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The western Pacific seamount area is abundant in both biological and mineral

resources, making it a crucial location for international investigation of regional

seabed resources. An essential stage in comprehending and advancing

seamounts is gaining knowledge about the distribution characteristics and laws

governing the seabed substrate. Deep-sea geological sampling is challenging

because of the intricate nature of the deep-sea environment, resulting in

increased difficulty in identifying and evaluating substrates. This study

addresses the aforementioned issues by utilizing in-situ video footage obtained

from the “Jiaolong” manned deep submersible and shipborne deep-water

multibeam data. This data is used as a foundation for constructing a Western

Pacific seamount areas substrate classification point set. Additionally, the paper

introduces the mRMR-XGBoost substrate classification model. Substrate

categorization in deep sea and mountainous regions has been successfully

accomplished, yielding a classification accuracy of 92.5%. The classification

experiments and box sampling results demonstrate that the mRMR-XGBoost

substrate classification model proposed in this paper can efficiently use acoustic

and optical data to accurately divide the substrate types in seamount areas, with

better classification accuracy, when compared with commonly used machine

learning models. It has a significant application value and the best classification

effect on the two types of substrates: nodules and gravel substrates.
KEYWORDS

Caiwei seamount, substrate classification, machine learning, feature selection,
mRMR-XGBoost
1 Introduction

Seamounts, also known as seabed mountains, usually refer to seabed uplifts that are

distributed in the deep sea below sea level and are greater than 1000m in height. They are

morphologically divided into flat-topped seamounts and pointed-topped seamounts (Gan

et al., 2021). Seamounts not only contain rich polymetallic mineral resources, but also rich
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biological resources, and are a typical ecosystem. The distribution of

organisms on seamounts varies vertically, forming a rich variety of

habitat types. Its complex topographical and geological features

provide a unique habitat environment for marine organisms (Mayer

et al., 2018; Victorero et al., 2018). Seamount areas have a variety of

bottom types, and the distribution of seabed substrate has always

been an important topic in marine science research (Zhu et al.,

2022). The distribution characteristics of seabed substrates and

geomorphic characteristics can reflect the distribution of seafloor

tectonic activities and seafloor evolution information to a certain

extent, and are of great significance to the study of seafloor

sedimentation processes and biodiversity protection, among other

areas (Zhu et al., 2022).

At present, the main means of understanding the seabed

environment are station sampling using equipment such as

television grabs, gravity sampling and seabed drilling rigs, and

seabed line observation using seabed camera towed bodies and

video systems carried by manned submersibles. However, due to

the point and line operation mode, the above methods are not

suitable for broad-scale surveys of the seabed and cannot obtain

bottom data for the entire seamount area. The proliferation of ocean

detection technology, such as shipborne deep-water multi-beams and

manned submersibles, has led to a significant surge in the volume of

deep-sea data. Consequently, this has facilitated the comprehensive

examination of the substrate properties of seamounts. A Multibeam

Echo Sounder (MBES) is an acoustic instrument capable of

performing comprehensive seabed mapping. The device is capable

of gathering water depth measurements and seabed backscatter

intensity data concurrently, allowing for the acquisition of both

seabed topography and the distribution of seabed sediments

(Chunhui et al., 2015). Currently, much research has been

conducted by researchers both domestically and internationally to

elucidate the physical and chemical characteristics, spatial

arrangement, and other relevant aspects of the seabed. The two

primary techniques for substrate detection that are frequently

employed are direct sampling and indirect detection (Wang et al.,

2021). Direct sampling is widely recognized as the predominant

method for acquiring on-site samples. Various sample forms and

methods exist based on the characteristics of the substrate. The

typical techniques are listed in Table 1 (Wang et al., 2021). Direct

sampling involves the utilization of large-scale devices to collect

substrate samples directly at the site for in-situ examination.

However, this method is associated with high costs, inefficiency,

and the need for substantial human and material resources (Wang

et al., 2021). One notable benefit is the ability to acquire particle size

data in a manner that is both intuitive and precise (Wang et al., 2021).

Seafloor optical measurement and acoustic measurement are the

primary indirect detection technologies that address the limitations of

traditional bottom survey methods, such as limited coverage and low

efficiency. Nevertheless, optical measurement is subject to several

constraints, including limited detection range and the requirement

for diving (Sun et al., 2021). Sound waves has several advantageous

characteristics, including their ability to propagate over vast distances

and penetrate deep into ocean. Additionally, the backscatter vary

depending on the specific seabed substrates. Hence, the utilization of

acoustic properties for substrate identification has consistently been a
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prominent area of investigation within academic circles (Gaida et al.,

2020; Yan et al., 2020).

The origins of substrate classification study may be traced back

to the 1960s, with a primary emphasis on investigating the acoustic

characteristics of undersea substrates and extracting elements

related to submarine echoes. In 1956, Biot conducted a study on

the correlation between phase velocity and group velocity, which

varies with frequency and attenuation factor. He developed an

acoustic parameter model for inverting sediments on the bottom

surface (Biot, 2005). In 1995, Michalopoulou utilized statistical

classifiers to classify the state of the seabed. Based on backscatter,

a data set was created and the classifier was effectively used to

classify North Pacific seamounts (Michalopoulou et al., 1995).

Herzfeld and Higginson (1996) proposed a geostatistical approach

for the automated classification of seafloors. This method

incorporates several criteria for differentiation, such as the spatial

arrangement and orientation of deep-sea seamounts, as well as

other relevant metrics that capture the intricate nature of seamounts

(Herzfeld and Higginson, 1996). The automated seabed

classification approach based on backscatter data was developed

by Müller in 1997. The Gray-Level Co-occurrence Matrix (GLCM)

was employed to extract texture features, followed by the

construction of a neural network including 18 identified features.

The accuracy of the classification achieved a level of 80% or above
TABLE 1 Common substrate sampling methods.

Sampling
method

Working
principle

Main
instruments

Features

Gravity
method

Utilize the
sampler’s

designated weight
to effectively
penetrate the
formation and

extract
the sample.

Gravity sampling
Tubebox sampler
Grab sampler

Small sample
damage, small
sample volume,

repeated sampling

Piston
method

Penetrate the
formation and dig
out samples using
counterweights
and piston in

the tube

Large piston
sampling tube

The length of the
sample is lengthened

and the sample
is damaged.

Drilling
method

Using a drill to
obtain

seafloor samples
Drilling rig

Deep samples can be
obtained, but the
equipment is huge,
the technology is
complex, and the

operation is difficult.

Hydraulic
method

Obtain seafloor
samples by

penetrating long
strata in a short

time using
hydraulic pipes

Hydraulic
piston sampling

It is possible to
obtain ultra-long
samples while

ensuring
sample properties.

Trawl method

Use a trawl net to
obtain samples of
bedrock or gravel

on the
seabed’s surface

Trawl

The samples
obtained are not
representative and
accurate enough and
cannot be used for
large-area sampling.
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(Müller et al., 1997). In 2007, Rooper used a classification tree to

establish the relationship between optical data and acoustic data,

and determined that reflectivity and seabed roughness were

important parameters for seabed classification (Rooper and

Zimmermann, 2007). In 2012, Fakiris used unsupervised

classification methods to compare the corrected backscatter data

with the uncorrected data, clarifying the importance of acoustic

backscatter correction for texture analysis (Fakiris et al., 2012).

The utilization of machine learning techniques for substrate

categorization has been increasingly prevalent among academics

due to the proliferation of broad-scale data. Typical studies include,

in 2015, Alevizos tested the ability of Bayesian classifiers to

distinguish fine-grained sediments based on high-resolution

multibeam data, demonstrating the effectiveness of Bayesian

classification techniques (Alevizos et al., 2015). In 2018,

Porskamp used a hierarchical classification method to classify tow

videos, combined MBES bathymetry data, backscatter, and tow

video data to establish a data set, and used a random forest

algorithm to achieve habitat mapping from multiple scales

(Porskamp et al., 2018). In the year 2020, Rende conducted a

study wherein optical and acoustic data were processed using

Object Based Image Analysis (OBIA) processing technology.

Various multi-scale mapping technologies were employed for data

combination, and the reliability of combining acoustic and optical

data for high-resolution mapping was demonstrated through

testing research involving the KNN, random forest algorithm, and

decision tree classifier algorithm (Rende et al., 2020). Ji Xue et al.

conducted a study on post-processing methods for multi-beam

data. They developed a set of backscatter intensity correction

models and developed an optimal random forest seabed

automatic classification model. The authors provided empirical

evidence to validate the effectiveness of this approach (Ji et al.,

2020). Pillay et al. constructed a data set based on multi-beam

bathymetry, backscatter and side-scan sonar data, conducted a

comparative analysis of decision tree, random forest and K-means

clustering algorithms, and drew a benthic habitat map. They

believed that the K-means classification algorithm was the easiest

and pointed out that underwater videos and underwater samples

could be used to verify and explain the classification model in future

studies (Pillay et al., 2020). The association between backscatter

data obtained from deep water multi-beams and the presence of

crusts and nodules in seamounts was established by Yang.

Additionally, a quantitative analysis was conducted to examine

the distribution of minerals in these seamounts locations (Yang

et al., 2020). Zhu and colleagues introduced a classification model

for seabed substrate in 2021. This model utilizes a multi-beam and

multi-feature deep neural network (DNN) with varying weights.

The weights of different characteristics are distributed in a

reasonable manner, and the multi-beam features are merged to

achieve seabed substrate classification (Zhu et al., 2021). In the year

2022, Tang conducted an examination of diverse errors occurring in

the deep-sea environment. The researcher employed both

unsupervised and supervised classification techniques to carry out

substrate classification research on the Southwest Indian Ocean

Ridge. Additionally, genetic algorithms (GA) were utilized to

conduct support vector machine (SVM) analysis. The optimum
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that corresponds to (Tang et al., 2022). Mbani et al. introduced an

automated process for classifying seabed substrate s that addresses

the issue of classification deviation resulting from differences in

resolution and imbalanced categories. This workflow enables

automatic classification of seabed substrates with minimal manual

annotations (Mbani et al., 2022, Mbani et al., 2023). Jackett et al.

manually annotated more than 7,000 seafloor images, used these

images to train a convolutional neural network, and used transfer

learning, model hyperparameter optimization and other techniques

to improve the classification model to a certain extent, with a

classification accuracy of 98.19% (Jackett et al., 2023).

In conclusion, following extensive research spanning several

decades, scholars have made significant advancements in the

methodology for substrate classification. The acquisition of deep-

sea multi-beam data poses greater challenges compared to shallow-

water multi-beam data due to the intricate nature of the deep-sea

environment. Consequently, the acquisition of deep-sea multi-

beam data necessitates the use of specialized equipment and data

processing techniques. Furthermore, the scarcity of sample labels in

marine environments poses challenges in the integration of acoustic

and visual data. Consequently, there is a scarcity of research on the

attributes of sediments found in deep-sea seamounts. This study

deeply mined the in-situ video and ship-borne deep-water multi-

beam data collected by the “Jiaolong” manned submersible,

obtained a variety of characteristic factors that characterize the

characteristics of the bottom, and maximized the use of valuable

deep-sea data. A feature matching algorithm was used to establish

the connection between acoustic features and optical data, and a

substrate classification point set for the seamount area in the

western Pacific Ocean was constructed to solve the problem of

few sample labels in deep-sea seamount areas. Based on the

seamount area bottom classification point set, a variety of

machine learning models were trained to construct a prediction

model for the distribution characteristics of the bottom of the

entire seamount, realizing the study of the distribution

characteristics of the bottom of the entire seamount, which is of

great significance for the study of deep-sea seamount mineralization

and habitat mapping.
2 Materials and methods

2.1 Summary of the research region

The convergence of the Pacific Plate, the Eurasian Plate, the

Philippine Plate, and the Caroline Plate is depicted in Figure 1,

illustrating the geographical location of the western Pacific

seamount region. The region under consideration has the highest

concentration of seamounts, encompassing a substantial quantity of

flat-topped seamounts and undersea plateaus. Numerous magmatic

phenomena have given rise to various clusters of seamounts,

encompassing three distinct groups: the Magellanic Seamount

Group, the Marcus-Wake Seamount Group, and the Marshall

Seamount Group. In the southern region of the Magellanic

Seamount Group, the Caiwei (MA) Seamount is situated.

Situated within the middle and southern region of the Magellanic
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Seamount Group, this particular seamount is characterized by its

substantial flat top. The Magellanic Seamount Group is situated in

the northern region of the Mariana Basin, which is located in the

western Pacific. It is in close proximity to the Mariana Trench,

which is located to the west. Consisting of approximately 20

seamounts, this region is the focal point of the Regional

Environmental Management Plan for Cobalt-Rich Crust

Seamount Areas in the Northwest Pacific by the International

Seabed Authority (Du et al., 2017). It is characterized by its

abundant substrate types.
2.2 Data acquisition and data processing

2.2.1 Data acquisition
The research utilizes data obtained from deep-water multi-

beam data and submersible imaging data taken during voyages 31

and 35 in the seamounts regions of the Western Pacific. The EM124

system, manufactured by Kongsberg Company in Norway, is

responsible for the collection of deep water multi-beam data. The

frequency of operation is 12 kilohertz, the maximum range is 25

kilometers, the coverage width can extend up to 3 to 5 times the

depth of the water, and the precision of bathymetry is 0.6% of the

depth. The camera data recorded by the “Jiaolong” manned deep

submersible is sourced from the submersible. The manned deep

submersible known as “Jiaolong” exhibits a maximum velocity of

2.5 knots and possesses a camera data resolution of up to 1080P.
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2.2.2 Data processing
During the measurement procedure, the efficacy of the ship-

borne deep-water multi-beam may be compromised by several

factors, such as the ship’s operational velocity and hydrological

conditions. Consequently, a range of errors may arise,

encompassing both stochastic and systematic errors. The errors

have a superimposed effect on the deep-water multi-beam

measurement results. Prior to substrate classification, it is

imperative to preprocess the bathymetry data and backscatter

data obtained from deep water multi-beams in order to mitigate

the influence of errors on data quality and ensure the provision of

high-quality data for substrate classification (Lundblad et al., 2006).

Currently, there exists a wide array of well-established bathymetry

data preprocessing software both domestically and internationally.

Notable examples include Caris HIPS & SIPS, Hypack, and various

additional bathymetry processing tools (CARIS, 2016; Mancini et al.,

2020). These software programs systematically process and rectify

bathymetry data, ultimately enhancing the data’s quality using efficient

visualization techniques. The preprocessing of bathymetry data in this

paper was carried out using Caris HIPS & SIPS software. The

aforementioned software is a proficient computational tool designed

for the analysis of bathymetry, seabed photographs, and water body

data. It has the capability to simultaneously handle multi-beam,

backscatter, and single-beam data, and is compatible with over 40

different types. The sonar data format provided is the industry

standard. Caris HIPS & SIPS software has consistently been

acknowledged by the Ocean Commission as the premier multi-
FIGURE 1

Schematic diagram of the research area.
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beam data processing software for an extended period of time

(CARIS, 2016).

The program Caris HIPS & SIPS is comprised of two distinct

components. The primary use of Caris HIPS is the processing of

extensive multi-beam bathymetry data, while Caris SIPS is mostly

utilized for side-scan sonar and multi-beam gathering of picture data.

In this article, the bathymetry data underwent preprocessing using

Caris HIPS and SIPS11.4. The primary activities encompassed attitude

correction, strip editing, generation of BASE bathymetry surface, sub-

area editing, surface reconstruction, and other processing (CARIS,

2016), as shown in Figure 2A. The Caris HIPS & SIPS11.4 software is

utilized to rectify the backscatter through various procedures such as

automatic gain correction, time-varying gain correction, beam mode

correction, angle-changing gain, and terrain adjustment, as shown in

Figure 2B. Once all necessary modifications have been implemented, it

is imperative to export bathymetry data and backscatter of superior

quality. The present study involves the importation of bathymetry

data in ASCII format into the Surfer software. The Kriging

interpolation method is employed to resample the multi-beam

bathymetry data and backscatter data. The utilization of the Kriging

approach allows for the simultaneous consideration of the positional

relationship between the known depth value and the depth value to be

calculated. The interpolation of multi-beam bathymetry and

backscatter is achieved by establishing a relative relationship

between depth values. Subsequently, the interpolated bathymetry

data and backscatter are exported.
2.3 Typical machine learning algorithms

Machine learning commonly involves the tasks of classification

and regression. The primary objective of the classification problem is to

train a classification model using the attributes of the dataset including

established categories, and thereafter identify the category rules in order

to make predictions regarding the category to which the unknown data

pertains. Some commonly used classification methods in machine

learning include K-nearest neighbor (KNN), support vector machine,

random forest, naive Bayes, and BP neural network, among others.
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2.3.1 The K-nearest neighbor algorithm
The fundamental principle underlying the K-nearest neighbors

(KNN) approach involves computing the distance between the item

to be classified and every item inside the dataset using a distance

metric. Subsequently, the K items with the closest distance are

chosen. In the process of classification, the calculation involves

determining the distance between each sample and the K items. The

provided sample’s The classification of the sample will be chosen by

the class that is closest to it.
2.3.2 Support vector machine
The Support Vector Machine (SVM) technique is a type of

supervised learning used for both classification and regression tasks.

The fundamental concept involves identifying a hyperplane within

the training dataset. The hyperplane in question is sometimes

referred to as a “interval zone” due to its ability to effectively

segregate various data kinds.
2.3.3 BP neural network
A backpropagation neural network (BP neural network) is

composed of an input layer, an output layer, and multiple hidden

layers positioned between them. Upon forward propagation of the

training data, the resulting structure will be communicated to the

output layer subsequent to undergoing processing by the hidden

layer. If there is a significant disparity between the outcomes and

anticipated values, it is necessary to make reverse changes in order

to establish the error weights for each unit.
2.3.4 Decision tree
The decision tree method is a fundamental mathematical

technique used in machine learning. The process commences at

the root node and progressively executes the most efficient

partitioning of features until it reaches the leaf node in order to

construct a tree structure. Every node corresponds to the evaluation

of a characteristic. The fundamental objective of training is to

construct a categorization. The classification of data sets is

accomplished through the utilization of a tree structure.
A B

FIGURE 2

(A) Bathymetry data processing flow chart. (B) Backscatter data processing flow chart.
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2.3.5 Random forest
The random forest algorithm is a type of ensemble learning

technique that is founded on the concept of bulk categorization. The

fundamental premise of this approach involves the random selection

of N samples from the training set, including replacement, in order to

create a new training set. This new training set is then utilized to train

multiple decision trees. A new classifier is created by combining many

decision trees, and the final classification result is obtained by a

voting process.

2.3.6 Extreme random tree
The algorithmic principles of the extreme random tree

classification method and the random forest classification

algorithm exhibit significant similarities, as both involve the

utilization of multiple decision trees. The random forest algorithm

employs a random sampling technique to select samples from the

training set for each decision tree, whereas extreme random trees

retain all samples in their training set. Due to the random nature of

the split, the features are chosen in a random manner.

2.3.7 Gradient boosting tree
The gradient boosting tree is a machine learning approach that

combines decision trees with other techniques. The approach

employs a series of iterations to produce many weak classifiers.

Each iteration aims to decrease the previous residual and in the

process, it can create a new classifier. The novel weak classifier

employs a continuous iterative process to mitigate bias, hence

enhancing the overall accuracy of the final classifier.

2.3.8 XGBoost
XGBoost, short for Extreme Gradient Boosting, is a unified

technique that builds upon the gradient boosting decision tree

method. The fundamental concept of the method is Boosting,

which combines numerous weak classifiers into a powerful learner

in a certain manner. The XGBoost algorithm demonstrates superior

performance and scalability compared to the gradient boosting tree. It

achieves this by expanding the target Taylor to the second order,

thereby capturing more information about the objective function.

Additionally, the algorithm incorporates a regularization term in the

objective function, which helps reduce model variance.

2.3.9 Adaptive enhanced classification
AdaBoost is a type of Boosting model that is used for adaptive

boosting classification algorithms. This approach has the capability

to construct several weak classifiers, in contrast to the Bagging

model. The weak classifiers constructed in the subsequent round

exhibit dissimilarities when compared to the weak classifiers

constructed in the preceding round. The formation of a strong

classifier is achieved through the continual construction of several

weak classifiers, hence establishing dependencies.

2.3.10 Naive Bayes classification
The Naive Bayes classification method is a fundamental

techniques for classification. The fundamental concept revolves

around the computation of the probability associated with the
Frontiers in Marine Science 06
respective category of sample attributes, with the highest

probability being employed as the classification result. Given the

assumption that the sample feature is a member of category y, the

likelihood of the feature being associated with the category can be

expressed as follows (Equation 1):

P(yjx1, x2, xn) =
P(y)P(x1, x2, ⋅ ⋅ ⋅ xnjy)

P(x1, x2, xn)
(1)

The above briefly introduces the basic definitions of common

machine learning algorithms. These methods have their limitations

and are suitable for different data sets. Therefore, this study uses the

established western Pacific seamount dataset to compare and

analyze the above-mentioned machine learning algorithms. It is

very necessary to screen out the model algorithm that best suits this

dataset. Please see below for details.
2.4 Feature extraction and screening

The mechanism of multi-beam sounding entails the initial

stimulation of an acoustic pulse by the transmitting transducer,

which then propagates towards the seafloor. When encountering an

uneven seafloor interface, the acoustic impedance will increase due

to the mutation of the propagation medium. Phenomena such as

reflection and scattering give rise to the generation of echoes, which

in turn yield three significant pieces of information: bathymetry

data, backscatter data, and water column data. The bathymetry data

is primarily utilized for the purpose of characterizing the

topography and morphology of the seabed, as well as observing

alterations in landforms. On the other hand, the backscatter data

serves as a representation of the scattering and reflection signals

emitted by the seabed medium, enabling the examination of the

composition and spatial arrangement of the seabed substrate. For

every beam, it is possible to record both a bathymetry value and a

backscatter intensity value, which are directly related to the seafloor

position coordinates.

The researchers are able to generate a high-precision digital

elevation model (DEM) of the entire seamount by utilizing

extensive multi-beam bathymetry data and employing a high-

precision differential positioning technique. The Digital Elevation

Model (DEM) utilizes a restricted amount of terrain elevation data

to digitally replicate the terrain surface and accurately represent its

form. The DEM is a digital representation that comprises extensive

geomorphological data for the investigation of terrain features

(Xiong et al., 2021). The DEM is a useful tool for visually

representing the vertical distance between two sites and the

average sea level. It has consistently been a significant tool in the

analysis of geomorphological characteristics. Nevertheless, because

of the intricate and dynamic nature of seabed terrain features,

which exhibit varying sizes and shapes, even within the same

landform category, the configurations of distinctive entities can

vary significantly across different landform contexts (Anders et al.,

2015). A Digital Elevation Model (DEM) is a digital representation

of the topography of a terrain surface. DEM can be conceptualized

as a three-dimensional vector, denoted by a set {X, Y, H}, where X

represents the longitude and Y represents the latitude of a specific
frontiersin.org
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point within the DEM. The combined values of X and Y provide the

location information of the DEM point, while H represents the

elevation value of the point. Researchers typically extract latent

characteristics that depict topographical attributes using DEM, and

these latent characteristics are referred to as terrain factors. Terrain

factors are specific physical parameters that represent the

morphological properties of landforms. The correlation between

seabed topography and the dispersion of seafloor substrates has

been substantiated by numerous researchers. Hence, the acquisition

of derived features that accurately depict topographic characteristics

using DEM holds considerable importance in the field of substrate

categorization (Lundblad et al., 2006; Holmes et al., 2008).

Currently, the technique for extracting terrain elements using

Digital Elevation Models (DEM) is well-established. One of the

more prevalent methods for obtaining terrain characteristics is

through the utilization of ArcGIS. ArcGIS is a comprehensive

software for processing geographic information, but it has limited

efficiency in calculating terrain factors. To optimize the extraction

of terrain factors in batches, this study utilizes the Arcpy library

function in ArcGIS to analyze the processed DEM elevation model.

Subsequently, the terrain factors that define the topography of the

seabed are computed in batches. The Arcpy library encompasses a

variety of geospatial processing modules, including but not limited

to the raster analysis module and the map algebra operated module.

The Arcpy library function allows for the calculation of terrain

factors, like as slope and BPI (Lundblad et al., 2006), using various

search radius values. The program thoroughly takes into account

the topography of the deep sea. The integrity of landform units is

ensured by the relative relationship between a single grid node and

the surrounding grid nodes.

The association between the size of the backscatter and many

physical parameters, including seabed roughness, sediment particle

size, porosity, saturation, and incident angle, has been observed.

The analysis of backscatter data not only provides insights into the

reflection capacity of the deep seabed substrate type in response to

incident sound energy, but also enables the extraction of diverse

textural features that may be used to characterize the substrate type

from various perspectives. The texture feature refers to the degree of

roughness exhibited by the surface structure of the seabed. The

brightness of the pixels in the backscatter mosaic image can be

directly influenced by the textural characteristics of various seabed

substrates. The backscatter mosaic refers to a grayscale image that is

spatially referenced, whereas the texture features can be associated

with the spatial statistical distribution of the grayscale image

(Haralick et al., 1973). Currently, there exists a multitude of

eigenvectors that characterize texture features, exhibiting distinct

gray-level correspondences in their spatial distribution. The

approach for estimating texture features based on the gray-level

co-occurrence matrix of second-order statistics was proposed by R.

Haralick in 1973 (Haralick et al., 1973). The gray co-occurrence

matrix reveals the gray relationship between pixels through certain

moving Windows and directions (0°, 45°, 90°, 135°). It is defined as

the probability of the occurrence of gray value j is calculated from

the pixel with gray value i in the given direction. The mathematical

expression is as follows (Equation 2):
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P(i, jjd, q) = # (x, y)jf (x, y) = i, f (x + dx, y + dy) = j; x, y = 0, 1, 2 ⋅ ⋅ ⋅ L − 1f g (2)

The relative distance, denoted as d, is determined by the

number of pixels. The calculating window movement direction,

often represented by values of 0°, 45°, 90°, and 135°, is also included

in the formula. The symbol “#” denotes a set. i,j = 0,1,2•••L-1;The

pixel coordinates of the grayscale image are denoted as (x,y), while L

represents the total number of grayscale levels present in the image.

The process of extracting backscatter grayscale images from the

grayscale co-occurrence matrix is only a statistical outcome. To

obtain more precise statistics, such as mean, variance, contrast,

entropy, energy, correlation, homogeneity, etc., a sequence of

weighted processes is necessary.

Various features are derived using the bathymetry data and

backscatter data collected from the deep-water multi-beam

bathymetry system. Each feature can depict the topography or

underlying attributes from various perspectives. To minimize data

redundancy, it is necessary to choose the least characteristic factors

that may represent the largest amount of information for

classification while minimizing the computational workload of the

algorithm. Hence, it is imperative to evaluate the characteristics

using quantitative analysis. Researchers frequently employ feature

dimensionality reduction techniques such as factor analysis and

maximum correlation-minimum redundancy (mRMR). It was the

renowned psychologist Charles E. who initially introduced the

factor analysis method. The method in question originated from

the principal component analysis technique. The fundamental

concept revolves around the examination and computation of the

covariance relationship among different variables, the reduction of

variable dimensionality, and the identification of a limited number

of variables that effectively capture the majority of the original

information contained within the variables (Spearman, 1961). The

maximum correlation-minimum redundancy method guarantees

the highest possible correlation between features and categories

while also ensuring the lowest possible redundancy among the

selected characteristics. It takes into account not just the correlation

between features and categories, but also the correlation between

features themselves (Peng et al., 2005). In order to select a feature

screening method suitable for this data set, the above two feature

screening methods are compared and analyzed below.
3 Experiments and results

3.1 Construction of the data set

This article classifies the seabed bottom in the research region

into six distinct types, namely: (1) Bedrock, (2) Crust, (3) Nodules,

(4) Gravel, (5) Calcareous substrates, and (6) Gravel substrates,

based on on-site reports, sampling data, and video visual displays.

Photographs depicting the comparable patterns of the six deep-sea

seamount substrates are presented in Figure 3. Based on the drilling

findings pertaining to the Caiwei Seamount, the predominant

geological composition within the seamount region comprises

basalt, breccia, volcaniclastic rock, and limestone. Pillow basalt

and huge basalt are mostly generated through the process of lava
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eruption from the seafloor followed by subsequent cooling. The hue

often ranges from black to dark gray. Breccia exhibits a gray-black

hue and typically consists of volcanic debris or encrusted fragments,

typically measuring between 2 and 4 cm in particle size. The

predominant composition of volcaniclastic rocks consists of basalt

fragments, characterized by their irregular rhombus and spherical

shapes. Crusts predominantly exhibit a black or gray-black

coloration, and can be categorized into plate-shaped crusts,

granular crusts, and cobalt nodules based on their respective

morphologies. The majority of nodules have a black or brown-

black coloration, with a predominant round or oval shape. Based on

their diameter, nodules can be categorized into three groups: tiny

nodules (with a diameter of less than 3cm), medium nodules (with a

diameter of 3-6cm), and giant nodules (with a diameter exceeding

6cm). According to the particle size classification table of the

isometric system (j value standard), the particle diameter of

gravel is less than 256 mm. Gravel can be divided into coarse

gravel (64-256 mm), medium gravel (8-64 mm), and fine gravel (2-

8 mm) according to the particle diameter (Folk et al., 1970). Due to

the limited resolution of optical video, foraminifera sand, calcareous

mud and calcareous sand are classified as calcareous substrates in

this paper; coarse gravel, medium gravel and fine gravel are

classified as gravel; referring to the FOLK classification standard,
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some substrates containing gravel are defined as gravelly substrates;

some clay is located under the surface of nodules, and clay and

nodules are defined as nodule areas in this paper; different forms of

crusts are defined as crust areas.

In order to simplify the process of manually interpreting the

different bottom kinds in the video, this paper provides

categorization labels for the six bottom types found in the

research region. Only the initial time point, final time point, and

classification label of each bottom type need to be recorded during

the recording procedure. The Jiaolong manned submersible has a

consistent underwater cruising speed of 1 knot, allowing it to cover

an average distance of around 30.8 m/min. This research posits that

the duration between the initiation and conclusion of the bottom

type is shorter than 5 minutes, similar to the preceding bottom type.

An algorithm is employed to automatically populate all label values

within a time span of 100 seconds after manually analyzing the

footage obtained from all dives. The algorithm is utilized to align the

processed ultra-short baseline positioning data based on the time

value associated with each label value, resulting in the classification

point set for the bottom type of the seamount area. The

classification point set consists of multiple points (X, Y, T), where

(X, Y) represents the geographic coordinates of each classification

label point. X denotes the longitude of each classification label
A B

D

E F

C

FIGURE 3

Substrate type pattern diagram in seamount area. (A) bedrock; (B) Crust; (C) Nodules; (D) Gravel; (E) Calcium sediments; (F) Gravel sediments.
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point, Y denotes the latitude of each classification label point, and T

represents the classification label of each point. A preliminary set of

8,179 data points, divided into 6 categories, was generated by

manually analyzing the video footage from all dives. The

continuous seafloor information was transformed from a point-

based representation to a line-based representation. By utilizing the

bathymetry and backscatter data obtained from the deep-water

MBES system, it is possible to depict the “surface” characteristics of

the study area. This data enables the prediction and classification of

the bottom conditions across the entire seamount area, facilitating a

comprehensive analysis that progresses from “points” to “lines” and

ultimately to “surfaces”.
3.2 Extraction of features

The multi-beam sounding system in deepwater has the

capability to acquire both high-resolution bathymetry data and

high-resolution backscatter data, with each data point being

associated with a specific location. This article employs ArcGIS to

achieve data size consistency during feature matching by initially

cropping the bathymetry data and backscatter data to same

dimensions. Subsequently, the cropped backscatter data is

exported as a grayscale image. This work use the gray level co-

occurrence matrix approach to extract statistics in four directions

(0°, 45°, 90°, 135°) using a 5*5 sliding window with a moving step of
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4. The algorithm is then utilized to merge the four directions. The

average statistics are calculated by averaging the statistics in several

directions, resulting in the final characterization of texture features.

The technique utilizes the backscatter grayscale image to extract a

total of 8 features, including mean, variance, homogeneity,

dissimilarity, entropy, energy, correlation, and auto-correlation

(Haralick et al., 1973). The part of Caiwei Seamount textural

features is depicted in Figure 4. The analysis of Figure 4 reveals

that each feature quantity effectively represents the structure,

distribution information, and gray-scale relationship among pixels

in Caiwei Seamount grayscale picture points captured from various

angles. However, not all feature quantities are used for bottom

classification research. In order to avoid data redundancy, further

feature screening is required later. For details, see Section 3.4 model

evaluation in this article.

According to the user’s scale factor, the bathymetric position

index (BPI) can be categorized into two types: Broad-scale BPI

(Broad Bathymetric Position Index, B-BPI) and fine-scale BPI (Fine

Bathymetric Position Index, F-BPI). The deep position index

quantifies the relative variations in elevation among landform units

at both macroscopic and microscopic levels. The scale factor of the

bathymetry position index (BPI) is determined by multiplying the

resolution of the bathymetry data by the outer radius of the BPI. The

trial and error method is presently the prevailing approach for

identifying the suitable scale factor. However, it is important to

note that this method does compromise categorization efficiency to
A B

D E F

C

FIGURE 4

Caiwei seamount texture feature quantity. (A) Grayscale image; (B) Mean; (C) Variance; (D) Homogeneity; (E) Entropy; (F) Auto_correlation.
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some degree. DILLON believes that the size of the scale factor should

be roughly the same as the identified landform feature. Therefore, the

width of the landform unit can be roughly measured to roughly

obtain the trial and error range and improve the efficiency of trial and

error (Dillon, 2016). For example, if the ridge width is 500m and the

bathymetric resolution is 2m, the outer radius is defined as 250, thus

obtaining a scale factor of 500, and the inner radius is usually defined

as one tenth of the outer radius (Dillon, 2016). The outer radius has a

value of 250. This study employed the BPI definition to initially assess

the dimensions of the geomorphological units of interest within the

western Pacific seamount region. Additionally, it aimed to ascertain

the trial and error range of the terrain scale factor. After conducting

numerous experiments, this study determined that an outer radius of

325 and an inner radius of 33 are suitable for calculating the broad-

scale bathymetric position index (B-BPI) of the Caiwei Seamount.

Similarly, for the fine-scale bathymetric position index (F-BPI) of the

Caiwei Seamount, an outer radius of 6 and an inner radius of 3 were

selected. The Arcpy library function automatically generates many

terrain factors that describe terrain characteristics, including Broad-

scale BPI, slope, VRM (Horn, 1981), and more. Figure 5 displays

several terrain characteristics.
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3.3 Matching of features

The deep-sea bottom substrate types are characterized by

extracting various distinctive variables using bathymetry data and

backscatter data taken by MBES technology. The key to achieving

automatic classification of seamount substrates lies in establishing the

relationship between each substrate type and its characteristic factors.

This paper uses video data collected by the “Jiaolong” manned

submersible. The visual range of the video data is less than 30m

and the data resolution acquired by deep-water multi-beam is low. To

determine the substrate type, this paper assumes that the time interval

between the start and end of the substrate type is less than 5 minutes.

The algorithm records a classification point set every 100 seconds.

The established classification point set, as mentioned earlier, consists

of (X, Y, T) where (X, Y) represents the geographic coordinates of

each classification label point. X denotes the longitude and Y denotes

the latitude of each classification label point. T represents the

classification label assigned to each point. Not all photo

classification points (X, Y) in the classification point set can

precisely correlate to the grid point of each feature. This paper

employs the bilinear interpolation method to establish the
A B

DC

FIGURE 5

Terrain factor. (A) B-BPI; (B) F-BPI; (C) VRM; (D) Slope.
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correspondence between eigenvalues and each photo classification

point (X, Y, T). The eigenvalues corresponding to each photo

classification point (X, Y) are determined by considering the four

grid points in the terrain factors. Figure 6 illustrates the fundamental

premise. Given the photo classification point set Z (x, y), we have the

coordinates of points Q11, Q12, Q21, and Q22 of the terrain factor. To

begin, do interpolation in the X direction to calculate Z1 and Z2.

Then, proceed to interpolate in the Y direction to get the eigenvalues

that correspond to the classification point set Z (x, y). The calculating

formula is as follows (Equations 3–5):

f (Z1) ≈
x2 − x
x2 − x1

f (Q11) +
x − x1
x2 − x1

f (Q21) (3)

f (Z2) ≈
x2 − x
x2 − x1

f (Q12) +
x − x1
x2 − x1

f (Q22)  (4)

After getting Z1 and Z2, get Z

  f (Z) ≈
y2 − y
y2 − y1

f (R1) +
y − y1
y2 − y1

f (R2) (5)

Interpolation can be used to acquire the feature values, while the

algorithm extracts the terrain factor values for the classification

point sets in batches. The program then establishes the association

between each classification point set and the feature factors.

This study used the feature matching technique to establish

correspondences between a comprehensive set of 17 distinct

characteristic parameters, encompassing terrain factors, backscatter,

and texture feature quantities. The dataset consists of 8179 sediment

categorization point sets. Of all the components, bedrock and crust

make up a significant part, and the data is somewhat imbalanced. It can

lead to suboptimal performance in machine learning categorization. In

order to address this issue, the RandomOverSampler technique is

employed in this article to resample the classification point set and

attain data equilibrium. Following the process of resampling, the

dataset comprises a total of 18,534 substrate categorization point sets,

encompassing a comprehensive set of 17 features.
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3.4 Model evaluation

It is evident from the aforementioned information that

numerous machine learning algorithm models exist for the

purpose of addressing classification problems. However, it is

important to note that certain classification algorithm models are

well-suited for specific types of data sets. In situations involving

classification problems, it is customary to perform comparison

analysis and screening of multiple classification models. Identify

an appropriate categorization model for the given dataset. Hence, to

evaluate algorithm models appropriate for this dataset, this part

examines and contrasts the 10 prevalent classification approaches

mentioned earlier.

In this section, the classification model is constructed using the

training set, with a data set partition ratio of 4:1 between the

training set and the test set. Cross-validation was employed to train

all models, and the model hyperparameters were set to their default

settings. Accuracy and recall are the evaluation indicators employed

in this part, as they are often utilized in categorization assignments.

The methods they use for calculating are as follows (Equations 6, 7):

Accuracy pertains to the ratio of accurately categorized sample

points by the classification algorithm in relation to the total number

of sample points.

         Accuracy =
TP + TN

TP + TN + FP + FN

=
Number of correctly classified samples

All sample numbers
                  (6)

The concept of recall pertains to the ratio of accurately

identified samples to the total number of positive samples.

Recall =  
TP

TP + FN

=  
Number of correctly classified positive samples

Number of true positive samples
(7)

The variable TP represents the count of positive samples that

were accurately identified by the classification algorithm. The

variable TN represents the count of negative samples that were

accurately categorized by the classification algorithm. The variable

FP represents the count of negative samples that were erroneously

categorized as positive samples by the classification algorithm. FN is

the number of positive samples that are mistakenly classified as

negative samples by the classification algorithm.

This section aims to objectively assess 10 commonly employed

classification algorithms using accuracy and recall rates. The objective

is to identify classifiers that exhibit exceptional classification

performance in classifying deep-sea seamount deposits. To ensure a

precise evaluation of the algorithm’s adaptive capability, the training

set employed in this experiment did not employ the feature screening

technique for data filtering. Instead, a total of 17 feature factors were

utilized as input. Table 2 displays the categorization outcomes of the

ten classification algorithms.

The table clearly demonstrates that the decision tree, extreme

random tree, and XGBoost classification algorithms achieve an

accuracy above 0.88 for deep-sea seamount bottom classification.
FIGURE 6

Schematic diagram of bilinear interpolation calculation.
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Additionally, the recall rate exceeds 0.87. Hence, this part opts for

decision tree, extreme random tree, and XGBoost to carry out the

subsequent experiment.

The initial step in selecting an improved feature screening

approach involves employing factor analysis to compute the

Pearson correlation coefficient between each pair of the 17

features. In cases when features are highly associated, certain

features can be eliminated in order to minimize the need for

additional feature screening. Superfluous data, as illustrated in

Table 3. According to this article, it is posited that characteristics

exhibit a high level of connection when the Pearson correlation

coefficient exceeds 0.6. Ultimately, the eight features presented in

Table 3 exhibit a low level of correlation. This part employs mRMR

to eliminate 8 feature factors from a total of 17 features. These

factors are ordered in order of relevance as follows: bathymetry,

backscatter, slope, ruggedness, mean, variance, broad-scale BPI, and

fine-scale BPI. The purpose is to ensure consistency in the amount

of features throughout following tests. This part employs cross-

validation of two feature screening approaches with three classifiers

to ascertain an improved classification model. Table 4 displays the
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results. The mRMR-XGBoost model has the highest classification

accuracy and recall rate under the same feature data set, and the

model classification accuracy is 92.5%, an increase of 2 percentage

points. Therefore, the mRMR feature screening method is more

suitable for this data set, with obvious advantages. The mRMR-

XGBoost classification model can better realize the automatic

classification of deep-sea seamounts.
3.5 Model application and post-processing

To assess the classification performance of the mRMR-XGBoost

model, this section applies the model to the deep sea Caiwei

Seamount and generates a confusion matrix of the prediction

results on the validation set (Krstinić et al., 2020). The confusion

matrix is presented in Figure 6. The model accurately classifies the

substrate type, and the associated dark color blocks are evenly

dispersed along the diagonal. Figure 7 clearly demonstrates that the

categorization accuracy for each category is notably high, particularly

for nodules and gravel deposits. The overall classification impact is

enhanced and can more accurately differentiate the substrate type of

deep-sea seamounts. Using Caiwei Seamount as an illustration,

Figure 8A displays the initial classification outcome of the model

for Caiwei Seamount. The figure clearly demonstrates the mRMR-

XGBoost model’s ability to accurately distinguish substrate types,

however there are some instances of noise present in the image. To

ensure the preservation of substrate continuity. The present section

employs the ArcGIS geoprocessing platform for the purpose of

reclassifying the data obtained from sediment classification. The

substrate distribution of Caiwei Seamount after reclassification is

depicted in Figure 8B. The Ocean 80 expedition collected data on the

Caiwei Seamount using two box sampling sites, BC08 and BC09.

Figure 8B displays the positions of the two stations. The image

illustrates that the two stations are situated directly on the seafloor,

specifically in the western region of the Caiwei Seamount. The

sampling findings in the plain area are depicted in Figures 9A, B.

The two observed outcomes in the sampling are nodules and clay.

The two stations are situated inside the nodular area depicted in

Figure 9B. The mRMR-XGBoost model has a high level of accuracy

and achieves favorable classification outcomes.
TABLE 2 Classification effects of 10 common classification algorithms.

Serial
number

Classifier Accuracy Recall

1 KNN 0.834 0.807

2 SVM 0.436 0.283

3 BP neural network 0.557 0.425

4 Decision tree 0.888 0.876

5 Random forest 0.881 0.859

6 Extreme random tree 0.889 0.882

7 Gradient boosting tree 0.880 0.851

8 XGBoost 0.905 0.909

9
Adaptive

enhanced classification
0.552 0.429

10 Naive Bayes classification 0.488 0.434
The bold represents the three classification algorithms with the highest accuracy.
TABLE 3 Pearson correlation coefficient between different features.

Bathy Aspect Contrast Correlation Backscatter F-BPI Slope VRM

Bathy 1 0.134** 0.278** -0.486** -0.090** 0.419** 0.272** 0.271**

Aspect 0.134** 1 0.021** -0.003 -0.345** -0.071** -0.124** -0.305**

Contrast 0.278** 0.021** 1 -0.449** -0.218** 0.099** 0.010 0.247**

Correlation -0.486** -0.003 -0.449** 1 0.074** -0.212** -0.283** -0.065**

Backscatter -0.09** -0.345** -0.218** 0.074** 1 0.018** 0.271** 0.198**

F-BPI 0.419** 0.071** 0.099** -0.212** 0.018** 1 0.069** 0.466**

Slope 0.272** -0.124** 0.010 -0.283** 0.271** 0.069** 1 0.194**

VRM 0.271** -0.305** 0.247** -0.065** 0.198** 0.466** 0.194** 1
** indicates significant level P=0.01.
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4 Discussions

With the continuous increase in the amount of acoustic and

optical data, the application of machine learning in substrate

classification has gradually increased. However, since a large

number of real labels are required when building machine learning

models, the deep-sea environment is relatively complex. Compared

with shallow water multi-beam data, deep-sea multi-beam data is not

easy to obtain, and deep-sea substrate classification labels are

insufficient. Therefore, most substrate classification models are

applied to offshore, and are less used in deep sea. In view of the

problem of insufficient deep-sea substrate classification labels and low

accuracy, this paper defines 6 types of sediments, such as bedrock and
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crust, based on ocean voyage reports and sampling results. In-situ

videos collected by the Jiaolong manned submersible were deeply

mined, 25 submersible survey lines were manually interpreted, and a

classification point set of the western Pacific seamount area was

established through the start and end time points of each sediment

type for training substrate classification models. Subsequent work can

establish a rich image data set, use artificial intelligence technologies

such as image recognition instead of manual interpretation to reduce

human subjectivity, and further optimize the classification data set.

Based on the acoustic data mining hidden features obtained from

deep-water multi-beam data, a total of 17 characteristic factors were

extracted using the algorithm, including topographic factors, texture

features, etc., as shown in Figures 4, 5. Subsequent work can mine
TABLE 4 Feature screening method and classifier cross-validation results.

Serial
number

Feature filtering method Classifier Evaluation indicators

factor
analysis

mRMR
Decision

tree

Extreme
random
tree

XGBoost accuracy recall

1 √ 0.888 0.876

2 √ 0.889 0.882

3 √ 0.905 0.909

4 √ √ 0.895 0.888

5 √ √ 0.891 0.884

6 √ √ 0.897 0.889

7 √ √ 0.916 0.915

8 √ √ 0.912 0.912

9 √ √ 0.925 0.925
√ represents the feature selection method and classifier involved in each experiment. The bold represents the highest accuracy and recall rate.
FIGURE 7

Confusion matrix between mRMR-XGBoost model predicted labels and true labels.
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deeper characteristic factors for more detailed characterization of the

bottom characteristics of deep-sea seamount areas.

At present, there are many commonly used machine learning

models, but different models are suitable for different data sets. In

order to screen out the model suitable for this data set, this paper uses

17 feature factors to test the applicability of each machine learning

classification model, and uses recall and accuracy to evaluate the

model performance, as shown in Table 2. This paper screens out 3

classifiers with an accuracy of more than 88%. In order to further

improve the model performance and avoid data redundancy, this

paper uses factor analysis and maximum relevance-minimum
Frontiers in Marine Science 14
redundancy (mRMR) to screen the most representative feature

factors from the 17 feature factors, as shown in Table 3. The feature

screening method is combined with the three classifiers with better

performance determined in the previous article and a cross-validation

experiment is completed, as shown in Table 4. From the previous

experiments, we can see that the mRMR-XGBoost classificationmodel

is more suitable for this data set. As shown in Table 4 the model

improves the accuracy of bottom classification from 90.05% to 92.5%,

and the classification efficiency is further improved. From the actual

box sampling results, we can see that the classification effect of the

mRMR-XGBoost model is relatively accurate, but the model still has
A B

FIGURE 8

Caiwei seamount substrate classification thematic map. (A) Not reclassified; (B) Reclassified.
A B

FIGURE 9

Caiwei seamount box sampling map. (A) Station BC08; (B) Station BC09.
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room for improvement. The mRMR model only outputs the order of

importance of the feature factors, but the XGBoost model trains the

model according to the same degree of importance, and does not give

the feature factors a certain training weight. Subsequent research work

can give training weights to different feature factors to further optimize

the classification model, and the classification accuracy still has room

for improvement. In terms of classification model verification, due to

the high cost of obtaining seabed bottom samples in deep-sea

environments and the small number of model verification samples,

the relevant bottom classification areas can be sampled and verified in

the subsequent voyage design to further verify the effectiveness of the

model classification.When constructing the classification data set, this

paper only considered the relationship between the bottom type and

the backscatter intensity, topography, and texture features, and does

not consider the relationship between the bottom type and the

backscatter response curve (AR). In the following work, the

relationship between the deep-sea seamount bottom type and the

backscatter intensity, topography and backscatter response curve (AR)

can be fully considered.
5 Conclusion

The seafloor, serving as a significant geological interface between

the hydrosphere, biosphere, and lithosphere, harbors abundant

mineral and biological resources. Hence, it is imperative to

comprehend the spatial arrangement of seabed substrate types in

order to effectively harness seabed resources [35]. This paper

conducted research on the substrate classification method of deep-

sea seamounts using deep-water multi-beam data and video data

collected by the “Jiaolong” manned deep submersible. Through

manual interpretation, a set of substrate classification points in the

seamounts was established. The issue of inadequate classification

labels is addressed by proposing the mRMR-XGBoost substrate

classification model. The model achieves a substrate classification

accuracy of 92.5%, indicating its strong suitability for this particular

data set. The mRMR-XGBoost substrate classification model

demonstrates a sediment classification accuracy of 92.5% when

combined with the ocean box sample findings. The utilization of a

quality classification model has proven to be a successful approach in

facilitating sediment classification tasks, particularly in the context of

coastal and mountainous regions. The present study utilizes acoustic

data and in-situ video data to accomplish the automated classification

of sediments found in deep-sea seamounts. This research offers

fundamental assistance in investigating the distribution patterns of

deep-sea seamount sediments.
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