during the month,
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whereas introducing fish to a site during the month leads to higher

reported biomasses relative to the observed mortalities. To reduce

this source of error as much as possible, we identified unrealistic

mortality proportions and we made them missing. For that, we

defined biomasses lower than realistic as:

Low   biomasst   ≤  

Biomass   (kg)t−1 −Mortality   (kg)t−1 − 0:2� Biomass   (kg)t−1,

(2)

and biomasses higher than realistic as:

High   biomasst   ≥  

1:2� Biomass   (kg)t−1 + Feed   intake   (kg)t  � 0:77,

(3)

where t corresponds to the current month and t − 1 to the previous

month. As shown in Equations 2 and 3, we set limits of 20%
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deviation from expected biomasses, below and above which

biomasses were considered abnormal. In Equation 3, additionally

we used the feed intake reports to foresee how much the salmon

where expected to grow in each month. Although the feed

conversion ratio (FCR) for salmon fluctuates throughout a

production cycle, for the sake of simplification, we adopted a

reported FCR of 1.3 for salmon in the United Kingdom

(Torrissen et al., 2011), meaning that 77% of feed intake is

transformed in weight gain. Equations 2 and 3 were applied to all

reported biomasses on the dataset. When the biomasses were

considered lower or higher than realistic, these observations were

replaced by missing values. Therefore, we restricted the analysis to

only realistic biomasses, which were used to calculate mortality as

defined in Equation 1.
TABLE 1 Descriptive statistics of the variables used in the study.

Variable Type Unit/Calculation Missing Median [iqr]

Mortality
(dead salmon)

quantitative,
continuous (monthly)

Kg
147
(0.46%)

1885
[610.0, 5671.25]

Biomass
quantitative,
continuous (monthly)

Kg
0
(0%)

69000
[0, 520000]

Feed intake
quantitative,
continuous (monthly)

Kg
0
(0%)

78800
[33000, 153351.5]

Realistic biomass
quantitative,
continuous (monthly)

Kg
5115
(16.13%)

24000
[0, 519000]

Mortality (proportion)
quantitative,
continuous (monthly)

Dead   salmon   (kg)
Realistic biomass (kg)

5253
(16.56%)

0.004
[0.002, 0.011]

Temperature quantitative, continuous (daily) °C
596840
(7.22%)

9.836
[7.774, 12.225]

Salinity quantitative, continuous (daily) ppt
596840
(7.22%)

34.638
[34.191, 35.213]

Phytoplankton quantitative, continuous (daily) mmol m-3
596840
(7.22%)

2.955
[0.620, 5.505]

Chlorophyll quantitative, continuous (daily) mg m-3
596840
(7.22%)

0.584
[0.166, 0.990]

Dissolved oxygen quantitative, continuous (daily) mmol m-3
596840
(7.22%)

266.59
[251.01, 276.85]

Precipitation quantitative, continuous (daily) mm
20247
(0.73%)

1.117
[0.240, 4.736]

Dinoflagellates quantitative, continuous (daily) mg m-3
596840
(7.22%)

0.012
[0.004, 0.023]

Diatoms quantitative, continuous (daily) mg m-3
597945
(7.23%)

0.34
[0.101, 0.600]

Nanophytoplankton quantitative, continuous (daily) mg m-3
596840
(7.22%)

0.124
[0.034, 0.198]

Picophytoplankton quantitative, continuous (daily) mg m-3
596840
(7.22%)

0.091
[0.020, 0.149]

pH quantitative, continuous (daily) –
596840
(7.22%)

8.121
[8.101, 8.156]

Nitrate quantitative, continuous (daily) mmol m-3
596840
(7.22%)

4.16
[2.144, 6.103]
iqr: Interquartile range.
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2.2.2 Environmental data
The environmental data (2002-2020) have three dimensions:

spatial, temporal and depth. These data were transformed into

observations of 20 km around a site (spatial), monthly (temporal)

and averaged of 0, 3, and 10 meters below the surface (depth;

precipitation only at 0 meters). These transformations were

accomplished using the R packages: tidyverse (Wickham et al.,

2019), janitor (Firke et al., 2023), lubridate (Grolemund and

Wickham, 2011), ncdf4 (Pierce, 2023), raster (Hijmans et al.,

2023), sp (Pebesma et al., 2018) and sf (Pebesma et al., 2022).

Spatial coverage of environmental data from satellite images

was not available for around 65% of the exact site locations for all

environmental variables except for precipitation which was

available for 100% of the locations. Because aquaculture sites are

often next to the shore or in sea lochs, estimates for this data at the

aquaculture site location are often missing. Reasons are the

compromised pixel edge lengths and coastal effects, dissolved

organic compounds of terrestrial origin, and weather patterns

(Thakur et al., 2018). Dropping these sites would bias our study

towards offshore sites and leave the study with too few

observations. Therefore, we used buffer zones of 20 km around

the aquaculture sites and averaged the values within that buffer as

a proxy for site location. For 24 sites we could not obtain

environmental data even with the 20 km buffer, as they were
Frontiers in Marine Science 05
situated too close to the shore or far inside sea lochs. As a result,

these sites were not part of the study.

Temporal coveragemeant that daily environmental data obtained

were aggregated into monthly data to have the same dimensions as

the mortality data (Table 1). We aggregate the environmental data

with the intention of looking at both extremes and variation. For

extremes, we aggregated into monthly data by using the 1st and 9th

deciles to best capture the amount of abnormal days with more

extreme environmental factors needed to cause salmon mortality

(Table 2). For the environmental variables where both increases and

decreases can lead to salmon mortality, we used both deciles, while

for variables where only increases were of interest, we applied only

the 9th decile. The only exception is for precipitation, where we used

the 9th decile even though only decreases might affect mortality. The

reason is that relying solely on the 1st decile would often result in a

value of 0, which would lose the impact of precipitation. Thus, we

looked at its negative effect, when the 9th decile is lower than normal

should lead to salmon mortality. To investigate the effect of relatively

quick changes in environmental variables, i.e. their variation, we

designed variables that portrayed the maximum daily variation out of

a month for the variables where variability may affect mortality

(Table 2). This was not the case for precipitation, nor for the

phytoplankton and chlorophyll type variables (Phytoplankton,

Chlorophyll, Dinoflagellates, Diatoms, Nanophytoplankton,
FIGURE 1

Salmon sites distributed across the six regions of Scotland. Created using the leaflet R package (Cheng et al., 2024).
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Picophytoplankton) because they usually appear as blooms (a sudden

increase of the concentration in seawater) (Brown et al., 2020).

Therefore, the maximum daily variation on a month would be

similar to what is given by the 9th decile.

For depth coverage, we determined the depth level to be an

average of values at 0, 3 and 10 meters depth. Salmon swim

vertically to the depth that better meets their physiological needs,

e.g. fish swim to deeper depths in the summer than in the winter to

avoid the stronger surface light (Oppedal et al., 2007). Thus, using

only one of the reported depths would not be an accurate measure

of what salmon were exposed to.

After cleaning both environmental and mortality data, they

were combined into one dataset. Our study population was reduced

to 293 seawater Scottish salmon sites, corresponding to 1610

production cycles distributed in five regions of Scotland.

2.2.3 Transformation and standardization
The residuals of a DLM should follow a normal distribution

(West and Harrison, 1997). To assess if this assumption was met, a

univariate DLM was run for each input variable individually. For

some variables, a logarithmic transformation was needed (Table 2).

Two variables that were subject to logarithmic transformation
Frontiers in Marine Science 06
included zeros. On those cases, the logarithmic transformation

was conducted as: log (x + a), where a ∈]0,1].
The variances of the different variables were adjusted to a

similar scale by standardizing each variable individually. It was

accomplished by subtracting the sample mean of the variable from

all observations and then dividing them by the sample

standard deviation.
2.3 Learning and test sets

The available data were split into a learning set (145 sites,

distributed by five regions of Scotland, and 784 production cycles)

for estimating parameters for the DLMs and a test set (the same 145

sites and 353 other production cycles) for validating the models.

This division was done by chronologically dividing the dataset

into two parts, where the first three quarters of the data were used as

a learning set, while the remaining quarter was used as the test set. A

division at a specific date would cut production cycles, having parts

of some production cycles in the learning set and other parts of the

same production cycles in the test set. Instead, we used different cut-

off dates at each site as close to the three quarters reference as
TABLE 2 Variables used as inputs on the DLMs.

Variable groups Transformation Aggregated by month Variable names

Temperature
–

1st decile d1.temp

9th decile d9.temp

log (x) max (|daily range|) log.max.daily.range.temp

Salinity log (x)

1st decile log.d1.sal

9th decile log.d9.sal

max (|daily range|) log.max.daily.range.sal

Phytoplankton log (x + 1) 9th decile log.d9.phyc

Chlorophyll log (x) 9th decile log.d9.chl

Dissolved oxygen log (x)

1st decile log.d1.do

9th decile log.d9.do

max (|daily range|) log.max.daily.range.do

Precipitation log (x) 9th decile log.d9.prep

Dinoflagellates log (x) 9th decile log.d9.dino

Diatoms log (x) 9th decile log.d9.diato

Nanophytoplankton log (x) 9th decile log.d9.nano

Picophytoplankton log (x) 9th decile log.d9.pico

pH –

1st decile d1.ph

9th decile d9.ph

max (|daily range|) max.daily.range.ph

Nitrate log (x)
9th decile log.d9.no3

max (|daily range|) log.max.daily.range.no3

Mortality log (x + 0.00005) Already monthly data log.mortality
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possible, ensuring that production cycles would remain intact. Sites

with less than two production cycles on the learning set

were excluded.

For the expectation maximization (EM) algorithm, which was

used in the training phase of the model, the learning set was again

divided into a training set and validation set with a three quarters-

one quarter split, in the same way described above. Sites where all

mortality or environmental information was missing on the EM

algorithm training set were excluded.

Only the sites which were present in all four sets - EM training

set, EM validation set, DLM learning set and DLM test set - were

included in this study. Therefore, all sets include the same sites.
2.4 Dynamic linear models

Dynamic linear models (DLMs) are generally used to estimate

the true state of a given variable at each time t, by filtering the

random noise. DLMs use a Bayesian framework to base their

estimates on observed data, while incorporating any prior

knowledge available prior to a given observation. Besides, DLMs

do not follow the assumption that the estimates remain constant

over time, allowing them to have systematic fluctuations and

changes as time passes (West and Harrison, 1997).

A DLM is represented by a combination of two equations,

namely the observation equation (Equation 4) and the system

equation (Equation 5).

Yt = Ft
0 qt +   vt ,                   vt  ∼  N   (0,  Vt), (4)

qt = Gt   qt−1 +  wt ,                    wt  ∼  N   (0,  Wt): (5)

The observation equation (Equation 4) describes how the values of an

observation vector (Yt) depend on underlying (unobservable)

parameters (qt). The transposed design matrix (Ft
0) extracts the

expected values of the observable variables from the parameter vector

the system equation (Equation 5) is what makes the DLMs dynamic

since it updates the values from time t – 1 to time t, through the

system matrix (Gt). The observational variance-covariance matrix

(Vt) is where the uncertainty about the observations is depicted. The

systematic variance-covariance matrix (Wt) represents how uncertain

we are about how much each element of the system will randomly

change from one time step to another and how changes in one

element affect changes in all other elements, and vice versa.

For a complete specification of the DLM, the matrices Ft, Gt, Vt

and Wt must be given together with the initial distribution of (q0j
D0)∼N  (m0,  C0). The prior information/belief at time 0 (before

any observations are made) is presented as D0, which consists of the

initial mean (m0) and a variance-covariance matrix (C0).

In this study, the systematic variance-covariance matrix (Wt)

was assumed constant, so that Wt = W. The dimensions of the

observational variance-covariance matrix (Vt) and the transposed

design matrix (Ft
0) changed over time according to which variables

had missing observations at a given time t. Thus, the missing

observations at any given time step were ignored. The system

matrix (Gt) was not constant for the variables that do not have a

seasonal pattern. In those cases, Gt was updated at each month t.
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Two types of production cycle level DLMs (univariate and

multivariate) were created and are explained in detail in the

following subsections. The term “production cycle level” indicates

that the predictions will be made individually per production cycle

based on prior information given at country level. Therefore, these

models do not account for the potential relationships within the

same sites or regions.

2.4.1 Univariate DLM
A univariate production cycle level DLM (West and Harrison,

1997) was used to monitor salmon mortality on a monthly basis

(mortality defined as explained in Table 2).

In this case, Yt consisted of only one value (the observed

mortality for month t). The parameter vector (qt) contained the

level and a trend factor for the variable mortality at time t. The initial

level of m0 was calculated by fitting a spline function to the mortality

data available in the learning set (all sites), which was then used to

predict the mortality value for t = 0 (initial level). The spline function

was created using the default settings of the smooth.spline function

available in stats R package (R Core Team, 2022). It was decided to

use the default settings, as the role of the spline’s exact shape is less

important here than in classical static models due to the dynamic

model’s inherent capability to adapt over time. The trend factor was

initially set to 1, indicating that before any observations are made, we

expected the system to evolve exactly in accordance with the

estimated spline function. A trend component greater than 1

would then correspond to a trend (positive or negative) being

faster than the average, while a trend component less than 1

would correspond to a trend which is slower than the average.

The prior variance (C0) was determined by computing the

covariance between the differences amid all two consecutive

mortality observations for the first six observed mortality values

of each production cycle on the learning set and the first six original

observed mortality values.

The Ft
0 matrix was represented in the univariate case as:

Ft
0 = ½ 1 0 � :

This structure serves to separate the level and the trend of  qt , when
Ft

0 is multiplied by qt on the observation equation (Equation 4).

The result was the predicted mortality value at each time t.

The Gt matrix for the univariate case was defined as:

Gt =
1 dt
0 1

" #
,

with

dt = m̂ t − m̂ t−1

where m̂ t and m̂ t−1 being the expected log-transformed mortality at

times t and t − 1, respectively, given by the spline function. Thus dt
is the expected rate of change in log-transformed mortality values

from time t − 1 to time t.

The observational variance-covariance matrix (V) expressed the

uncertainty about the mortality observations. To make an initial

estimate for V, which in the univariate case was a scalar (only one

value), we calculated a two-sided moving average with a moving
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window equal to five months to each production cycle on the

learning set individually. Then, the residuals between the observed

and estimated values of each production cycle were combined. The

variance of the combined residuals corresponds to the initial

estimate for V.

Finally, W matrix was defined as:

W =
W1,1 W1,1d

W1d,1 W1d,1d

" #
,

whereW1,1 expresses how uncertain we were about the evolution of

the mortality level, W1d,1d expresses how uncertain we were about

the evolution of the trend factor, and the off-diagonal elements

W1,1d & W1d,1 are equal and represent the systematic covariance

between the evolution of mortality level and the evolution of the

trend factor. The systematic variance-covariance matrix (W) was

initially estimated by diving the prior variance, C0 by 10.

Afterwards, we optimized the values in V and W using the

expectation maximization (EM) algorithm, as described in

subsection 2.4.3.
2.4.2 Multivariate DLM
In multivariate models, more than one variable is modelled

simultaneously. Here, all environmental variables (21) and

mortality (all represented in Table 2) were given as inputs. Thus,

the multivariate DLM forecasted the 22 variables expected values

for each month. The hypothesis was that this multivariate model

would learn from previous mortality and environmental data and

work on associations between the variables to give an accurate

prediction of mortality considering the environmental factors of

that month.

Most environmental variables had a clear seasonal pattern (see

for example Figure 2). This knowledge was included in the DLMs to

improve the predictions by using a linear combination of

trigonometric functions (sine and cosine, also known as harmonic

waves), called the Fourier form representation (West and Harrison,

1997). For each variable, we assessed the sum of harmonic waves

that better reflected its seasonality. To do so, we used a linear
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regression to get the relationship between the observations of each

variable on the learning set and a trigonometric function

representing a sum of a specific number of harmonic waves. Each

of the harmonic waves has its own frequency ranging from 1 cycle

per year to 6 cycles per year (the Nyquist harmonic). The Nyquist

harmonic corresponds to the maximum number of waves

allowed for a given period (West and Harrison, 1997). In this

study, the Nyquist harmonic corresponded to the 6th harmonic

wave ( 12  months
2 ). The harmonic with the lowest frequency

represents the main annual pattern, whereas those with higher

frequencies account for deviations from the overall pattern. For a

graphical illustration of the method, reference is made to

(Dominiak et al 2019a, Figure 7).

Next, we measured the fit of the trigonometric function to the

data using the adjusted Coefficient of determination (R2). We

successively tested several sums of harmonic waves and when the

adjusted R2 stopped improving, the number of harmonic waves that

had the highest adjusted R2 was selected as the optimal for that

variable. The best number of harmonic waves for each variable is

presented in Table 3. For some variables the best number of

harmonic waves is 0, meaning that those variables did not have a

seasonal pattern.

In Supplementary Figure S1 is illustrated the expected patterns

for each variable modelled with the respective sum of harmonic

waves or with spline functions (for the variables without seasonal

pattern). The data points shown are from one arbitrary site, but the

waves and the splines were defined based on data from all sites. The

x-axis for the variables with seasonal pattern correspond to

the calendar months, whereas for the variables that did not show

any seasonality correspond to the months of the production cycle

since stocking.

The process of creating a multivariate DLM involves combining

the univariate models required to represent each variable

individually, as exemplified previously with mortality, while also

considering the interdependencies between those variables.

Here, the Yt consisted on a vector with all observed values in

month t for the 22 variables. Also, qt was a vector containing the

underlying parameters for all variables in month t. A linear
FIGURE 2

Seasonal pattern in daily temperature data from 2002 to 2020, utilizing a 20 km buffer and averaging across the three depths and all sites.
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regression based on the best number of harmonic waves (Table 3)

for a period of 12 months was created as previously explained for

each seasonal variable individually, and its coefficient estimates

were used in m0. The coefficient estimates values corresponded to

the intercept and one sine and cosine wave for each harmonic wave

needed. For example, for the variable d1.temp the best number of

harmonic waves was 2 (Table 3) thus, 5 coefficient estimates were

allocated to m0. For the variables that used all waves possible

(including the Nyquist harmonic) the last sine wave could not be

calculated. In those cases, only the available information (12

coefficient estimates) was added to m0. For the variables that did

not show seasonal patterns, i.e. the variables related to mortality and

salinity (Table 3), the levels were calculated with spline functions as

explained on the univariate case and the trend factors were again

defined as 1. Therefore, the unobservable parameter vector qt =
(qt,1,…, qt,137) had 137 elements.

To compute the prior variance (C0), firstly the vcov function

available on stats R package (R Core Team, 2022) was applied to

each linear regression previously created for each seasonal variable.

This function returned a variance-covariance matrix of the main

parameters of each regression model. For all the variables that do

not have seasonality, the variance-covariance matrices were

calculated as explained in the univariate model. Then, the final

variance-covariance matrix (C0) was a combination of each variable

individual variance-covariance matrix.

In the multivariate case, the system matrix (Gt) was also a

combination of each variable’s individual G matrix. A system

submatrix describing a single harmonic wave is defined as:

G =
cos(aw) sin(aw)

−sin(aw) cos(aw)

" #
,

where w = 2�p
12 and a defines the frequency. If a = 1, the frequency is

1 full cycle per year. If a = 2, the frequency is 2 cycles per year, etc.

The case a = 6 corresponds to 6 cycles per year (the Nyquist

harmonic), which is a special case represented as:
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G = ( − 1) :

For the variables without cyclical patterns, the Gmatrix was defined

as explained for the univariate case. Therefore, the system matrix

for the multivariate corresponded to a 137 × 137 matrix and was

defined as:

Gt =

1 0 0 0 0 ⋯ 0 0 0 0 0 ⋯ 0 ⋯ 0 0

0 cos(w) sin(w) 0 0 ⋯ 0 0 0 0 0 ⋯ 0 ⋯ 0 0

0 −sin(w) cos(w) 0 0 ⋯ 0 0 0 0 0 ⋯ 0 ⋯ 0 0

0 0 0 cos(2w) sin(2w) ⋯ 0 0 0 0 0 ⋯ 0 ⋯ 0 0

0 0 0 −sin(2w) cos(2w) ⋯ 0 0 0 0 0 ⋯ 0 ⋯ 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋯ ⋮ ⋯ ⋮ ⋮

0 0 0 0 0 ⋯ 1 0 0 0 0 ⋯ 0 ⋯ 0 0

0 0 0 0 0 ⋯ 0 cos(w) sin(w) 0 0 ⋯ 0 ⋯ 0 0

0 0 0 0 0 ⋯ 0 −sin(w) cos(w) 0 0 ⋯ 0 ⋯ 0 0

0 0 0 0 0 ⋯ 0 0 0 cos(2w) sin(2w) ⋯ 0 ⋯ 0 0

0 0 0 0 0 ⋯ 0 0 0 −sin(2w) cos(2w) ⋯ 0 ⋯ 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋯ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋯ ⋮ ⋮

0 0 0 0 0 ⋯ 0 0 0 0 0 ⋯ −1 ⋯ 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋯ ⋮ ⋮ ⋮ ⋮ ⋮ ⋯ ⋮ ⋱ ⋮ ⋮

0 0 0 0 0 ⋯ 0 0 0 0 0 ⋯ 0 ⋯ 1 d t

0 0 0 0 0 ⋯ 0 0 0 0 0 ⋯ 0 ⋯ 0 1

2
666666666666666666666666666666666666666664

3
777777777777777777777777777777777777777775

where dt = m̂ t − m̂ t−1 (being m̂ the expected log-transformed

mortality given by the spline function). Due to space

constraints, it was not possible to present the complete Gt

matrix. Thus, we decided to show the three different designs

present in Gt: the system matrix with 2 harmonic waves for the

variable d1.temp (upper left corner block), the Nyquist harmonic

for log.d9.pico (middle block) and the system matrix for

log.mortality (lower right corner block).

In the multivariate DLMs the transposed design matrix (F
0
t) has

the same aim as in the univariate case: separate the observable

values from the trend factor or harmonic waves (depending on the

variable). Therefore, the Ft
0 had repeated structures according to

the number and the type of variables used (with or without seasonal

patterns). The transposed design matrix in the multivariate case,

when no observation was missing in month t, corresponded to a 22

× 137 matrix depicted as:
TABLE 3 Number of harmonic waves used to model the seasonality of each variable.

Variable names Number of harmonic waves Variable names Number of harmonic waves

d1.temp 2 log.d9.prep 3

d9.temp 2 log.d9.dino 4

log.max.daily.range.temp 2 log.d9.diato 4

log.d1.sal 0 log.d9.nano 5

log.d9.sal 0 log.d9.pico 6

log.max.daily.range.sal 0 d1.ph 2

log.d9.phyc 3 d9.ph 3

log.d9.chl 5 max.daily.range.ph 3

log.d1.do 2 log.d9.no3 3

log.d9.do 2 log.max.daily.range.no3 3

log.max.daily.range.do 2 log.mortality 0
Key to variable names: d1, 1st decile; d9, 9th decile; max.daily.range, maximum daily variation; log, logarithmic transformation; temp, temperature; sal, salinity; phyc, phytoplankton; chl,
chlorophyll; do, dissolved oxygen; prep, precipitation; dino, dinoflagellates; diato, diatoms; nano, nanophytoplankton; pico, picophytoplankton; ph, pH; no3, nitrate.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1436755
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Merca et al. 10.3389/fmars.2024.1436755
F0
t =

1 1 0 1 0 ⋯ 0 0 0 0 0 0 0 0 0 0 0 0 ⋯ 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋯ ⋮ ⋮

0 0 0 0 0 ⋯ 1 1 0 1 0 1 0 1 0 1 0 1 ⋯ 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋯ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 0 0 ⋯ 0 0 0 0 0 0 0 0 0 0 0 0 ⋯ 1 0

2
666666664

3
777777775
,

Again, it was not possible to show the complete Ft
0 matrix due to

space restrictions. Thus, we presented the designs corresponding to

the same three variables shown on Gt: d1.temp (upper left corner

block), log.d9.pico (middle block) and log.mortality (lower right

corner block). When there was a missing observation for some

variable in month t, the row corresponding to that variable on the

Ft
0 matrix was excluded.

The observational variance-covariance matrix (Vt) was a

quadratic matrix with the number of rows and columns being

equal to the number of variables without missing observations in

month t, being defined as:

Vt =

V1,1 ⋯ V1,n

⋮ ⋱ ⋮

Vn,1 ⋯ Vn,n

2
664

3
775,

where the maximum value of nwas 22 (total number of variables). If

d1.temp is considered variable number 1 and log.mortality variable

number 22, V1,1 is the observational variance of d1.temp, V22,22 is

the observational variance of log.mortality, and V1,22 and V22,1

correspond to the observational covariance between d1.temp and

log.mortality. An initial estimate of V was created by placing the

individual observational variances of each variable along

the diagonal, while the off-diagonal values were set to 0. The

observational variances of the variables without seasonality were

calculated as explained in the univariate DLM, while the

observational variances for the variables with seasonal patterns

were defined by computing the variance of each linear regression

residuals formerly created.

The systematic variance-covariance matrix was initially

determined by dividing the prior variance by 10 (as in the

univariate case), being a 137� 137 matrix.

As in the univariate case, the initial estimates of Vt and W were

optimized using the EM algorithm as described in sub-section 2.4.3.

The values located in the off-diagonal areas of Vt and W contribute

with the additional information about how the different variables

mutually affect each other.

2.4.2.1 Variables selection methodology

We initially developed a multivariate production cycle level DLM

incorporating all available variables (21 environmental variables and

mortality), as previously explained in subsection 2.4.2. However, our

subsequent analysis revealed that utilizing all this information might

not be the most efficient strategy. Some of the environmental

variables may not influence mortality and including them could

result in a more complex and computationally demanding model

than required. Nevertheless, we have provided a thorough

explanation of the most intricate model, thus creating other models
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with fewer variables is a simple matter of excluding from the initial

specifications the irrelevant variables.

A systematic approach would entail the construction of

individual multivariate production cycle DLMs for all possible

variable combinations. This would result in over 2 million

possibilities. Instead, we made a DLM per variable group, and

then applied the stepwise forward selection method.

In the first step, seven multivariate production cycle level DLMs

were created, each one using the variables included in each

environmental variable group (Temperature, Salinity, Phytoplankton

and Chlorophyll, Dissolved oxygen, Precipitation, Nitrate, pH) plus the

variable mortality. To compare the performance of the seven

multivariate DLMs, it was necessary to evaluate how different the

mortality observations were from the predictions, represented as

forecast errors. This evaluation was conducted by calculating the

Root Mean Squared Error (RMSE) for the collective set of mortality

forecast errors across all production cycles within each DLM. A lower

RMSE signifies a higher level of model precision, allowing the

comparative analysis of the models. Considering our aim of

investigating if adding environmental variables improves the

predictions of mortality, the RMSEs from the seven multivariate

models were compared against the RMSE of the univariate model. If

those RMSEs were lower than the RMSE of the univariate model, it was

considered to improve the mortality predictions.

The second step was to build six multivariate DLMs each one

with the variables that provided the best DLM on the first step and

one other environmental variable group per model. In this way, we

could understand if adding any other environmental group

improved the estimates of mortality. The RMSEs were compared

against the RMSE of the best performing multivariate DLM from

the first step.

In the third step, we wanted to assess if all variables present on

the best DLM from the second step were relevant to the model. In

that sense, several multivariate DLMs consisting of all possible

variables combinations were created. The RMSEs were compared

against the RMSE of the best model from the second step.

To see if we could improve the best DLM so far, the fourth step

involved employing the stepwise forward selectionmethod. It consisted

of building a multivariate DLM with the most promising selection of

variables identified thus far and adding all other variables, one at a time.

The model with the lowest RMSE was designated as the best.
2.4.3 Optimizing DLM variance components
The expectation maximization (EM) algorithm (West and

Harrison, 1997) was used to optimize the systematic variance-

covariance matrix (W) and the full version of the observational

variance-covariance matrix (V) for both the univariate and the

multivariate versions of the DLM.

The EM algorithm is a mathematical method that estimates

unknown parameters by finding the most likely outcome based on

observed data. It involves a series of iterations, which implies

calculating the likelihood of the data given previous estimates,

and then refining those estimates based on the new information

(Dethlefsen, 2001).
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Running the EM algorithm is usually computationally

demanding, especially if working with large datasets or using

several variables simultaneously. To tackle this challenge we ran

the EM algorithm using an early stopping technique. For that, we

started by dividing the learning set into a training set, consisting of

the first three quarters of the data and a validation set, consisting of

the last quarter, as previously explain in section 2.3. After each

iteration of the EM algorithm, the DLM with the most recent set of

variance components (W and V) was applied to the validation set,

and the root mean squared error (RMSE) of the forecast errors was

calculated. When the RMSE (rounded to 4 decimal places) stopped

decreasing, the EM algorithm was terminated and the variance

components which minimized the RMSE were returned.

2.4.4 Filtering and smoothing
Since the initial specifications needed were already calculated (m0,

C0 Ft, Gt, Vt and W) the next step was to update the models. The

updating procedure for the DLMs was computed by utilizing the

Kalman filter updating equations (filtering) as described byWest and

Harrison (1997). The values were forecast at each time step, relying

on the current estimate of the mean and prior information about

error and variance around both the system and the data. These values

were subsequently “corrected” according to the new observation,

where the predicted values by the model and the actual observed

values were compared, and the forecast errors were used to improve

the estimated value of the next time step. As a result of the Kalman

filter, we got the monthly expected values (filtered mean and

variance) and the forecasts for each variable (mortality in the

univariate DLM and all 22 variables in the full multivariate DLM).

The parameter vectors qt are autocorrelated to each other

through the system equation. In the Kalman filter, we only used

the previous information to obtain the best estimate of qt. However,

owing to the autocorrelation present between the parameter vectors,

the subsequent observations have as much useful information to

estimate the true values of qt as the past observations. Therefore, a
retrospective analysis called smoothing can be employed, where

data are analyzed from the latest update and working backwards to

the initial point, as outlined by West and Harrison (1997). This

retrospective analysis is useful because we obtain the best possible

estimates for each variable, which are important since they can

provide better knowledge about the effects of specific events, like

disease outbreaks (Kristensen et al., 2010).
2.5 Generating warnings

Warnings were generated when the observed mortality values

fell above the 95% credible intervals (CI). The 95% CI were

calculated using the forecasted values (ft) produced by the

Kalman filter, along with its respective variance Qt:

95%  CI = ft ± 1:96� st ,

where st =
ffiffiffiffiffi
Qt

p
. Whenever a warning was triggered, it indicated

that the mortality was higher than expected for that time step on

that production cycle and further investigation is required.
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3 Results

The following results were obtained by applying the DLMs to

the test set while using the initial specifications calculated based on

the learning set. Every production cycle in the test set (a total of 353

production cycles across 145 sites) was subjected to both univariate

and multivariate DLMs individually.
3.1 Univariate DLM

The outcomes of the univariate DLM for production cycle

number 614 are illustrated in Figure 3. This production cycle was

chosen because it has almost no missing data and no warnings were

detected. Specifically, these outcomes are the filtered mean estimated

by the prospective Kalman filter and the smoothed mean estimated

by the retrospective smoothing (Figure 3A), and the forecasted values

produced at each time step in the Kalman filter (Figure 3B). All

outcomes are presented with their corresponding 95% credible

interval, based on their respective variance components. The

filtered mean can be interpreted as the best possible estimate of the

true underlying mortality level given all previous information at each

time step, while the smoothed mean can be interpreted as the best

possible estimate of the true underlying mortality level given all

available information prior to and after a given time step. Both means

(filtered and smoothed) demonstrated a consistent alignment with

the observations (Figure 3A). The 95% credible interval for the

mortality forecasts (Figure 3B) was wider than the 95% credible

intervals of both filtered and smoothed means (Figure 3A). This

suggests that there is a higher level of uncertainty in the predictions

(Figure 3B), with a RMSE value of 0:86028.

Even though errors associated with the predictions existed, it

was possible to detect warnings in several production cycles.

Figure 4 illustrates the mortality forecasts for production cycle

number 466 and it shows that the observations exceed the

predictions 95% credible interval at month 11 after stocking.

Between 2015 and 2020, 109 out of the 353 production cycles

exhibited at least one warning. Among these 109 cycles, 77%

experienced a single warning during the cycle, 20% had two

warnings, and 3% encountered three.

Out of the 145 sites, 86 experienced warnings, affecting all five

regions. The region of Eilean Siar had the highest occurrence rate

with 28 production cycles with at least one warning out of 63

production cycles (44%) and 36 warnings in total. The region

Orkney Islands showed the lowest number of warnings, having 6

production cycles with at least one warning out of 55 production

cycles (11%) and 8 warnings in total, as depicted in Table 4.

Concerning the months of the year with more warnings

(Table 4), the upward trend commenced in April with 12

warnings in 490 production cycle-months that took place during

April (2.4%). July (3.7%), August (6.8%), September (5.1%), and

October (4.3%) stood out as the months with the highest

occurrences of warnings.

The year 2016 had the highest frequency of warnings with 42

occurrences within 903 production cycle-months (4.7%), followed by
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FIGURE 3

Outcomes from the univariate DLM applied to production cycle number 614. Observations (obs) in black. (A) In green: Filtered mean (mt) and the
respective 95% credible interval (CI); In blue: Smoothed mean (mts) and the respective 95% credible interval (CI). (B) In red: Forecasts (ft) and the
respective 95% credible interval (CI).
FIGURE 4

Outcomes from the univariate DLM applied to production cycle number 466. Observations (obs) in black and the forecasts (ft) and the respective
95% credible interval (CI) in red; Circle: warning.
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2017 (2.9%) and 2018 (2.2%) (Table 4). In 2015, only three months of

data were available, making direct comparisons not applicable.
3.2 Multivariate DLM

In the process of selecting the most relevant variables to be used

on the multivariate production cycle level DLM, the first step was to

create seven multivariate DLMs each one using the variables

included in one environmental variable group, in addition to the

mortality variable (Table 5). The RMSEs from the models were

compared against the RMSE of the univariate model (0:86028). As

shown in Table 5, the model including the salinity variables had a

better performance (lowered the RMSE).

For the second step, six multivariate DLMs were built, each one

with the variables that provided the best DLM thus far (salinity

related variables and mortality) and one other environmental

variable group per model. The RMSEs were compared against the

RMSE of the multivariate DLM that used the salinity variables and

mortality (0:85862). Supplementary Table S1 shows that the

models’ performances did not improve by adding any of the

other environmental groups.

For the third step, we generated seven DLMs consisting of all

possible combinations using the salinity variables (Table 6). Two

combinations improved the performances when compared to using

all salinity variables. The best DLM used the variables log.d9.sal,

log.max.daily.range.sal and log.mortality (lower RMSE).
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The fourth and last step consisted of applying the stepwise

forward selection method. The results are illustrated in

Supplementary Table S2, and demonstrate that the inclusion of

additional variables did not lead to improved performances.

Therefore, the best multivariate DLM in predicting the mortality

estimates was the DLM that included the variables log.d9.sal,

log.max.daily.range.sal and log.mortality, with a RMSE of 0:85860.

The best multivariate DLM had a smaller RMSE than the

univariate DLM (0:85860 and 0:86028, respectively). To

determine whether this very small difference is statistically

significant or not, a paired t-test was applied to the squared

forecast errors of the univariate and best multivariate DLMs. T-

tests are known to be useful in studies with large sample sizes and

are robust even for skewed data (Fagerland, 2012). We intend to

compare the variances; therefore, it is natural to square the forecast

errors. The resulting p-value was 0:003714, which indicated that

both models are significantly different from each other. We

concluded that the best multivariate DLM performed better than

the univariate DLM.

The subsequent results are based on the best and final multivariate

DLM, which is henceforth referred to simply as multivariate DLM.

Figures 5–7 show the outcomes of the multivariate DLM for

production cycle 614 (the same presented in the univariate DLM

results section). Figures 5 and 6 illustrate the filtered and the smoothed

mean (A), and the forecasts (B) for the logarithmic transformation of

the 9th decile of salinity (log.d9.sal) and for the maximum daily range

of salinity (log.max.daily.range.sal), respectively.
TABLE 4 Warnings identified in the univariate and multivariate DLMs between 2015 and 2020: per region, month of the year and year.

Univariate

Warnings per region

Highland Argyll and B. Shetland Isl. Orkney Isl. Eilean Siar

34/101 (34%) 21/59 (36%) 20/75 (27%) 6/55 (11%) 28/63 (44%)

45 27 21 8 36

Warnings per month of the
year (%)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

0.7 0.7 0.9 2.4 2.3 1.5 3.7 6.8 5.1 4.3 0.6 0.7

Warnings per year (%)
2015 2016 2017 2018 2019 2020

0.0 4.7 2.9 2.2 1.5 1.6

Multivariate

Warnings per region

Highland Argyll and B. Shetland Isl. Orkney Isl. Eilean Siar

31/101 (31%) 18/59 (31%) 19/75 (25%) 6/55 (11%) 25/63 (40%)

41 22 19 8 32

Warnings per month of the
year (%)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

0.7 0.7 0.9 2.4 2.0 1.3 3.7 5.5 4.6 3.4 0.4 0.7

Warnings per year (%)
2015 2016 2017 2018 2019 2020

0.0 4.0 2.5 2.0 1.5 1.4
front
For the “Warnings per region”, the first row corresponds to the number of production cycles that triggered at least one warning out of the total number of production cycles in that region; the
second row shows the total number of warnings triggered in each region. For the “Warnings per month of the year (%)” and “Warnings per year (%)”, the percentages correspond to the division
between the total number of warnings generated on that month or year and the corresponding number of production cycle-months, multiplied by 100.
Isl., Islands; B., Bute; Jan, January; Feb, February; Mar, March; Apr, April; Jun, June; Jul, July; Aug, August, Sep, September; Oct, October; Nov, November; Dec, December.
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Concerning the logarithmic transformation of mortality

(log.mortality), Figure 7A shows that once again the filtered and

smoothed means demonstrated a consistent alignment with the

observations. The 95% credible interval of the forecasts (Figure 7B)

was also wider than the 95% credible intervals of both filtered and

smoothed means (Figure 7A). This shows that the uncertainty in the

predictions on mortality continued after adding the environmental

variables considered most relevant. The multivariate DLM was also

capable of giving warnings in production cycle 466, as shown in

Supplementary Figure S2.
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Between 2015 and 2020, 99 out of 353 production cycles

experienced at least one warning from the multivariate model. All

these 99 production cycles also generated warnings in the univariate

model. In line with the univariate DLM, 79% of the 99 production

cycles had one warning, 19% had two warnings, and 2% had three.

Among the 145 sites, 79 generated warnings, all of which were

also identified when using the univariate model. All regions

generated warnings (Table 4). The region of Eilean Siar recorded

the highest occurrence rate (40%) and the Orkney Islands the lowest

(11%), consistent with what we found in the univariate DLM.

Regarding the seasonality of the warnings produced by the

multivariate model, an increase was seen in April (2.4%), with July

(3.7%), August (5.5%), September (4.6%) and October (3.4%)

having the highest occurrence of warnings (Table 4), similar to

the pattern seen with the univariate model.

In accordance with the univariate DLM, warnings occurred most

frequently in the year 2016 (4.0%), followed by 2017 at 2.5% and 2018

at 2.0%, as seen in Table 4. Once again, the year 2015 is not applicable

for comparisons due to the limited availability of data.
4 Discussion

One univariate and various multivariate production cycle level

DLMs were developed using open-source data. The main goal was to

investigate the value of these already collected data for monitoring

monthly mortality of maricultured Atlantic salmon in Scotland. The

best DLM consisted of mortality and salinity related variables. Both

the univariate and the final multivariate DLMs exhibited a degree of

uncertainty in the mortality predictions. Nevertheless, both models

were capable of giving warnings about unexpected increases in

mortality. If implemented in a near real-time surveillance system,

these warnings can be used by stakeholders such as salmon producers

to further investigate the observation and possibly detect (emerging)

diseases. Therefore, we demonstrated that, despite the underlying

data being of low resolution, the open-source data sources can be

successfully used as part of a monitoring system. This has the

potential to provide stakeholders with valuable information without

requiring additional efforts such as more data collection or

developing more data sharing agreements.

The uncertainty associated with the forecasts of mortality in both

models led to wide 95% credible intervals. Many different factors have

likely contributed to the uncertainty observed in the predictions of

mortality. First, salmonmortality can be influenced by various factors

that were not considered in this study. For example, an increase in

mortality can be caused by non-infectious and infectious health

challenges such as pathogens like sea lice (Noble et al., 2018), and a

decrease can be caused by the mitigation measures carried out by

health managers. Information on cause-specific high mortality is

openly available and can be found in Salmon Scotland’s monthly

mortality reports (https://www.salmonscotland.co.uk/reports; last

accessed 5 January 2024), but these were unavailable during most

of our study period. Incorporating these unaddressed factors into

our models might have decreased the uncertainties about the

predictions of mortality, but there are concerns that suboptimal

validity of the cause-specific salmon mortality can lead to selection
TABLE 6 Third step - Information about the multivariate DLMs created
with all possible combinations using salinity variables, and mortality.

Variables names RMSE Improveda

log.d1.sal; log.mortality 0.85982 False

log.d9.sal; log.mortality 0.85981 False

log.max.daily.range.sal; log.mortality 0.86331 False

log.d1.sal; log.d9.sal; log.mortality 0.85985 False

log.d1.sal; log.max.daily.range.sal; log.mortality 0.85861 True

log.d9.sal; log.max.daily.range.sal; log.mortality 0.85860 True

log.d1.sal; log.d9.sal;
log.max.daily.range.sal; log.mortality

0.85862 —
aCompared to the multivariate model using mortality and all salinity variables.
TABLE 5 First step - Information about the multivariate DLMs created
per variable group, in addition to the mortality variable.

Variable
groups
used in DLM

Variables names RMSE Improveda

Temperature
+ Mortality

d1.temp; d9.temp;
log.max.daily.range.temp;
log.mortality

0.86319 False

Salinity
+ Mortality

log.d1.sal; log.d9.sal;
log.max.daily.range.sal;
log.mortality

0.85862 True

Phytoplankton
and Chlorophyll
type + Mortality

log.d9.phyc; log.d9.chl;
log.d9.dino; log.d9.diato;
log.d9.nano;
log.d9.pico; log.mortality

0.86955 False

Dissolved
oxygen
+ Mortality

log.d1.do; log.d9.do;
log.max.daily.range.do;
log.mortality

0.86340 False

Precipitation
+ Mortality

log.d9.prep;
log.mortality

0.86982 False

pH + Mortality
d1.ph; d9.ph;
max.daily.range.ph;
log.mortality

0.86965 False

Nitrate
+ Mortality

log.d9.no3;
log.max.daily.range.no3;
log.mortality

0.86889 False

Mortality
(Univariate
DLM)

log.mortality 0.86028 —
aCompared to the univariate model of mortality alone.
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and misclassification bias when using this information to model

mortality (Aunsmo et al., 2008). Second, the absence of movement

data and, consequently, the indirect method used to detect the

movements most likely did not capture all movements of fish.

Therefore, the calculated mortality has itself associated uncertainty.

Third, it would have been optimal to train the models with data

where the mortality was known to be “normal” to ensure that the

models learned the “normal” patterns, as was done by Jensen et al.

(2016). The lack of health and welfare information about fish

populations in the database made it impossible to determine what

normal mortality was, and thus it was not possible to separate

production cycles with only normal mortality for the learning set

from those with abnormal mortality. That being said, other studies

have successfully developed DLMs for monitoring purposes in the

past without knowing the normal state of the animals (Bono et al.,

2012, 2013, 2014; Dominiak et al., 2019a, 2019b).

Favorable environmental conditions are of paramount importance

for the survival of salmon (Noble et al., 2018; Murray et al., 2022).

Therefore, several multivariate DLMs including different

environmental variables were made to better understand which

environmental factors influence salmon mortality in Scotland. Our

study demonstrated that including salinity related variables is relevant
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for predicting salmon mortality in Scotland. This is similar to the

findings of Oliveira et al. (2021) and Tvete et al. (2022) who also

described salinity as an important environmental factor. Temperature

is commonly described as having significant influence in salmon

mortality (Elliott and Elliott, 2010; Moriarty et al., 2020), but

including it did not improve the mortality predictions further.

Uncertainty was also embedded in the environmental variables.

We used buffer zones of 20 km around the aquaculture sites and

averaged the environmental values within that buffer as a proxy for site

location, to optimally use the satellite data. As a result, the values used

did not exactly represent the environmental factors experienced by the

salmon. Furthermore, we used the daily mean of three depths (0, 3, and

10 meters) to aggregate data on a monthly basis, rather than

incorporating each depth in the models. While this approach saved

computational time, the resulting values used in the models do not

precisely correspond to the environmental conditions that salmon

experienced. Despite exploration of many different types of aggregation

of the environmental variables per month (e.g. different quartile levels),

extremes that are known to be outside of comfort levels for salmon

would always be under detected if durations were brief (less than 3 days

using the 1st and 9th deciles). Moreover, suboptimal conditions may

have no effect when salmon are healthy, but may affect health and
FIGURE 5

Outcomes related to the variable log.d9.sal from the multivariate DLM applied to production cycle number 614. Observations (obs) in black. (A) In
green: Filtered mean (mt) and the respective 95% credible interval (CI); In blue: Smoothed mean (mts) and the respective 95% credible interval (CI).
(B) In red: Forecasts (ft) and the respective 95% credible interval (CI).
frontiersin.org

https://doi.org/10.3389/fmars.2024.1436755
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Merca et al. 10.3389/fmars.2024.1436755
welfare if salmon are stressed or have underlying conditions (Noble

et al., 2018). Therefore, some important information may have been

lost in the aggregations. These simplifications, such as buffer, depth and

monthly aggregations could have contributed to the uncertainty seen in

the mortality predictions, and could be the reason for the

environmental variables considered most relevant in the literature

had little effect on the predictions of mortality in this study.

Salmon farming sites monitor and record many environmental

factors using sensors, which are typically more accurate and have

greater resolution than satellite data (Thakur et al., 2018). However,

there is a lack of standardization across all sites. Not all relevant

environmental factors are measured at every site, protocols vary

between sites (e.g. depths) and the data are not collected centrally

from all sites at near real-time, as it is done for mortality data.

Therefore, it is more suitable to use satellite data when creating

models considering different sites. Sharing data between companies

requires data-sharing agreements, which can be difficult. Using both

satellite data and the open-source mortality dataset provided a chance

to develop models without adding administrative complexities.

This study provided insights into the occurrence and distribution

of warnings in Scotland. A warning indicated that salmon mortality

was higher than expected. Access to raw mortality data alone does not
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clarify whether increased mortality is normal for the phase of the

production cycle or merely a result of natural variation. With the

warnings generated (using credible intervals), stakeholders are alerted

to instances of increased mortality that are beyond natural variation

and are higher than expected for the specific phase of the production

cycle. When comparing the warnings generated by the univariate and

multivariate models, it is noteworthy that both models exhibit similar

results. However, the univariate model generated a greater number of

warnings overall. Approximately 30% of the production cycles and

more than 50% of the sites experienced at least one warning between

2015 and 2020. Considering the wide 95% credible interval of the

models, the real values might be higher. Geographically, the generated

warnings exhibited a non-uniform distribution across Scotland. The

region of Eilean Siar had the highest warning rate and the Orkney

Islands had the lowest. These findings were different from a previous

study that applied a specific threshold to mortality events in Scotland

between 2002 and 2009, and found that more warnings were generated

on the Northern Islands (Orkney Islands and Shetland Islands)

(Salama et al., 2016). In our study, most warnings happened between

July and October, which is when the water temperature is higher. As

temperature increases, salmon’s metabolic activity also rises, leading to

a greater demand for oxygen. In addition, the amount of dissolved
FIGURE 6

Outcomes related to the variable log.max.daily.range.sal from the multivariate DLM applied to production cycle number 614. Observations (obs) in
black. (A) In green: Filtered mean (mt) and the respective 95% credible interval (CI); In blue: Smoothed mean (mts) and the respective 95% credible
interval (CI). (B) In red: Forecasts (ft) and the respective 95% credible interval (CI).
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oxygen in the water decreases as the water temperature increases

(Noble et al., 2018). Also, infectious agents, such as Neoparamoeba

perurans, the causative agent of Amoebic Gill Disease (AGD), and sea

lice proliferate at higher rates in warmer waters (Oldham et al., 2016;

Brooker et al., 2018; Murray et al., 2022). Studies have shown that

salmon mortality due to Pancreas disease is also higher in the summer

months (Kilburn et al., 2012). Therefore, an increase in warnings

during this period may be the result of a higher incidence of disease

outbreaks and unfavorable conditions. Another interesting finding was

the declining trend in the frequency of warnings from 2016 to 2020.

The year 2016 had the highest prevalence of warnings in our study,

while the year 2017 was reported as the one with highest total mortality

between 2015 and 2020 (Munro, 2023). However, it should be noticed

that the warnings generated by these models are related to unexpected

changes in mortality, not necessarily to total mortality. It is unclear to

us why the frequency of warnings decreased after 2016, although one of

the reasons may be the establishment of gill disease that changed from

emerging disease to being a consistent (and thus expected) constraint.

Many other reasons could have contributed to this observation.

The warnings generated in this study were defined as any

observation falling above the 95% credible interval. Nevertheless,

other methods could have been used to generate warnings using the
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DLMs outputs. Examples of other methods include the Tabular

Cumulative Sums and the V-mask (Antunes et al., 2017).

We utilized DLMs despite encountering non-normally

distributed residuals in some of the original variables. To address

this issue, we applied a logarithmic transformation to these

variables prior to analysis and assessed whether the assumption of

normality was satisfied. The practice of transforming data is

frequently employed to conform to Gaussian assumptions, see for

example Larsen et al. (2019). The selection of the DLM was based

on its computational ease of use, allowing a more seamless

execution on computer systems compared to other more complex

models. The logarithmic transformation can be easily transformed

back to the original values, ensuring that the interpretation of

results can be conducted in terms of the original data scale.

With the available open-source data it was possible to design a

monitoring model for mortality with a certain level of uncertainty.

Suggestions for improvements of the models that may reduce

uncertainty include using shorter time periods when aggregating

the mortality data (e.g. weekly). Another approach might be to

develop a novel structure that would integrate the monthly

mortality data and the daily environmental data into a framework

that could be utilized in the multivariate DLM. Furthermore,
FIGURE 7

Outcomes related to the variable log.mortality from the multivariate DLM applied to production cycle number 614. Observations (obs) in black. (A) In
green: Filtered mean (mt) and the respective 95% credible interval (CI); In blue: Smoothed mean (mts) and the respective 95% credible interval (CI).
(B) In red: Forecasts (ft) and the respective 95% credible interval (CI).
frontiersin.org

https://doi.org/10.3389/fmars.2024.1436755
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Merca et al. 10.3389/fmars.2024.1436755
including reasons for mortality and movement data may improve the

monitoring process. Some of these improvements require additional

data collection efforts as they are not currently being collected from

all producers.

The next step of this project is to develop a hierarchical DLM

that will use the same mortality data used in this study. It is a more

complex model in which the mutual interconnectedness between all

sites in all regions are taken into account, with the sites in the same

region being assumed to be more closely correlated than sites in

different regions. Such a hierarchical framework has the potential to

enhance the monitoring of salmon mortality, offering a more

comprehensive and insightful perspective on the complex factors

influencing salmon mortality.
5 Conclusion

The open-source Scottish salmon data can be used to monitor

salmonmortality, allowing stakeholders to be informed whenmortality

is higher than expected. One key advantage of this dataset is that it

has already been collated and does not require data sharing

agreements. Nevertheless, a degree of uncertainty was found in the

mortality predictions in both univariate and multivariate DLMs. This

uncertaintymay be reduced if mortality data collected on a shorter time

period (such as weekly), additional data on relevant factors that

influence salmon mortality and movement data are made publicly

available in the future and are included in the models. Moreover, using

salinity information from open-source environmental data improved

the mortality predictions, even with the monthly aggregations carried

out. This study presents a systematic and extensive framework for

constructing univariate and multivariate DLMs, and the codes used are

freely accessible. Future research will focus on creating a hierarchical

DLM that considers site, regional, and country levels.
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