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Sea state bias (SSB) is a crucial error of satellite radar altimetry over the ocean surface.

For operational nonparametric SSB (NPSSB) models, such as two-dimensional (2D)

or three-dimensional (3D) NPSSB, the solution process becomes increasingly

complex and the construction of their regression functions pose challenges as the

dimensionality of relevant variables increases. And most current SSB correction

models for altimeters still follow those of traditional nadir radar altimeters, which

limits their applicability to Synthetic Aperture Radar altimeters. Therefore, to improve

this situation, this study has explored the influence of multi-dimensional SSBmodels

on Synthetic Aperture Radar altimeters. This paper proposes a deep learning-based

SSB estimation model called SNSSB, which employs a Siamese network framework,

takes various multi-dimensional variables related to sea state as inputs, and uses the

difference in sea surface height (SSH) at self-crossover points as the label.

Experiments were conducted using Sentinel-6 self-crossover data from 2021 to

2023, and the model is evaluated using three main metrics: the variance of the SSH

difference, the explained variance, and the SSH difference variance index (SVDI). The

experimental results demonstrate that the proposed SNSSB model can further

improve the accuracy of SSB estimation. On a global scale, compared to the

traditional NPSSB, the multi-dimensional SNSSB not only decreases the variance

of the SSH difference by over 11%, but also improves the explained variance by 5-10

cm2 in mid- and low-latitude regions. And the regional SNSSB also performs well,

reducing the variance of the SSH difference by over 10% compared to the NPSSB.

Additionally, the SNSSB model improves the computational efficiency by

approximately 100 times. The favorable results highlight the potential of the multi-

dimensional SNSSB in constructing SSB models, particularly the five-dimensional

(5D) SNSSB, representing a breakthrough in overcoming the limitations of traditional

NPSSB for constructing high-dimensional models. This study provides a novel

approach to exploring the multiple influencing factors of SSB.
KEYWORDS

synthetic aperture radar altimeter, sea state bias, Siamese network, multi-dimensional
influencing factors, crossover differences
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1 Introduction

The accuracy of sea surface height (SSH) derived from satellite

radar altimeters is very important for ocean science studies, such as

sea level rise, climate change, etc (Masson-Delmotte et al., 2021).

Sea state bias (SSB) is one of the primary errors reducing the

accuracy of SSH, with improvements in precise orbit determination

techniques and other geophysical corrections (Gaspar and Florens,

1998; Rosmorduc et al., 2017). SSB comes from three major sources:

Electromagnetic Bias, Skewness Bias and Tracker Bias (Andersen

and Scharroo, 2011). The Electromagnetic Bias is the predominant

factor. Due to the different backscattering of troughs and crests of

the waves, the curvature of troughs is greater than that of crests,

resulting in stronger backscatter from troughs when the radar

altimeter emits pulses towards the nadir. As a result, the mean

scattering surface tends to be shifted towards the wave troughs,

causing the sea level measured by the radar altimeter to be lower

than the truth (Ghavidel et al., 2016). The second source is

Skewness Bias, which accounts for around 10-20% of total SSB

(Glazman and Srokosz, 1991). It is related to the altimetric

waveform fitting algorithms that assume a Gaussian vertical

distribution for specular reflectors illuminated by a radar

altimeter. However, the actual probability density function has a

non-zero skewness due to the vertically asymmetric wave surface

with flat troughs and sharp crests (Passaro et al., 2018). As the third

contribution, Tracker Bias is a sum of errors associated with the way

the altimeter tracks the returning echoes, which usually involve

numerous instrumental and retracking effects (Coleman, 2001;

Badulin et al., 2021). It occurs due to an inaccurate tracker

determination of the midpoint location of the waveform leading

edge (Pires et al., 2019).

There are two types of models for estimating SSB: theoretical

models and empirical models. The former primarily focus on the

study of Electromagnetic Bias. Due to the interactions between

radar scattering and gravity wave slope dynamics are not well

understood, the physical mechanisms of Electromagnetic Bias

remain difficult to model accurately (Tran et al., 2010). At

present, the estimation of the SSB usually relies on empirical

models (Jiang et al., 2016), which can be divided into two

categories: parametric SSB models (Chelton, 1994) and non-

parametric SSB (NPSSB) models (Tran et al., 2006). The

parametric SSB models, such as two-parameter model (BM2),

three-parameter model (BM3), etc (Gaspar et al., 1994), typically

incorporate significant wave height (SWH), which exhibits a strong

correlation with SSB, and wind speed (U) as variables. However, the

fitting results for the parametric SSB model do not represent the

true least squares approximation of SSB owing to the absence of a

well-established physical theory (Gaspar et al., 2002). Hence, the

accuracy of the parametric SSB model is constrained by the

parametric form. To address this issue, NPSSB model is proposed

as an optimization solution.

Traditional two-dimensional (2D) NPSSB model is generally

constructed with U and SWH as variables, neglecting the influence

of other related physical quantities (Glazman et al., 1994; Millet et al.,

2003; Melville et al., 2004). Subsequently, Tran et al. proposed a three-

dimensional (3D) NPSSB model, which added the variable of mean
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wave period (MWP) to characterize the wave state. The results show

that the 3D model leads to an approximate reduction of 7.5% in the

altimeter error of Jason-1 and Jason-2 (Tran et al., 2010). This indicates

that in addition to U and SWH, MWP also affect SSB. In other words,

the introduction of more related variables is positive for the improving

the accuracy of SSB estimation.

At present, the main operational altimeter satellites worldwide,

such as Jason-2/3, Sentinel-3/6, etc., use the non-parametric

method of the empirical models, which is dominated by the 2D

NPSSB model as a function of SWH and U (Dumont et al., 2017;

Rosmorduc et al., 2017; Dumont et al., 2018; Eum/Ops-Jas/Man, E.

et al., 2021). And the SSB of Sentinel-3/6 still follows the model

established by Jason3, a traditional nadir altimeter (Dumont et al.,

2017, 2018), without the establishment of dedicated SSB models for

SAR altimeters. Therefore, it is important to investigate whether

other factors contribute to the SSB of the SAR altimeters, as their

higher accuracy altimetry differs from that of traditional nadir

altimeters. However, as the variable dimension increase, the

computation of NPSSB model rises sharply (Gaspar et al., 2002).

Therefore, it is still difficult to construct higher-dimensional

NPSSB model.

With the development of artificial intelligence (AI), deep learning

offers a new way of estimating SSB. Different from the neural network

SSB model constructed by Miao et al (Miao et al., 2018a, 2018). relying

on SSB values from altimeters as their labels, this paper proposes a SSB

model based on Siamese network that employs the difference of SSH at

the self-crossover points as the label. Unlike Miao et al. who relied on

the known SSB as the true value, this approach is built on the premise

that the SSB is unknown. It compensates for the drawbacks of being

unachievable in practical applications and can be effectively applied to

operational data. Additionally, the study explores the higher-

dimensional SSB models by selecting effective parameters and

analyses regional SSB models.

In this paper, the Siamese network for SSB (SNSSB) is utilized to

construct the SSB model. The SNSSB-based model has the following

advantages over traditional empirical models: 1) SNSSB has strong

generalization and migration learning capabilities. It can construct

non-linear functions, regardless of the form of the functions

(Haykin, 2007), and apply the general features obtained by

training to other tasks. 2) Compared to the traditional NPSSB

model, SNSSB calculates quicker through the gradient descent and

backpropagation algorithm (Kuo et al., 2004; Haykin, 2007),

especially when dealing with higher-dimensional data. 3) SNSSB

also allows for the flexible inclusion of multi-dimensional variables

through an uncomplicated modelling process (Haykin, 2007; Zhou

et al., 2022), making it easier to study the relationship between more

relevant physical variables and SSB.

The study is organized along the following lines. Section 2

presents the data utilized in this study, the data pre-processing for

calculating crossover points by the self-crossing method. In Section

3, the theoretical formulas of SSB and neural network are detailed,

and the model constructed in this study is explained systematically.

In Section 4, the SSB results calculated by SNSSB are compared and

analyzed. Section 5 discusses the results of the experiment. The

main conclusions of this study and future research directions are

depicted in Section 6.
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2 Data

2.1 Altimeter data

The altimeter data used for SSB estimation model construction

in this paper, encompassing parameters such as U, SWH, root mean

square of significant wave height (SWH_RMS), root mean square of

backscatter coefficient (SIG0_RMS), etc., are from the 1Hz data

of Non Time Critical (NTC), the Level 2 highest-quality products of

Sentinel-6 Michael Freilich (S6-MF) satellite altimeter, spanning

from May 2021 to October 2023.

S6-MF was launched from Vandenburg Air Force Base, USA on

21st November 2020. It provides SAR processing in Ku-band to

improve the signal through better along-track sampling and

reduced measurement noise. (https://search.earthdata.nasa.gov).
2.2 Reanalysis data

The mean wave period (MWP) utilized in this paper is from the

European Centre for Medium-range Weather Forecasts (ECMWF)

reanalysis dataset, ERA5, which is the fifth generation ECMWF

reanalysis for the global climate and weather for the past 8 decades,

offering real-time updated reanalysis data since 1940. The dataset

provides hourly estimates for ocean-wave quantities and the grid

resolution of the data used in this paper is 0.5°×0.5°. Since ERA5 only

provides hourly data per day, interpolating the data to the altimeter

measurement points spatially and temporally is necessary. In this study,

the method of bilinear interpolation in space and then linear

interpolation in time is adopted. (https://cds.climate.copernicus.eu).
2.3 Crossover differences of Sentinel-6

The dataset used in this paper was extracted by the self-crossover

method (Li et al., 2022). Before calculating the self-crossover points,
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the intersecting passes are first matched using the rapid rejection and

straddle test (RST) algorithm (Greene et al., 2017). As shown in

Figure 1A, a self-crossover point can theoretically be obtained by

intersecting the fitting curves of the matched ascending and

descending passes. To achieve the self-crossover position more

quickly, the approximate crossover points P1 and P2 in Figure 1B

are judged by the minimum distance between the nadir points on the

two passes.

At least eight consecutive nadir points are then recorded on

both sides of P1, and the same for P2, which can ensure the accuracy

and avoid the influence of near-shore areas. The orbit equations of

the intersecting passes are constructed based on the nadir points.

Subsequently, the latitude and longitude coordinates of the self-

crossover points (as depicted in Figure 1B) can be determined by

solving the transcendental equation.

Secondly, the Radial Basis Function (RBF) interpolation

method is employed for interpolating the differences of SSH

uncorrected for the SSB and the along-track data mentioned in

Section 2.1 and 2.2 at the self-crossover points.

Finally, data quality control is also required to ensure the

validity and reliability of the data, and the selection criteria are

shown in Table 1 (Bosch and Savcenko, 2007; Ablain et al., 2010;

Eum/Ops-Jas/Man, E. et al., 2021). Through the above filtering

conditions, a total of 890,593 self-crossover points from global

oceanic regions is selected as the original dataset of the neural

network in this paper. The global distribution of self-crossover

points is shown in Figure 2.
3 Methods

3.1 Estimation principle of sea state bias

The differences of SSH measurement uncorrected for the SSB at

the self-crossover points were always used for estimating the values

of SSB in previous studies (Gaspar et al., 1994; Labroue et al., 2004).
FIGURE 1

Extraction process of self-crossover points. (A) The intersecting ascending pass A and descending pass D are identified, and the presence of self-
crossings is evident from the fitting curves. (B) P1 and P2 are the two closest nadir points on the two passes, using a total of 8 points before and
after them to solve the orbit equation, and then calculate the self-crossover point.
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Similarly, their differences are also employed in this study. The SSH

measurement at a given position can be represented as SSH’. SSH’ is

calculated as shown in Equation 1:

SSH
0
=   SSB +  Hg +  h +  w (1)

where  Hg represents the geoid signal, h corresponds to the

ocean dynamic topography, and w denotes the measurement noise.

The association between the sea state-related variable X and the

SSB can be mathematically represented in Equation 2:

SSB = j(X,   q) (2)

where  j   denotes the mapping function, and q   is a constant
that ensures the equation holds.

The SSH
0
difference at the self-crossover points can be

expressed as Equation 3:

DSSH =  DSSB + (h2 �h1) + (w2 �w1) (3)

where DSSH = SSH
0
2 � SSH

0
1, DSSB = j   (X2,   q2)�j   (X1,   q1),

and the indices 1 and 2 are used to denote the ascending and

descending passes at the self-crossover points, respectively.

The geoid signal (Hg) described by Equation 1 can be effectively

eliminated by calculating the DSSH at the same location. The time

difference between two measurements at the self-crossover points is
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strictly limited to 3 days, ensuring that any changes of the ocean

dynamic topography (h) in Equation 1 is negligible within this

specific time frame (Wang et al., 2021). The measurement error (w)
in Equation 1 consists mainly of errors in the dry and wet

troposphere, ionosphere, ocean tide, pole tide, solid earth tide,

and dynamic atmospheric pressure, and instrument noise in

addition to the SSB. Except for the instrument noise, the other

error terms can be corrected by the corresponding correction

models. And under the tentative assumption of a weak

dependence on sea state effects, the convergence terms of (w2 −

w1) and (h2 − h1) in Equation 3 towards zero mean values

(Vandemark et al., 2002; Tran et al., 2010). Sentinel-6 has the

advantage of high performance and low instrument noise compared

to Jason-3 and Sentinel-3. Its measurement noise can be suppressed

down to 0.5 cm, approximately one-fiftieth that of SSB (Donlon

et al., 2021). Therefore, in Equation 3, the DSSH can be regarded as

the observation sample values of the DSSB.
3.2 Mathematical model of
Siamese network

From Section 3.1, it is evident that the key objective of the SSB

estimation model is to establish the appropriate mapping function

between the variables X and SSB. This requirement can be fulfilled by

employing the Multilayer Perceptron (MLP) model. Siamese

networks are able to generate a similarity function from pairs of

input data, where subnetworks share the same weights to produce a

single output. In our study, it is necessary to estimate SSB values in

pairs based on paired data of self-crossover points and correct DSSB
using the DSSH, which corresponds exactly to the Siamese network

structure. And Siamese networks perform better as compared to

other similarity learning techniques (Nandy et al., 2020), mainly due

to their generalization capability over similar datasets (Hoffer and

Ailon, 2015). Therefore, the Siamese network framework is adopted

in our research. Within this framework, two MLP models are

employed to develop the SSB estimation model, both of which have

the identical structure as well as share weights and biases.
FIGURE 2

Global distribution of self-crossover points within three days. The time of ascending pass minus the time of descending pass is in the range of
-3~3 days.
TABLE 1 Selection criteria.

Limit (Unit) Min Max

Lat (°) -66 66

Time (d) -3 3

Ocean Depth (m) – -1000

DSSH (m) -0.2 0.2

U (m/s) 0 21

SWH (m) 0 11

SIG0 (dB) 7 20

SSB (m) -0.5 0
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Figure 3 depicts the model training methodology. The dataset

covering the period from 2021 to 2023 are pre-processed according

to the methods in Section 2.3 and then shuffled. Subsequently, it is

divided into separate training dataset and validation dataset. The

train dataset is employed for model training, while the validation

dataset is used for assessing the correctness of the SNSSB. The data

for a full year in 2022 are all classified as test dataset after the same

pre-processing and used to obtain the final output of the SNSSB.

Combining Figures 3B, C, the input of neurons in the sub-

neural network could be denoted by Equations 4, 5:

nm+1 = W  m+1 am + bm+1 (4)

am+1 = f  m+1 (nm+1) (5)

m = 0, 1,…,M − 1, where M is the number of layers of the

neural network.   nm+1 serves as the input to the (m+1)th layer of the

network, while am and am+1 represent the outputs of the mth layer

and (m+1)th layer of the network, respectively. The weight matrix of

the (m+1)th layer of the network is denoted asWm+1, while the bias

vector is denoted by   bm+1. The activation function for the (m+1)th

layer is expressed by f m+1. The initial input vector is a0, the

chosen parameter vector, which provides the initial conditions for

Equation 5. The output of the last layer of neurons is the final

output of the subnetwork as aM .
The mean square error function is employed for the loss

function in the training process, aiming to minimize it. The loss

function, denoted as F, can be mathematically expressed as

Equation 6:

F = (y(k) − a(k))T (y(k) − a(k)) (6)
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where k represents the number of iterations, y is the

corresponding target output.

Based on Equation 6, the weights and biases in the network are

adjusted using the gradient descent rule, as shown in Equations 7, 8.

wm
i,j (k + 1) = wm

i,j (k)�a
∂ F
∂wm

i,j
(7)

bmi (k + 1) = bmi (k)�a
∂ F
∂ bmi

(8)

where a(0, 1) represents the learning rate; wm
i,j (k)   represents

the weight connecting the jth input of the mth layer and the ith

neuron of the (m+1)th layer in the kth iteration of the network; wm
i,j

(k + 1)   represents the weight connecting the jth input of the mth

layer and the ith neuron of the mth layer in the (k+1)th iteration of

the network; bmi (k)   denotes the bias of the ith neuron in the mth

layer at the kth iteration of the network, while   bmi (k + 1)  

represents the bias at the (k+1)th iteration.

According to the chain rule, Equations 7, 8 can be simplified

into matrix form as shown in Equations 9, 10:

Wm(k + 1) = Wm(k)�aHm(am� 1)T (9)

bm(k + 1) = bm(k)�aHm (10)

Where Hm is calculated by Equation 11:

Hm =
∂ F
∂ nm

=
∂ F
∂ nm1

,
∂ F
∂ nm2

,…,
∂ F
∂ nmZ

� �T
(11)

where Z indicates the number of neurons in the mth layer.
FIGURE 3

Scheme of sea state bias estimation model using Siamese network structural components. (A) Model construction process. (B) Structure of the sub-
network. (C) Structure of the multi-input neuron. This neural network consists of one input layer, one output layer, and three hidden layers. Its
activation function is Sigmoid and its loss function is MSE.
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Applying the chain rule once again can give Equations 12–14:

Hm =
∂ F
∂ nm

=
∂ F

∂ nm+1 ·
∂ nm+1

∂ nm

� �T

(12)

∂ nm+1

∂ nm
=

∂ nm+1
1

∂ nm1

∂ nm+1
1

∂ nm2
⋯ ∂ nm+1

1
∂ nmZ

∂ nm+1
2

∂ nm1

∂ nm+1
2

∂ nm2
⋯ ∂ nm+1

2
∂ nmZ

⋮ ⋮ ⋮
∂ nm+1

Z+1
∂ nm1

∂ nm+1
Z+1

∂ nm2
⋯ ∂ nm+1

Z+1
∂ nmZ

2
66666664

3
77777775

(13)

∂ nm+1
1

∂ nm1
= wm+1

1,1
_f   m(nm1 ) (14)

where Z+1 indicates the number of neurons in the (m+1)th layer.

Combining Equations 12–14 yields Equations 15, 16:

Hm =
∂ F
∂ nm

= (Wm+1)T _fm(nm)Hm+1 (15)

_fm(nm) =

_f m(nm1 ) ⋯ 0

⋮ ⋱ ⋮

0 ⋯ _f m(nmZ )

2
664

3
775 (16)

This recursive relationship is represented in the final layer of the

network as Equation 17:

Hm
i =

∂ F
∂ nmi

=
∂ ((y − a)T (y − a))

∂ nmi
=
∂oZ

j=1(yj − aj)
2

∂ nmi

= −2(yj − aj)
∂ ai
∂ nmi

= −2(yj − aj) _f
m(nmi ) (17)

Hence, the recurrence relation for the defined variable H can be

expressed as Equation 18:

HM = −2 _f M(nM)(y − a) (18)

Based on the above derivation, the overall learning algorithm of

the neural network is summarized as follows: First, the sea state-

related data is initially fed into two MLP networks. Subsequently,

forward propagation is performed on these networks to obtain the

SSB difference at the self-crossover points; Second, the loss function

measures the deviation between the value of the difference in SSH

and the network output value obtained in the preceding step. This

deviation is then propagated backward through the Siamese

network into the MLP network; Finally, the biases and weights in

the MLP networks are updated using the steepest descent rule,

aiming to minimize the value of the loss function.
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3.3 Construction of Siamese Network
of SSB

In this study, the SWH and U from altimeter data and MWP

from ERA5 are extracted and divided into two different input

combinations: 1) SWH and U; 2) SWH, U and MWP. In addition

to the fundamental parameters, this study also introduces

SWH_RMS and SIG0_RMS as additional predictive parameters,

resulting in the third input combination: 3) SWH, U, MWP,

SWH_RMS and SIG0_RMS. SWH_RMS and SIG0_RMS, as

statistical metrics of 1 Hz data obtained from the corresponding

20 Hz data (Zhang et al., 2015), can be used to evaluate the discrete

degree or amplitude magnitude of SWH and SIG0 data. Consistent

with the research results of Queffeulou and others, at locations

where SWH of Sentinel-6 fluctuates more, the corresponding

SWH_RMS values are also larger, especially where anomalous

peaks occur (Sepulveda et al., 2015; Queffeulou, 2016). Similar

trends are observed between SIG0 and SIG0_RMS. Therefore,

SWH_RMS and SIG0_RMS, as complementary information of

wave state and scattering signals, can be considered as good

indicators reflecting the quality of SWH and SIG0 measurements

(Zhang et al., 2015). They can be used to mark these anomalous

peaks to provide discriminative information for SIG0 and SWH

to mitigate the effects of the associated anomalous peaks

(Queffeulou, 2013). After data threshold screening, they can be

further used to discriminate measurement anomalies caused by

anomalous growth of the radar echo signals and strong rain

attenuation, etc (Queffeulou, 2016). With SWH_RMS and

SIG0_RMS as additional input variables, the network can utilize

their information and backpropagation to adjust weights and biases

of corresponding data features, helping to capture abnormal

features of SWH and SIG0 data in order to better discriminate

the true change patterns of the signals. This is expected to reduce

interference and enhance robustness, thereby improving the

accuracy and stability of the estimation. In Table 2, the names of

the three different models obtained based on the input

combinations are listed from top to bottom. Each model

corresponds to a specific combination of input variables, as

mentioned earlier.

The SNSSB has two types of parameters: 1) optimal parameters

derived during training; 2) hyperparameters that need to be defined

before training (Alerskans et al., 2022). Various hyperparameters

have a significant impact on the performance and efficiency of the

model. In order to achieve the best balance between these two

factors, extensive experimentation is conducted with different

combinations of hyperparameters. These combinations are

thoroughly evaluated using the training dataset, and the final
TABLE 2 Model parameters and optimal hyperparameters.

SSB models Number of hidden layers Number of neurons Activation function Loss function Optimizer

2D SNSSB

3

16-64-16

Sigmoid MSE Adam3D SNSSB 64-128-64

5D SNSSB 32-64-32
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hyperparameter configurations, deemed to strike a balance between

performance and efficiency, are summarized in Table 2.
3.4 Assessment criteria of SSB
estimation model

In SSB studies, SSH variance analysis is a customary practice

due to the absence of underlying facts that can be used for

validation. This study employs three evaluation parameters to

assess the accuracy of SNSSB: the variance of the SSH difference

at the self-crossover points, the explained variance, and the SSH

variance difference index (SVDI).

First, following Tran’s method (Tran et al., 2010), variance

serves as a fundamental metric for analysing the consistency of SSH

between ascending and descending passes. The equation for

calculating the variance is Equation 19:

s 2(SSH) =
1
Mo

M

i=1
(SSHi − SSH)2 (19)

where, M represents the overall amount of data, SSHi   refers to

the SSH corrected for SSB, and SSH   is the average of the   SSHi  

values. As shown in Equation 19, smaller values of the variance

indicate a higher accuracy of the SSB estimation model utilized.

Second, the explained variance serves as the primary metric for

assessing the accuracy of the employed SSB estimation model

(Gaspar and Florens, 1998; Tran et al., 2010). The concept of

explained variance refers to the reduction in the variance of SSH

differences resulting from the application of the provided SSB

correction. The equation for the explained variance is Equation 20:

D = s 2(DSSHu) − s 2(DSSHi) (20)

where DSSHu   denotes the difference in SSH uncorrected for

SSB, DSSHi denotes the difference in SSH corrected for SSB. The

higher value of the explained variance indicates the greater accuracy

of the SSB estimation model, as shown in Equation 20.

Third, like what Pires did (Pires et al., 2019), this paper utilize

the SSH variance difference index (SVDI) as a metric to evaluate the

performance of SSB estimation models. This index is estimated by
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calculating the scalar difference of SSH variance. The equation for

calculating the SVDI is Equation 21:

SVDI =
s 2(SSHD1) − s 2(SSHD2)

s 2(SSHD1)
� 100% (21)

where the reference dataset SSHD1 represents the SSH dataset,

which are obtained from the SSB calculated using the NPSSB model.

On the other hand, the dataset   SSHD2   represents the SSH dataset

obtained from the SSB calculated using the SNSSB. Based on

Equation 21, it can be inferred that the higher SVDI value

compared to the NPSSB model indicates that the SNSSB is more

efficacious in minimizing the difference in SSH at the self-crossover

points. In other words, the accuracy of SNSSB exceeds that of the

traditional NPSSB model.
4 Results

4.1 Results of the 2D SNSSB

In this section, the lookup table for SSB is generated using SNSSB_2D

with a resolution of 0.25 m/s × 0.25m. The 2D SNSSB is constructed

based on the DSSH. The SSB are visually represented in Figure 4 as a 2D

grid, with contours indicating the values in centimetres (cm).

As evident from Figure 4, the value of SSB shows a clear

decreasing trend with the increase of SWH, while its association

with the second parameter U of interest is relatively weak.

Furthermore, upon examining Figure 4, when the SWH is given,

the value of SSB initially tends to increase in the region of low U. As

the U increases, the value of SSB then starts to decrease.
4.2 Results of the 3D SNSSB

The 3D SNSSB generates a 3D lookup table. To ensure an adequate

number of measurement points in the respective plane, three fixed

values are selected near the average values of SWH, U, and MWP. To

better represent the 3D lookup table, this study presents the SSB as 2D

array by holding the third parameter. The obtained results are presented

in Figure 5. Figure 5A exhibit a high level of agreement with Figure 4.
FIGURE 4

SSB estimates (in cm) obtained by 2D SNSSB. Basemap color represents data density. Dark gray, light gray, yellow, radish yellow, and orange
represent areas with no data, areas with less than 20 data, areas with less than 100 data, areas with less than 200 data, and areas with more than
200 data per bin, respectively. The color grading method is employed as a guiding framework for subsequent color grading.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1432770
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Ma et al. 10.3389/fmars.2024.1432770
Figure 5B show that the relationship between the magnitude of SSB and

MWP is also relatively weak, and distinct differences in the impacts of U

andMWPon SSB can be observed when compared with Figure 5A. The

value of the SSB increases with an increase in the MWP. Figure 5C

illustrates the distribution of SSB estimates within the (U, MWP) plane.

In the data-rich area, when the SWH is held constant, the variation of

SSB with the MWP is more prominent compared to the variation with

the U.
4.3 Results of the 5D SNSSB

The 5D SNSSB generates a 5D lookup table based on the variables

of SWH, U, MWP, SWH_RMS, SIG0_RMS. Fixed values are selected

around the average value of each of the five parameters to ensure that

sufficient data are available. To illustrate the 5D lookup table, this study

presents the SSB in 2D form by fixing the values of the three additional

parameters. Figures 6A–C are selected to depict the same parameters as

Figure 5, and it demonstrates excellent agreement with Figure 5. The

distribution patterns observed in both figures remain consistent.

Figure 6D represents the combination of SWH_RMS and SWH,

while Figure 6E represents the combination of SWH_RMS and MWP.

Figures 6D, E offer compelling visual evidence supporting the notion

that SSB can be regarded as a decreasing function of SWH, while it

exhibits a increasing trend with increasingMWP.Meanwhile, based on

Figure 6, it can be observed that the individual impact of the newly

added predictors on SSB is relatively small. Nevertheless, incorporating

these predictors into the model contributes to obtaining more accurate

SSB estimates. Therefore, their inclusion is significant in improving the

overall accuracy of SSB estimation.
5 Discussions

5.1 Overall evaluation for SNSSB

The SNSSB and NPSSB are tested for comparison using the

dataset in Section 3.2. In evaluating the performance of 2D SNSSB,
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the SSB is calculated with the 2D NPSSB serving as a reference value

for comparison, thereby comparing the utility of two SSB

estimation methods. Likewise, when assessing the performance of

3D SNSSB, the SSB is calculated using the 2D SNSSB as a reference.

And the SSB is calculated using the 3D SNSSB as a reference value

for evaluating the performance of the 5D SNSSB, allowing for a

comparison of the effects of different combinations of dimensional

parameters on the SSB estimation.

Figure 7 displays the distributions of SSB values estimated by

SNSSB and NPSSB. It reveals a close alignment of most data pairs

with the “y = x“ line, signifying a high degree of correlation among

the SSB values obtained from different models. However, there are

still a few data points that show asymmetry in the distribution on

both sides of the “y = x“ line.

This pattern can be explained by the relatively rare presence of

areas with high SSB (< -0.25m) and low SSB (-0.05~0 m) in the

ocean region.

Table 3 shows the comprehensive performance of SNSSB,

compared to the NPSSB model. The overall bias of the SNSSB

from the NPSSB model are observed to be -0.041 cm, -0.037cm and

0.020cm, respectively. Additionally, the standard deviations of the

SNSSB from the NPSSB model are found to be 1.325 cm, 1.675 cm,

and 1.756 cm, respectively. Based on the obtained values, it can be

concluded that the SNSSB and NPSSB model exhibit a strong

correlation and demonstrate similar results.
5.2 Comparison between different models

In this section, the accuracy of different models is compared by

the variance and explained variance of the SSH difference at the self-

crossover points, which are introduced in Section 3.4, as the

evaluation criteria. The explained variance is computed using the

global dataset for the year 2022. The data is divided into 10° latitude

bands within the range of 66°S to 66°N to calculate individually the

explained variance for each band. In Figure 8, the latitudinal

distribution of the explained variance is depicted using four models.
FIGURE 5

SSB estimates (in cm) obtained by 3D SNSSB. The fixed values are (A) MWP = 9s, (B) U=9m/s, (C) SWH = 4m, respectively.
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As shown in Table 4, compared with the 2D NPSSB, the

variance of the DSSH of 2D SNSSB reduces 3.08 cm2, a 11.87%

decrease. Therefore, the 2D SNSSB demonstrates higher accuracy

compared to the 2D NPSSB and exhibits the significant

improvement in accuracy. Figure 8 clearly shows that 2D SNSSB

outperforms 2D NPSSB in terms of explained variance at different

latitudes, indicating its effectiveness in capturing the underlying

patterns of SSB. In particular, the SNSSB model demonstrates

superior performance, especially in mid-latitude regions.

The addition of the third parameter related to waves, such as

MWP, has shown improved performance for 3D SNSSB estimation

compared to 2D SSB estimation. According to the information

provided in Table 4, compared to the 2D SNSSB, the variance of

DSSH of 3D SNSSB reduces 1.5 cm2, a 6.56% decrease. Then

compared to the 2D NPSSB, the variance is reduced by 17.66%.

Observing Figure 8, it becomes apparent that the 3D SNSSB has a

higher explained variance than the 2D models in all latitude bands.

Indeed, in the region between 30°S and 30°N, the difference in

explained variance between the 2D and 3D SNSSB is relatively

small, and the trends are similar. This suggests that both models

have similar performance in models. Using the 5D SNSSB, the

variance of the DSSH is reduced by 0.67cm2 compared to the 3D

SNSSB, a decrease of 3.13%. Compared to the 2D NPSSB, the

variance is reduced by 20.24%. According to Figure 8, the explained

variance clearly shows that the 5D SNSSB achieves higher values,

especially in the region between 10°S and 10°N. The above

demonstrates that the inclusion of two additional parameters in
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the 5D SNSSB enhances its accuracy and validity in estimating

the SSB.

In addition, a comparative validation experiment is presented to

help assess the accuracy of the SNSSB models. The SSH values from

Surface Water and Ocean Topography (SWOT), renowned for

higher measurement accuracy, are taken as the reference value in

the verification experiment. The crossover point dataset is

constructed using the Sentinel-6 and SWOT data in March 2024

in a similar way as in Section 2.3, without distinguishing between

ascending and descending passes, resulting in a total of 116,680

crossover points. Taking the corrected SSH values of SWOT at the

crossover points as the evaluation benchmark, the corrected SSH

values of Sentinel-6 applying different SSB models are evaluated.

The variance of the DSSH at the crossover points serves as an

evaluation metric for the auxiliary validation of the models. The

smaller the variance, the better the correction result of the model.

The validation results are as follows: the variances between the

SSH of Sentinel-6, corrected by applying different SSB models (2D

NPSSB, 2D SNSSB, 3D SNSSB, and 5D SNSSB), and the SSH of

SWOT are 21.71 cm2, 20.01 cm2, 19.09 cm2, and 18.48 cm2,

respectively. Compared to the 2D NPSSB model, the 2D SNSSB,

3D SNSSB, and 5D SNSSB models reduce the variance by 7.83%,

12.07%, and 14.89%, respectively. The variances of SNSSB models

all decrease compared to the 2D NPSSB model, and the variances of

the corresponding models decrease progressively with higher

dimensions of variables, indicating improved performance in

these models. Among them, the 5D SNSSB model exhibits the
FIGURE 6

SSB estimates (in cm) obtained by 5D SNSSB. The remaining three variables are fixed at constant values in each subgraph from (A–E) to present the SSB
estimates in two dimensions. The fixed values are U= 9 m/s, SWH = 4 m, MWP = 9 s, SWH_RMS = 0.31 m, and SIG0_RMS = 0.08dB, respectively.
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best performance. These results confirm the effectiveness of the

SNSSB models and the advantages of the 5D SNSBB model.
5.3 SVDI results

The global distribution of SVDI among different models is

analysed in 10° latitude bands, with quantification and meticulous

calculation of data within each band, followed by obtaining SVDI
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values for each latitude band. These calculated values are then

visualized using a histogram. Positive SVDI values indicate

improvements in the accuracy of the model estimation compared

to the reference model, and the larger the magnitude, the better the

improvement. Conversely, negative SVDI values indicate

the opposite.

Figure 9 shows the spatial evaluation of SSH differences at self-

crossover points using SVDI in the latitudinal direction. All models

are calculated using the 2D NPSSB model as a reference, and the

results of the calculations are positive. Overall, it is evident that all

SNSSB models outperform the 2D NPSSB model in the latitudinal

direction, especially near the equator and in the high latitude

regions of the southern hemisphere, where higher SVDI values

(around 30%) are calculated. This indicates that compared to

NPSSB model, the SNSSB models boost significantly in these

latitude intervals, which is consistent with the findings in Figure 8.

Compared to the 2D SNSSB model, the 3D SNSSB model shows

improvements across all latitude intervals and performs well

overall, demonstrating an average improvement of approximately

5%, with enhancements of up to 10% observed in the mid-latitudes
FIGURE 7

Comparison of SNSSB calculation results and NPSSB model calculation results under different input combinations. (A) SWH and U. (B) SWH, U and
MWP. (C) SWH, U, MWP, SWH_RMS and SIG0_RMS. The black line represents the reference line “   y = x“. The error -bars (mean ± 3*standard
deviation) are overlaid at every 0.05 m of SSB.
TABLE 3 Statistics of SNSSB/NPSSB models’ differences.

2D SNSSB 3D SNSSB 5D SNSSB

MD (cm) -0.041 -0.037 0.020

MSD (cm2) 0.018 0.028 0.031

MAD (cm) 0.721 0.949 0.942

STD (cm) 1.325 1.675 1.756

RMSE (cm) 1.326 1.676 1.757
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of the northern hemisphere. This suggests that the inclusion of

wave-related parameters, such as MWP, can improve the accuracy

of SSB estimation, which is consistent with findings from previous

studies. Compared to the 3D SNSSB model, the 5D SNSSB model

also exhibits improvements across all latitude intervals, but the

northern hemisphere outperforms the southern hemisphere, and

some latitude intervals can even be improved by about 15%. This

further illustrates the superiority of the five-dimensional model. It

follows that as the relevant variables increase, the models of the

corresponding dimensions also show better advantages.

Theoretically, the five-dimensional model optimizes and

complements the information from the three-dimensional model

by incorporating variables describing the fluctuation states of SWH

and SIG0. In practical applications, these five parameters can be

directly obtained from satellite data. On the other hand, the five-

dimensional model outperforms the three-dimensional model in

terms of both the results of the three types of evaluation indices and

the validation results using SWOT as a reference. It can be

concluded that the five-dimensional model is more capable of

improving the accuracy of synthetic aperture radar altimetry in

practical applications.
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5.4 Regional analysis

Since SSB models are estimated over the global open ocean, the

global SSB model may not adequately represent the regional

characteristics of specific wind and wave conditions. Passaro et al

(Passaro et al., 2016, 2018). constructed and analysed regional SSB

models using both parametric and non-parametric approaches.

Based on this rationale, the Kuroshio Extension (KE, 20-45°N,

125-155°E) and Gulf Stream Extension (GSE, 20-45°N, 60-90°W)

were selected for their distinct wind, wave, and current conditions,

as well as relatively abundant in-situ measurements, to construct

SSB models for exploring their SSB characteristics. Taking the

combination of U and SWH parameters as an example, the

constructed SNSSB model and NPSSB model are compared and

analysed using the regional data from 2022.

In Table 5, the variance of DSSH is reported after applying different

SSB corrections models for two regions. The regional models decrease

the variance of DSSH by over 10%, representing a significant correction

for regional sea state, and the SNSSB model is more effective in

reducing variance than the NPSSB model. In addition, the

performance of both models in the Gulf Stream Extension is better

than that in the Kuroshio Extension, indicating the sea state in the latter

may exhibit greater variability and greater complexity, and illustrating

the value of regional sea state bias studies.

Figure 10 presents the application results of the NPSSB model

from two regions and the SNSSB model from the same regions.

Figure 10A shows that the SNSSB model can achieve better results

than the operational products with a smaller amount of data,

converging within 8 cycles, while the NPSSB model requires more

cycles to converge and ultimately has weaker convergence than the

SNSSB model. Moreover, the Gulf Stream Extension outperforms

the Kuroshio Extension in both models, which also corroborates the

data in Table 5, showing different SSB characteristics between the

two regions.

Figure 10B illustrates that the newly proposed SNSSB model, in

addition to the significant improvement in results, demonstrates a

substantial increase in computational efficiency compared to the

NPSSB model with the Nadaraya-Watson (NW) estimator. This

efficiency improvement is another major benefit of the SNSSB
FIGURE 8

Meridional distribution of the variance explained by the 2D NPSSB, 2D SNSSB, 3D SNSSB and 5D SNSSB, respectively. Results are derived by
partitioning the crossover differences data for 2022 into 10° latitude bands. Subsequent explained variance results are divided in this manner.
TABLE 4 Model variance and inter-model variance reduction.

SSB
Model/

Difference

Variance of
DSSH (cm2)

Reduction
Rate (%)

2D NPSSB 25.94 –

2D SNSSB 22.88 –

3D SNSSB 21.38 –

5D SNSSB 20.71 –

Difference
(2D SNSSB-2D NPSSB)

3.08 11.87

Difference
(3D SNSSB-2D SNSSB)

1.5 6.56

Difference
(5D SNSSB-3D SNSSB)

0.67 3.13
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model. The used computer configuration comprises an Intel(R)

Xeon(R) Central Processing Unit (CPU) E5-2673 v4 @ 2.30 GHz

and the 128 GB of Random-Access Memory (RAM). Compared to

NPSSB, the computational efficiency of SNSSB has been enhanced

by over 100 times. Moreover, even with an increase in input vector

dimensionality, the computation time of global SNSSB remains

within tens of minutes, indicating minimal impact.
6 Conclusions

As mentioned in the introduction, estimation of SSB typically

depends on empirical models due to the incomplete state of the

physical theory of SSB and the unclear mechanisms related to sea

state variables (Tran et al., 2010). However, operational NPSSB

models, constrained by its solution method, exhibits limitations in

exploring the multiple influences on SSB. Therefore, we propose a

deep learning approach (SNSSB) as a solution. Based on the data

characteristics at the self-crossover points and the SSB estimation

formula, this paper employs a combination of Siamese network

architecture and MLP to construct the SSB estimation models. The

models take multi-dimensional relevant sea state variables as input,

the difference between Siamese SSB values that share the structure

and parameters as output, and the SSH difference as label, which

can further improve the accuracy of SSB.
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Results indicate that, in the global region, compared to

traditional 2D NPSSB, 2D SNSSB not only decreases the variance

of the SSH difference by 11.87%, but also improves the explained

variance, especially by approximately 5 cm2 in mid- and low-

latitude regions. This shows that SNSSB has more advantages

compared with NPSSB. 3D SNSSB shows advantages over 2D

SNSSB in all three metrics, which is aligning with previous

research results in NPSSB, illustrating the complexity and

uncertainty of SSB composition. Therefore, the introduction of

more relevant variables is helpful to explore the influencing

factors of SSB. 5D SNSSB also exhibits advantages over 3D

SNSSB in all three metrics, indicating that incorporating

SWH_RMS and SIG0_RMS can enhance the reliability and

accuracy of Synthetic Aperture Radar altimeter SSB. This

enhancement may be attributed to the fact that they provide

complementary information on wave and wind speeds. Moreover,

5D SNSSB performs best in validation using the SSH values of

SWOT as a reference. SNSSB has also shown considerable potential

and advantages for SSB research within small sample areas. Due to

the different wind and wave conditions in the region, SNSSB can use

fewer data to obtain more accurate and effective regional SSB

estimates. In the regions of Gulf Stream Extension and Kuroshio

Extension selected in this study, SNSSB can both reduce the

variance of the SSH difference by more than 10% compared to

NPSSB. We also found that the correction results for the Gulf

Stream Extension are better than those for the Kuroshio Extension.

This may be because the Kuroshio Extension has more complex sea

state and is more influenced by wind than the Gulf Stream

Extension. This suggests that the performance of SSB varies from

region to region, so further studies on regional SSB are necessary.

Additionally, SNSSB can improve the computational efficiency by

approximately 100 times compared with NPSSB.

This article does not offer more in-depth scientific explanations

about the physical mechanisms between the relevant sea state

variables and the SSB, as well as the physical causes of the

regional variations, which may confuse many physical
FIGURE 9

Variation of SVDI values with latitude obtained using each SNSSB model (2D, 3D, and 5D) in comparison to the 2D NPSSB benchmark. A positive
SVDI value indicates that the model outperforms the benchmark, while a negative SVDI indicates the opposite.
TABLE 5 Regional model variance.

Models
Variance of
DSSH (cm2)

Reduction
Rate (%)

NPSSB KE 38.97
13.27

SNSSB KE 33.80

NPSSB GSE 31.52
10.06

SNSSB GSE 28.35
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oceanographers who want to seek the relevant physical

mechanisms. This is also the difficulty in current SSB research.

Therefore, improving the interpretability of deep learning,

deepening our understanding of the oceanographic mechanisms,

and continuing to dig into the physical causes of regional changes

are directions for continued research.

But it is undeniable that this study provides a fast and feasible

method to explore multi-dimensional physical factors associated

with SSB. As an innovative attempt, SNSSB is not the ultimate

solution. There are still numerous areas for improvement. As

Sentinel-6 releases more data, we will continue to enrich the

dataset and update the model results. Further research could

focus on applying the model to other satellite data, testing

relevant variables, and assessing the quality of variable data sources.
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