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A deep learning method for
bias correction of wind field
in the South China Sea
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1College of Computer Science and Technology, China University of Petroleum, Qingdao,
Shandong, China, 2Department of Artificial Intelligence, Faculty of Computer Science, Polytechnical
University of Madrid, Madrid, Spain, 3Guangdong Laboratory of Marine Science and Engineering,
Zhuhai, Guangdong, China
To address the systematic bias in the Global Forecast System (GFS) wind field

forecasts, we utilize deep learning techniques. The developed MU - Diffusion

framework, based on a diffusion model and MultiUnet (a multitasking Unet

model), establishes a nonlinear relationship between GFS and the fifth-

generation EC atmospheric reanalysis (ERA5) data. Focusing on the South

China Sea region, this method corrects both wind speed and direction

simultaneously. Using 2022 GFS data, we achieved average enhancements of

42% in wind speed and 38.3% in wind direction compared to the initial GFS data.

Tests in typhoon conditions also confirm the excellent performance of

this architecture.
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1 Introduction

The South China Sea, situated at the intersection of East Asia and Southeast Asia, is a

maritime region of significant geopolitical and ecological significance. The wind patterns in

the South China Sea have a crucial influence on the climate in Southeast Asia and East Asia.

The monsoon system exerts the most significant influence on the climate of the region, as it

determines the intensity and direction of winds, which in turn affect the distribution of

rainfall and fluctuations in temperature over the area. During periods of strong winds,

waves and storms frequently result in significant coastal and maritime catastrophes. Over

the last twenty years, these calamities have caused numerous fatalities and significant

damage to properties (Moeller et al., 2008; Chang and Mori, 2021). Therefore, it is crucial

and pressing to deliver precise predictions of wind patterns. Presently, the process of

predicting weather conditions mostly depends on numerical weather prediction models

(Rasp and Lerch, 2018). NWP models employ various initial circumstances and

mathematical equations to replicate atmospheric and other environmental variables.

Nevertheless, the predicting specifics of these simulations may be prone to mistakes as a

result of constraints in processing capacity and the spatial and temporal resolution of
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models. Nonlinear properties of atmospheric systems and

inaccuracies in physical parameters might lead to consistent

biases in the forecasting process (Xu et al., 2021; Laloyaux et al.,

2022). Therefore, in order to enhance the precision of NWP model

predictions, it is necessary to employ efficient bias correction and

post-processing techniques.

Over the past few decades, numerous post-processing techniques

have been suggested to rectify biases in NWP models. Two commonly

employed statistical techniques for predicting wind patterns and

adjusting for biases are Model Output Statistics (MOS) (Glahn and

Lowry, 1972), and Perfect Prognosis (PP) (Klein et al., 1959). MOS

primarily utilizes observable data to align the results of NWP by

building a linear regression to create corrective equations. However, its

linear regression approach has limitations in handling nonlinear wind

field data as it assumes a linear relationship. The PP approach is

comparable toMOS. It utilizes a statistical screening process to identify

pertinent variables from a vast pool and then constructs a linear

regression equation for rectification. Similar to MOS, it also struggles

with nonlinear wind field data due to its linear assumption. These

methodologies have established a foundation for enhancing forecast

skills. An instance of research involved the modification of the

parameters of the f-ARIMA model to analyse and forecast long-term

wind speed patterns, specifically over the upcoming 1-2 days

(Kavasseri and Seetharaman, 2009). Peng et al. (2013) conducted a

study that introduced the “Anomaly Numerical Correction” (ANO)

approach. This method is based on the atmospheric variability

decomposition theory developed by Qian (2012). This approach

involves separating the observed data and numerical forecasts into

two components: the climatic mean values and the perturbation values.

The disparity in climate mean values between model forecasts and

actual observations signifies the presence of systematic model

bias.Traditional statistical models, with their linear assumptions, are

limited in their ability to perform nonlinear fitting and struggle to

accommodate nonlinear wind field data (Duan et al., 2021).

Deep learning technology has experienced significant

achievements in various domains, including atmospheric sciences,

in recent years. It has the ability to independently execute feature

engineering and autonomously identify spatial structures in grid

data, surpassing the capabilities of classical machine learning and

statistical models. This is because it can adaptively learn the

complex relationships between different variables, which is crucial

for handling the nonlinear properties of wind fields, in contrast to

statistical models with their linear assumptions. Several neural

network architectures have been created, such as Convolutional

Neural Networks (CNN) (Zhu et al., 2017), Long Short-Term

Memory (LSTM) networks (Liu et al., 2018), and Convolutional

Long Short-Term Memory (ConvLSTM) networks (Shi et al., 2015,

2017), among others. These models demonstrate robust

autonomous learning abilities and are highly proficient in

accurately fitting non-linear data (Liu et al., 2020). Harbola and

Coors (2019) employed CNN to accurately model one-dimensional

time series data for the purpose of forecasting wind speed and wind

direction. A separate investigation examined the periodic properties

of wind direction in order to construct a model for the fluctuating

time series of wind direction (Solari and Losada, 2016). The Unet

architecture exhibits significant capability in processing grid-based
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input data and producing grid-based output or predictions. In their

study, Han et al. (2021) showcased the application of Unet for

nonlinear modelling of several meteorological factors, such as

wind fields.

Diffusion models belong to a category of generative models that

produce data by imitating a process of diffusion (Ho et al., 2020).

The fundamental concept is to extract significant information from

random interference. Diffusion models differ from Generative

Adversarial Networks (GANs) in that they do not depend on

adversarial training involving a generator and a discriminator

(Goodfellow et al., 2020). This characteristic helps to prevent the

frequent problems of instability and mode collapse that are typically

observed in GANs. Diffusion models have superior performance in

terms of image creation quality and fidelity when compared to

Variational Autoencoders (VAEs) (Kingma and Welling, 2013).

Although diffusion models have achieved success in areas such as

image restoration, image enhancement, and super-resolution, its

application in oceanic and meteorological bias correction tasks is

still in its early phases. As the areas of numerical weather prediction

and ocean simulation strive for greater accuracy, diffusion models

may become a valuable tool for correcting biases.

We have introduced a framework that addresses biases in ocean

wind fields. This framework is based on a conditional diffusion

model, which incorporates relevant oceanographic factors as

conditional information. By doing so, the diffusion model is able

to generate more accurate findings. We developed a multitasking

Unet architecture called MultiUnet to provide guiding fields. Our

bias correction technique employs a conditional diffusion model to

incorporate wind fields and guidance fields, so indirectly forecasting

wind field biases. We then merge the guidance field with the biases

to simultaneously rectify wind speed and wind direction. Our study

demonstrates that after conducting numerous trials using different

correction procedures, this framework surpasses both single Unet

and diffusion models in rectifying wind field biases. As a result, it

provides enhanced efficacy and stability.

In contrast to existing methods such as traditional statistical

models (MOS and PP) and some machine learning techniques, our

proposed MU - Diffusion framework combines the power of the

MultiUnet architecture and the diffusion model. The MultiUnet

provides detailed guidance fields, while the diffusion model

effectively models the spread and evolution of biases. This enables

a more comprehensive and accurate bias correction compared to

traditional approaches, especially in handling the nonlinear wind

field data.

The remainder of this paper is organized as follows. Section 2

describes the data used in this study. Section 3 introduces the

methodology, and section 4 analyzes the experimental results.

Conclusions are presented in section 5.
2 Study area and data

In this study, we use historical data from the NCEP operational

Global Forecast System from 2016 to 2022 (GFS for short) (National

Centers for Environmental Prediction, National Weather Service,

NOAA, U.S. Department of Commerce, 2015). The forecast grids are
frontiersin.org
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on a 0.25 by 0.25 global latitude longitude grid. Model forecast data are

issued four times a day at 00, 06, 12, and 18 UTC daily. The ground

truth used by the correctionmethods is the ERA5 dataset with the same

grid resolution; this dataset has been widely used to replace the

previous reanalysis dataset ERA-Interim (Hersbach et al., 2020). In

addition, ERA5 is often used as the observation data in studies of

numerical model bias correction (Dengxin He et al., 2019; Hersbach

et al., 2020). It should be noted that GFS is a forecast model while ERA5

is a reanalysis model.

The study domain is located at 0°N-24°N and 100°E-124°E,

which roughly covers the South Sea of China. The grid size is 96 ×

96(lat × lon). In this paper, the GFS grid forecast data will also be

referred to as the “forecast data”, which provides predictor

variables; the ERA5 provides target variables.
3 Methods

3.1 Overview of model

We developed a wind field bias correction framework called

MU-Diffusion, which consists of two channels. The system is

illustrated in Figure 1 (right). This framework comprises two

components: the MultiUnet model and the Diffusion model.

MultiUnet is designed to capture the structural information of the

wind field. Its unique architecture, with extended down - sampling

steps for encoding the U and V components of the wind field and

the insertion of Batch Normalisation layers, enables it to effectively

extract and represent the spatial and deterministic features of the

wind field. These features are then passed as conditional inputs to

the diffusion model. The diffusion model, on the other hand, is

based on the principle of imitating a process of diffusion to generate

data. It takes the wind field data and the guidance fields from

MultiUnet as inputs and models the spread and evolution of the

wind field bias. By incorporating the structural information from

MultiUnet, the diffusion model can better capture the spatial
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correlations and dependencies in the wind field bias, leading to

more accurate bias correction. The Denoising Diffusion

Probabilistic Model (DDPM) produces the refined wind field.

Initially, we employ MultiUnet to forecast the guidance field,

which encompasses wind field data, as depicted in Figure 1 (left).

The guiding field contains crucial structural and deterministic

information regarding the wind field. We utilize this guidance

condition as a spatial reference for the diffusion model. The

encoding of the U and V components in MultiUnet preserves the

spatial information of the wind field. The convolutional layers and

blocks in MultiUnet process the wind field data in a way that

maintains the spatial relationships between different grid points.

When this spatially rich information is passed to the diffusion

model as described above, it helps the diffusion model to

understand how the bias varies across the wind field. For

example, if there is a consistent bias pattern in a certain region of

the wind field, the diffusion model can learn to correct it based on

the spatial cues provided by MultiUnet. This process, which

combines the spatial information from MultiUnet with the

diffusion model, offers a more comprehensive understanding of

the wind field bias and enables better control and guidance for bias

correction. The diffusion model is employed to capture the spread

of the initial wind field and produce the wind field bias. Ultimately,

the original wind field is merged with the produced bias to acquire

the adjusted wind field.
3.2 MultiUnet

The model used for generating the structural guidance field is a

pre-trained MultiUnet, which is an enhanced version of the Unet

(Ronneberger et al., 2015). The down-sampling step of MultiUnet is

extended to include two channels, one for encoding the U

component and the other for encoding the V component of the

wind field. This approach offers an enhanced encoding mechanism

for wind fields that have numerous components. A Batch
FIGURE 1

U10 and V10 represent the U and V components of the wind field at 10 meters above the surface. These components are used to describe the wind
velocity vector in a a two - dimensional plane. Left: A simplified structure diagram of MultiUnet. Right: The graphic illustrates the structure of MU-
Diffusion. The initial field is processed by MultiUnet to produce a guide field. The starting field and the guiding field are subsequently employed as
conditional inputs in the Diffusion model, which produces the bias correction. The initial field is merged with the bias correction to generate the
ultimate corrected outcome.
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Normalisation (BN) layer is inserted between every ReLU activation

function in the convolutional layers and blocks. The BN layer

constrains the variability of the input data within a defined range,

enabling following layers to operate efficiently without the need for

frequent adjustments to changing inputs. Engaging in independent

learning enhances the speed and stability of the neural network.

Figure 2 depicts the configuration and information

transmission of the MultiUnet. The dimensions of the input

image are (2, 96, 96), where 96 represents the width and height,

and 2 represents the number of channels, which correspond to the

two components of the wind field. The Conv-Block, which is the

fundamental unit of MultiUnet, consists of a 3 × 3 two-dimensional

convolution layer, a BN layer, and a ReLU activation function. The

dimensions of the input and output of the Conv-Block stay

constant, but the number of convolution kernels determines the

number of output channels. The encoding method consistently

reduces the dimensions of the feature maps, hence improving the

representation of higher-level characteristics. Upon completion of

the decoding procedure, a feature map with dimensions of (64, 96,

96) is obtained. A 1 × 1 convolutional layer subsequently decreases

the channel count to 2, resulting in the output of the model. The

Mean Squared Error (MSE) is employed as the loss function for

MultiUnet, as depicted in Equation 1.

MSE = o
n
i=1(f (xi) − yi)

2

n
(1)

where n represents the number of samples. f (xi) is the predicted

value of the i-th sample, and yi is the actual value of the i-th sample.
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MSE stands for Mean Squared Error, which measures the average

squared difference between the predicted and actual values.
3.3 Conditional Denoising Diffusion Model

The Conditional Denoising Diffusion Probabilistic Model

(DDPM) is employed for the purpose of rectifying wind field

data. The prerequisites for wind field bias correction include the

initial wind field bias y0 and a guiding field x that encompasses

structural information. We utilized Conditional DDPM to generate

conditional wind fields, expanding upon the DDPM models

introduced in (Ho et al., 2020). The Conditional DDPM model

produces the target bias y0 by going through T refining phases. The

model begins with a random noise yT ∼ N(0, I) and then repeatedly

improves the output correction using the learnt conditional

distribution. This process continues until a sequence is obtained

that eventually converges to y0 (refer to Figure 3).

The forward diffusion process of DDPM gradually introduces

Gaussian noise to the output by means of a stationary Markov chain

q (Equations 2, 3).

q(y1 :T  j y0) =
YT
t=1

 q (yt  j yt−1) (2)

q(yt  j yt−1) = N (yt  j 
ffiffiffiffiffi
at

p
yt−1, (1 − at) I) (3)

We employ a deep learning denoising model to acquire

knowledge of the actual posterior q(yt−1jyt). This model utilizes
FIGURE 2

The diagram illustrates the structure of the multitasking Unet—MultiUnet. The down-sampling stage is split into two branches, with one branch
encoding the U-component of the wind field and the other branch encoding the V-component. The up-sampling stage merges the two encoded
blocks for decoding, with intermediate links to the matching encoding blocks in the down-sampling stage. The last convolutional block decreases
dimensionality in order to produce the guide wind field.
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conditional information and Gaussian noise as inputs to estimate

the noise using the following parameterization.

pq(yt−1 j yt , xp, xs) = N (yt−1;mq(yt , t, xp, xs),   Sq(yt , t, xp, xs)) (4)

We employ an Unet-based paradigm, akin to DDPM,

incorporating self-attention and adjustments. The noise data yt is

merged with the beginning field xp and the guidance field xg. The

denoising process is directed by xp and xg, guaranteeing that the

intermediate noise and final wind field representation adhere to

the provided structural information. In order to train the denoising

algorithm, we initially create a noise sample yt ∼ q(yt jy0) by

introducing Gaussian noise to y0. Next, we proceed to train a

conditional denoising model e(yt , t, xp, xg), which use the

conventional loss function The Mean Absolute Error (MAE) to

anticipate the new noise.

Lmae = Et∼½1,T�,y0∼q(yo),ϵ ϵ − ϵq(yt , t, xp, xs)
�� �� (5)

where T represents a certain number of phases (related to the

diffusion process). y0 is the initial wind field bias, and q(yo) is a

distribution related to y0. e is a variable related to noise. q represents
the parameters of the model. xp and xs are related to the beginning

field and some other field (as described in the context). Lmae

represents the Mean Absolute Error loss function, which is used

to train the conditional denoising model to anticipate the new noise.
4 Results

4.1 Performance evaluation criteria

The MU-Diffusion framework comprises the MultiUnet and

DDPM models, both operating in dual channels. In order to assess

its performance, we selected the Unet model, which has exhibited

efficacy in bias correction, and the DDPM model, an innovative

method in image-based domains, as comparable models for our

studies. The assessment of wind field bias correction is divided into

two components: wind speed and wind direction. The corrective

performance of each wind field variable is evaluated in respect to

several seasons. The study classifies the months as follows: spring

encompasses February, March, and April; summer encompasses

May, June, and July; autumn encompasses August, September, and
Frontiers in Marine Science 05
October; and winter encompasses November, December,

and January.

MAE is employed to assess the accuracy of the corrective

performance, and it is defined as follows:

MAE =
1

T ∗H ∗Wo
T

t=1
o
H

i=1
o
W

j=1
yt,i,j − ŷ t,i,j

�� �� (6)

where T represents the number of samples in the testing dataset;

H and W are the height and width of the study area, respectively.

ŷ t,i,j represents the forecast value or corrected value at (i, j) at the

forecast issue time t, and yt,i,j represents the observation value of

(i, j) at t.MAE stands for Mean Absolute Error, which measures the

average absolute difference between the predicted and actual values.

Regarding the wind direction, 0° and 360° point in the same

direction, even though their numerical values are very different;

thus, we must consider the cyclic characteristics of wind direction.

According to the “QXT 229–2014 Verification Method for Wind

Forecast” (Han et al., 2021), the Mean Absolute Error of Direction

(MAEd) represents a difference between the corrected and ground

truth values of 180°, and is appropriate for wind direction

assessment. Therefore, this metric was used for our evaluation; it

is defined as follows:

MAEdir =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T ∗H ∗Wo
T

t=1
o
H

i=1
o
W

j=1
(min ( yt,i,j − ŷ t,i,j

�� ��, 360 − yt,i,j − ŷ t,i,j

�� ��))2
s

(7)

where T represents the number of samples in the testing dataset;

H and W are the height and width of the study area, respectively.

ŷ t,i,j represents the forecast value or corrected value at (i, j) at the

forecast issue time t, and yt,i,j represents the observation value of

(i, j) at t. MAEdir is used to evaluate the difference between the

corrected and ground truth values of wind direction considering

its cyclic characteristics (where 0° and 360° point in the

same direction).

These criteria include commonly used metrics as well as a newly

introduced metric, Mean Bias (MB), which provides valuable

insights into the models’ ability to correct biases in the data.

MB =
1

T � H �W � No
T

t=1
o
H

i=1
o
W

j=1
o
N

n=1
(yt,i,j,n − ŷ t,i,j,n) (8)

In this formula, T represents the number of time steps,H andW

denote the latitude and longtitude of the spatial domain, N indicates
FIGURE 3

The forward diffusion process q, which occurs from left to right, progressively introduces Gaussian noise to the target image. The inverse procedure
p (performed from right to left) systematically removes noise from the target image, taking into account the bias field x.
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the number of components of the wind field (there are two

components, U10 and V10), yt,i,j,n is the true value of the n-th

component of the wind field at time t and spatial location (i, j), and

ŷ t,i,j,n is the predicted value of the n-th component of the wind field

at time t and spatial location (i, j). It should be particularly noted

that due to the particularity of wind direction, the Mean Bias (MB)

metric can only be used for calculations on the wind field as a whole.

A positive mean bias indicates that the model tends to overpredict,

while a negative value implies an underestimation. By analyzing the

mean bias across different seasons and for different models, we can

gain a deeper understanding of the models’ performance

characteristics and their ability to correct biases in different

climatic conditions.

These evaluation criteria are applied to each of the models

considered in this study, namely the U-Net model, the diffusion

model, and the U-Net diffusion combination model, as well as to the

original data (origin) for comparison purposes. The results of these

evaluations are presented and analyzed in subsequent sections to

determine the relative performance of each model and to identify

their strengths and weaknesses.
4.2 Corrected wind speed results for the
four seasons

Figure 4 depicts the fluctuations in MAE across the seasons for

various modes, as well as the respective models’ capacities to reduce

errors. Figure 5 displays the correction outcomes of each model in

several seasons, accompanied by visualised data from the GFS

and ERA5.

Figure 4 presents the Mean Absolute Error (MAE) estimates of

wind speed for different models over different seasons. MU-
Frontiers in Marine Science 06
Diffusion exhibits the lowest Mean Absolute Error (MAE)

compared to the other two models, and it is also notably lower

than GFS-ERA5. The MU-Diffusion model yielded a wind speed

forecast for a duration of one year, with an average correction

accuracy of 42%.The difference in performance between Unet

and MU-Diffusion in relation to wind speed is negligible, and

both models demonstrate comparable seasonal patterns with

slight variations attributed to seasonality. Nevertheless, the

Diffusion model exhibits significant fluctuations in inaccuracy

over fall and winter, with a mere 10% adjustment in autumn and

a potential enhancement of up to 32% in winter. In general, the

MU-Diffusion model exhibits superior wind speed correction

outcomes, surpassing Unet by around 4% to 7% in terms of

correction accuracy.

In order to assess the accuracy of several models, we generated

plots displaying the correction outcomes for wind speed in the

South China Sea over the four seasons of 2022 for each model. The

Pearson correlation coefficient between the model-generated results

and ERA5 is displayed at the bottom of each figure. All three models

demonstrate a certain level of ability to correct wind speed

visually.MU-Diffusion offers a more precise and rational

distribution of wind speed, along with enhanced visualisation and

numerical enhancements. The areas with high wind speeds show a

stronger correlation with ERA5 data. As an illustration, MU-

Diffusion provides precise forecasts for two areas with strong

wind speeds at 120°E and 124°E during the spring season. The

Pearson correlation coefficients for each season indicate that the

results obtained via MU-Diffusion exhibit the highest correlation

with ERA5 data. With the exception of winter, the Pearson

correlation coefficients demonstrate a notable enhancement, with

an average augmentation of approximately 8%. The winter season

exhibits a modest enhancement, with an only 1.4% rise.
FIGURE 4

The MAE in metres per second for distinct modes for each of the four seasons in 2022. The initial column denotes the mean MAE of the model bias
correction outcomes for the year 2022, while the next four columns reflect the outcomes for spring, summer, autumn, and winter, respectively. The
coloured dashed lines represent the decrease in error of GFS-ERA5 wind speed for each respective model.
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4.3 Corrected wind direction results for
the four seasons

Figure 6 depicts the fluctuations in MAEd. Figure 7 presents the

correction outcomes for wind direction throughout the four

seasons. Throughout all four seasons, MU-Diffusion consistently

demonstrates the highest level of performance, with an average

annual improvement rate of 38.3%. In comparison, the Unet and

Diffusion models obtain improvement rates of 32.5% and 35.1%

respectively. However, in terms of wind direction, Diffusion

surpasses the Unet model by 2.5%, unlike wind speed. The three

models all exhibit their lowest error rate throughout the summer,

while seeing the greatest enhancement during the winter. The Unet

and MU-Diffusion models display a comparable seasonal pattern,

akin to wind speed. However, the Diffusion model is more

susceptible to seasonal fluctuations.
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Figure 6 displays the adjustment made to correct the bias in

wind direction for each of the four seasons, using several models.

The Figure 7 also includes the Pearson correlation coefficients

associated with each model. From both a visual and numerical

standpoint, all three models exhibit some ability to accurately

predict wind direction. MU-Diffusion exhibits superior

performance compared to Diffusion, but Diffusion demonstrates a

greater improvement than Unet. These findings suggest that

diffusion models are more effective in addressing wind

direction bias.

The previously reported findings on the adjustment of wind

speed and wind direction indicate that the Unet model and the

Diffusion model possess distinct advantages in these specific

domains. Nevertheless, the MU-Diffusion model amalgamates the

benefits of both approaches, providing superior generalizability and

robustness. The training data, utilizing the U and V components,
FIGURE 5

Correction results for wind speed in the South China Sea across the four seasons of 2022. The wind speed visualisation for spring, summer, autumn,
and winter is represented in each row, from top to bottom. Each column in the visualisation reflects the wind speed for GFS, Diffusion, Unet, MU-
Diffusion, and ERA5, respectively, from left to right. The Pearson correlation coefficients between the wind speed images of GFS, Diffusion, Unet, and
MU-Diffusion and ERA5 are displayed below each image.
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can be employed to simultaneously rectify both wind speed and

wind direction, thereby circumventing complications associated

with the periodic nature of wind direction. In addition, the higher

performance of MU-Diffusion serves as evidence for the usefulness

of the suggested dual-channel system. The utilization of MultiUnet

and Conditional Diffusion Models demonstrates an effective and

resilient method for rectifying wind field bias. This strategy tackles

both wind speed and wind direction inside a unified framework.
4.4 Bias correction for extreme weather

The South China Sea is a major hotspot for worldwide typhoon

activity, seeing typhoons consistently throughout the year. This has

a substantial influence on the safety of ships and offshore operations

in the region. Hence, it is imperative to investigate the patterns and

behavior of typhoons in the South China Sea, encompassing both

those originating inside the region and those originating from the

Northwest Pacific. For our wind field bias correction tests, we chose

Typhoon Nalgae, the 22nd typhoon of 2022, which occurred in the

South China Sea, as our test case. The objective of this study was to

assess the effectiveness of several correction models in predicting

the behavior of typhoons, considering their influence on marine

safety and the requirement for precise forecasts during severe

weather events.

We generated a graph illustrating the rectification findings for

Typhoon Nalgae, which is the 22nd typhoon of the year 2022. The

data corresponds to the 06 UTC time on October 30, 2022, as shown

in Figure 8. The wind field patterns exhibited by the Diffusion, Unet,

and MU-Diffusion models demonstrated more precise and rational

distributions. The rectification results obtained via MU-Diffusion

were superior. The initial MAEd was 38.2°, while the corrected

MAEd was 18.5°.
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Concurrently, we generated a scatterplot comparing the model-

corrected data with the ERA5 (ground truth) data (Figure 9). The x-

axis indicates the GFS forecast or the model-corrected outcome,

while the y-axis represents the ERA5 data. A scatterplot displays

data points that are clustered closer to the diagonal line, indicating

a more pronounced linear relationship between two variables

(Kim et al., 2021). This relationship facilitates the visualisation of

the correspondence between the predicted or adjusted outcomes

and the actual ground truth data, enabling an evaluation of the

models’ accuracy in making corrections.
4.5 Model performance evaluation using
Mean Bias

In this section, we analyze the performance of different models

using the Mean Bias (MB) metric. The MB values offer insights into

the models’ tendencies to overestimate or underestimate the true

values of the wind field. The data for these evaluations are presented

in Table 1, with the origin data (GFS data) and labels (ERA5 data)

used for calculations.

Overall, the origin data shows an MB of 0.024, indicating a

tendency to overpredict. Among the models, the Unet model has an

MB of -0.023, suggesting a slight underestimation. The Diffusion

model has an MB of -0.047, showing a more significant

underestimation. The MU - Diffusion model has an MB of

-0.018, which is closer to zero compared to the other models,

indicating relatively better performance in terms of overall bias.

Seasonally, in spring, the origin data overpredicts. The Unet

model underestimates, the Diffusion model has a small bias, and the

MU - Diffusion model shows good performance. In summer, the

origin data overpredicts. The Unet model slightly overpredicts,

the Diffusion model underestimates, and the MU - Diffusion
FIGURE 6

The fluctuation in MAEd for various modes across the four seasons of 2022. The initial column signifies the mean MAE for the outcomes of model
bias correction in the year 2022, while the following four columns indicate the outcomes for spring, summer, autumn, and winter, correspondingly.
The coloured dashed lines represent the extent to which the matching models have reduced errors in wind direction angle between GFS and ERA5.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1429057
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Pang et al. 10.3389/fmars.2024.1429057
model has a better bias. In autumn, the origin data overpredicts.

The Unet model underestimates, the Diffusion model

underestimates, and the MU - Diffusion model shows good

performance. In winter, the origin data overpredicts.

The Unet model underestimates, the Diffusion model

underestimates, and the MU - Diffusion model has a relatively

good bias.

The season differences may be attributed to various factors.

Different seasons have distinct weather patterns and wind

characteristics. For example, in spring and autumn, the

temperature gradients and associated pressure systems may lead

to more complex and variable wind fields, which pose greater

challenges for the models to accurately capture the bias. In

summer, the influence of large - scale weather systems such as

monsoons can cause significant variations in wind speed and
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direction, affecting the model’s performance. In winter, cold

fronts and jet streams can introduce sudden changes in wind

conditions, making it difficult for the models to adapt and correct

the bias effectively.

Overall, the MU - Diffusion model shows a more consistent

performance across seasons with MB values closer to zero,

indicating better bias correction capabilities compared to the

other models. Its performance advantages may stem from its

unique dual - channel framework structure. This structure can

better integrate feature information at different levels, thus more

accurately capturing the variation laws of the wind field and

reducing the bias. At the same time, it may have stronger

adaptability and robustness when dealing with complex weather

patterns and changes in wind characteristics, enabling it to maintain

a relatively good performance in different seasons.
FIGURE 7

Correction results for wind direction in the South China Sea across the four seasons of 2022. Each row corresponds to the wind direction
visualisation for the seasons of spring, summer, autumn, and winter, arranged from top to bottom. The wind direction visualisation for GFS, Diffusion,
Unet, MU-Diffusion, and ERA5 is represented in each column from left to right. The wind direction graphics for GFS, Diffusion, Unet, and MU-
Diffusion are accompanied by their respective Pearson correlation coefficients with ERA5.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1429057
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Pang et al. 10.3389/fmars.2024.1429057
5 Conclusion and discussion

Our research indicates that the data-driven dual-channel

approach may effectively reduce biases in both wind speed and

wind direction in model data. The MU-Diffusion model is

constructed by combining the MultiUnet and Diffusion models.

This framework can simultaneously correct wind speed and wind

direction by modelling the spatio-temporal sequences of the
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u-direction and v-direction components of the wind field.MU-

Diffusion algorithm effectively captures and combines

characteristics from both the u-direction and v-direction wind

components, resulting in accurate rectification outcomes even

under severe weather conditions.

We utilized GFS model wind field forecast data spanning from

January 2016 to December 2022, along with ERA5 reanalysis data,

for the purposes of model training and testing. The model’s
FIGURE 9

Typhoon Nalgae, the 22nd typhoon of 2022, is depicted in the scatter plots at 06 UTC on October 30, 2022. The initial row displays scatter plots
representing wind speed, while the subsequent row showcases scatter plots representing wind direction. The charts, in order from left to right,
depict the GFS, Diffusion, Unet, and MU-Diffusion.
TABLE 1 Wind field model performance evaluation index table, aiming to present the specific values of the mean bias (MB), a key indicator, of
different models in different seasons, so as to conduct comprehensive and detailed analysis and comparison of the performance of each model.

Method Overall Spring Summer Autumn Winter

GFS 0.024 0.029 0.021 0.025 0.021

Unet -0.023 -0.028 0.021 -0.024 -0.059

Diffusion -0.047 -0.007 -0.05 -0.053 -0.078

MU-Diffusion -0.018 -0.014 -0.015 -0.018 -0.023
FIGURE 8

Typhoon Nalgae, the 22nd typhoon of 2022, is seen in the wind field maps at 06 UTC on October 30, 2022. The colors correspond to the velocity
of the wind, while the arrows indicate the direction in which the wind is flowing. The wind field maps displayed from left to right correspond to the
GFS, Diffusion, Unet, MU-Diffusion, and ERA5 models.
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performance was evaluated using MAE and MAEd as performance

metrics. The revised outcomes obtained from the MU-Diffusion

model were contrasted with the forecasted outcomes of the GFS

model, revealing an average enhancement of 42% in wind speed and

38.3% in wind direction. The empirical findings suggest that the

MU-Diffusion model is capable of accurately adjusting wind speed

and wind direction. When comparing the individual performance

of Unet and Diffusion models, the MU-Diffusion model shown

superior optimization in wind speed and wind direction. The test

results collected under normal and typhoon conditions showed that

the MU-Diffusion model performs equally well in correcting wind

speed and wind direction across varied weather situations. This

indicates that the model is highly generalizable and robust.

While the MU-Diffusion model has demonstrated significant

effectiveness in deterministic bias correction, it is also important to

consider its potential in providing probabilistic forecasts.

Currently, the MU-Diffusion model focuses on deterministic bias

correction and does not directly generate probabilistic forecasts.

However, the model’s architecture and the way it processes data

provide some potential for future extensions towards probabilistic

forecasting. One possible approach to introduce probabilistic

forecasting could be to incorporate a Bayesian framework. By

treating the model parameters as random variables with prior

distributions, we could update these distributions based on the

observed data and generate posterior distributions for the forecasts.

Another option could be to use an ensemble of models, where

multiple instances of the MU-Diffusion model are trained with

different initializations or perturbations, and the resulting forecasts

are combined to produce a probabilistic distribution.

Probabilistic forecasts are highly important in wind field

prediction as they provide a more comprehensive understanding

of the uncertainty associated with the forecasts. This allows

meteorologists to make more informed decisions, especially in the

context of severe weather events where the accuracy and reliability

of the forecasts are crucial.

In the South China Sea, the climate is complex with strong

Asian monsoon influence, bringing seasonal wind changes and

frequent typhoons. Its topography further complicates the wind

field. Compared to the North Atlantic, which has different

dominant wind patterns due to the North Atlantic Oscillation

and distinct oceanic interactions, the South China Sea shows

unique characteristics. The MU-Diffusion model, with its

combination of MultiUnet and diffusion model, has effectively

corrected wind biases in the South China Sea. For application in

other regions like the North Atlantic, its adaptability is crucial.

Similar regions may need minor adjustments, while vastly different

ones could require significant modifications considering factors like

stronger currents and different temperature gradients. Globally, it

has potential but requires extensive testing and calibration in

diverse regions to handle the variety of climate and wind

conditions, with the South China Sea study serving as a

foundation for further exploration and improvement.

Although our study is based on the specific climate and data

conditions of the South China Sea, the deep learning framework has
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a certain degree of universality. However, due to the significant

differences in climate characteristics of different sea areas, direct

application to other sea areas may face challenges. For example, in

sea areas with relatively stable wind field changes and less typhoon

influence, our model may need to be appropriately adjusted to adapt

to the new environmental characteristics. Overall, our study

provides an example for the application of deep learning in the

field of wind field bias correction and offers a reference for

subsequent research and improvement in other sea areas,

contributing to the development of this field in a broader region.

In future extension research, we will investigate enhancing the

model’s capacity to simultaneously manage several meteorological

variables, including temperature, mean sea level pressure, air

pressure, and others. By engaging in multitasking learning, the

model has the potential to acquire additional environmental data,

resulting in enhanced precision when correcting wind speed and

wind direction. This study utilizes deep learning models to improve

the predictive precision of NWP models, thereby enhancing the

accuracy and dependability of weather forecasts. Additionally, the

exploration of its potential for probabilistic forecasting opens up

new avenues for future research and applications. As we have

shown, there are viable approaches to extend the model towards

generating probabilistic forecasts, which could greatly enhance its

practical value in meteorological predictions. This not only

highlights the versatility and adaptability of the model but also

indicates the direction for further improvement and development in

the field of wind field prediction. The objective is to provide

meteorologists with enhanced instruments for forecasting future

weather patterns and making well-informed choices when

managing severe weather occurrences.
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