Skip to main content

ORIGINAL RESEARCH article

Front. Mar. Sci.
Sec. Marine Biogeochemistry
Volume 11 - 2024 | doi: 10.3389/fmars.2024.1428621
This article is part of the Research Topic Role of the Southern Ocean in Atmospheric pCO2 Change: Observations, Simulations and Paleorecords View all 11 articles

Long-range transport of dust enhances oceanic iron bioavailability

Provisionally accepted
  • 1 University of California, Riverside, Riverside, California, United States
  • 2 Florida State University, Tallahassee, United States
  • 3 National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida, United States
  • 4 University of Leeds, Leeds, England, United Kingdom
  • 5 Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States

The final, formatted version of the article will be published soon.

    Wind-borne dust supply of iron (Fe) to the oceans plays a crucial role in Earth's biogeochemical cycles. Iron, a limiting micronutrient for phytoplankton growth, is fundamental in regulating ocean primary productivity and in turn the global carbon cycle. The flux of bioavailable Fe to the open ocean affects oscillations in atmospheric CO2 due to its control on inorganic carbon fixation into organic matter that is eventually exported to the sediments. However, the nature of dust-delivered Fe to the ocean and controls on its bioavailability remain poorly constrained. To evaluate the supply of wind-borne bioavailable Fe and its potential impact on Fe-based climate feedbacks over the last 120,000 years, we examine sediment profiles from four localities that define a proximal to distal transect relative to Saharan dust inputs. Bulk δ 56 Fe isotope compositions (average = -0.05‰) and FeT/Al ratios suggest crustal values, thus pointing to a dominant dust origin for the sediments at all four sites. We observed no variability in grain size distribution or in bioavailable Fe supply at individual sites as a function of glacial-versus-interglacial deposition. Importantly, there is no correlation between sediment grain size and Fe bioavailability. Spatial trends do, however, suggest increasing Fe bioavailability with increasing distance of atmospheric transport, and our sediments also indicate the loss of this Fe and thus potential bioavailability utilization once deposited in the ocean. Our study underscores the significance of Fe dynamics in oceanic environments using refined speciation techniques to elucidate patterns in Fe reactivity. Such insights are crucial for understanding nutrient availability and productivity in various ocean regions, including the Southern Ocean, where wind-delivered Fe may play a pivotal role. It is expected that dust delivery on glacial-interglacial timescales would be more pronounced in these high-latitude regions. Our findings suggest that studies linking Fe availability to marine productivity should benefit significantly from refined Fe speciation approaches, which provide insights into the patterns and controls on Fe reactivity, including atmospheric processing. These insights are essential for understanding the impacts on primary production and thus carbon cycling in the oceans and consequences for the atmosphere.

    Keywords: Iron, Dust, Isotopes, productivity, Glacial-interglacial

    Received: 06 May 2024; Accepted: 26 Jul 2024.

    Copyright: © 2024 Kenlee, Owens, Raiswell, Poulton, Severmann, Sadler and Lyons. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence: Jeremy D. Owens, Florida State University, Tallahassee, United States

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.