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Pattern of total organic carbon
in sediments within the
mangrove ecosystem
Yue Li1, Chuqi Long1, Zhijun Dai1,2* and Xiaoyan Zhou1

1State Key Laboratory of Estuarine and Coastal Research, East China Normal University,
Shanghai, China, 2Laboratory for Marine Geology, Qingdao Marine Science and Technology Center,
Qingdao, China
The sedimentary total organic carbon (TOC) in mangrove ecosystems plays an

essential role in the global carbon storage. Nevertheless, little information is

available about the pattern of TOC in sediments varying from bare and flat to

those beneathmangroves. To find out the roles of new-developingmangroves in

sedimentary TOC accumulation, a serials of sediment samples were collected

from the creek mudflat zone (CMZ) through the fringe mangrove zone (FMZ) to

the interior mangrove zone (IMZ) in young mangrove system of Nanliu River

Delta in China. Sediment compositions, TOC, total nitrogen (TN), molar C/N

ratios, and carbon stable isotopes (d13C) were analyzed to examine the

accumulation processes. The results revealed the distinct differences in the

sedimentary TOC values, with an obvious increasing trend from the CMZ and

FMZ to the IMZ. We quantified that terrestrials, marine-derived and mangrove-

derived sources contributed 39.2-74.1%, 24.7-63.1% and 0.9-6.9%, respectively,

to the sedimentary TOC in the mangrove ecosystems. The organic carbon

accumulation rates ranged from 2.59 to 269.60 g•m-2•a-1, with values of

8.77 ± 19.87, 24.78 ± 12.53, 167.19 ± 57.79 g•m-2•a-1 for CMZ, FMZ and IMZ.

Our work highlights information showing that young mangrove forests of the

tropical delta have important potential for carbon storage.
KEYWORDS

total organic carbon, organic carbon accumulation rates, sources, sediments,
mangrove ecosystem
1 Introduction

Mangroves are increasingly seen as carbon-rich (i.e., blue carbon) ecosystems, because

of the capacity to deposit and store carbon at a rather higher rate than those in terrestrial

forests by 1-2 orders of magnitude (Wang et al., 2019; Matos et al., 2020). Although

mangroves represent less than1% of the global coastal area, their productivity is high,

contributing 10-15% of the total carbon accumulation in coastal sediments (Bergamaschi

et al., 2012; Alongi, 2014). Therefore, mangrove ecosystem plays a disproportionate role in

global and local carbon budgets.
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Most studies indicate that mangroves have been declining at an

accelerating rate mostly because of deforestation and land usage

change (Zhong and Xu, 2011; Duarte et al., 2013; Serrano et al.,

2019). These losses led to the degradation of tree biomass, ecological

habitats and carbon deposit. In particular, degradation intensifies

the decomposition of stored carbon, emits quantities of greenhouse

gases into the ambient environment (Alongi, 2014; Zhu and Yan,

2022). To compensate for the loss of mangrove degradation,

restoration projects have been implemented to increase mangrove

areas and the carbon sequestration capacity. These projects are

important for alleviating local and global climate change (Alongi,

2014; Feng et al., 2019; Zhu and Yan, 2022).

Due to rapid sediment accretion in mangroves, high

autochthonous and allochthonous inputs, and low decomposition

rates of organic matter under anoxic conditions, mangroves

sedimentary carbon pools are much more effective than

aboveground and belowground plant biomass (Donato et al., 2011;

Breithaupt et al., 2014). The global average carbon accumulation rate

of mangrove sediments was around 220 g•m-2•a-1 (Twilley et al.,

2018). While the rates for Americas and Oceania were slightly lower

than the global average, Africa was at minimum and Asia was higher

than others (Jennerjahn, 2021). However, considering the large

differences between the environmental conditions of mangrove

ecosystems, there are large uncertainties in their sedimentary

carbon storage (Kusumaningtyas et al., 2019; Fest et al., 2022). The

within system variability of mangroves in the tropical delta can be

very high due to the large variability in features on small spatial scales

(Hinrichs et al., 2009; Woodroffe et al., 2016). Especially, the organic

carbon accumulation rates can be distinguished by different sources

and decomposition rates for different zones in mangrove ecosystem,

since sedimentary TOC sources is different between interior

mangrove area and bare zone (Tue et al., 2011). To better

understand the spatial distribution of sedimentary carbon storage

in mangrove ecosystem, a representative set of samples covering the

within system scale variability of tropical delta is urgently needed.

Furthermore, the sedimentary total organic carbon (TOC) in

mangrove can originate from autochthonous and allochthonous

sources (Alongi, 2014). Generally, the major source of sedimentary

organic carbon inmangroves are associated with mangrove materials

(Adame and Fry, 2016; Medina-Contreras et al., 2023). The

contribution of allochthonous sources (terrestrial or marine) may

be higher in river- or tide-dominated mangrove forests, mainly from

riverine sediment and marine plankton (Bouillon et al., 2003;

Kristensen et al., 2008; Zakaria et al., 2021). Identifying different

organic sources is of vital importance to evaluate the significance of

the “blue carbon” sink in mangroves, because each source

contributes differently to the carbon sequestration. TOC to total

nitrogen (TN) ratios (C/N) both with isotopic signatures (d13C) have
been widely used as effective geochemical tracers to identify organic

matter sources in estuarine and coastal environment (Ranjan et al.,

2011; Manju et al., 2016; Zhao et al., 2019; Sánchez and Gómez-León,

2024). The d13C of terrestrial organic matter usually shows more

depletion values (< -28‰), meanwhile marine-derived values

typically vary from -22‰ to -19‰ (Ke et al., 2017). The values of

C/N for terrestrial and marine-derived sources are 5-8 and > 15,

respectively (Meyers, 1997). In this research, application of the stable
Frontiers in Marine Science 02
isotope technique distinguished the contributions of different

organic sources to sedimentary TOC in mangrove ecosystems.

The mangrove forest areas in the Beibu Gulf are the second

largest mangrove forest in China (Long et al., 2022). To date, little is

known about the variations in sedimentary TOC of new-developing

mangrove ecosystem along this area. Therefore, the aims of this

research were (i) to investigate the spatial distribution of sedimentary

TOC within the new-developing mangrove ecosystems and (ii) to

analyze different sources of sedimentary TOC in the mangrove

ecosystems. By identifying the spatial variation and sources of

organic carbon in different zones of young mangrove ecosystem, it

will enhance the understanding of carbon storage in this region. This

work thereof can have significant implications for restoring TOC in

mangrove ecosystems of global tropical deltas.
2 Materials and methods

2.1 Study area

The Nanliu River is the largest south subtropical river in

Southwest China, with a total length of 287 km. Covering 550

km2, the Nanliu River Delta is the largest tropical delta in the Beibu

Gulf (Figure 1). The annual displacement and sediment discharge

were 5.13×109 m3 and 1.18×106 t, respectively (Li et al., 2017). The

delta is a tidal-dominated, and the hydrodynamics of the study area

are mainly controlled by waves (Long et al., 2022). The selected

mangrove area is located on Qixing Island, which is the largest

fluvial island of the Nanliu estuary (Figure 1). Mangrove species

such as Aegiceras corniculatum (L) Blano and Kandelia candel

(Linn.) are widely distributed, mostly within the five-year growth

period in this region.
2.2 Field sampling

Samples were collected in July 2020, and transect was set as the

shortest distance between the intertidal creek and land. This

transect was about 600 m long and consisted of a creek mudflat

zone (CMZ, S1-S25), a fringe mangrove zone (FMZ, S26-S40), and

an interior mangrove zone (IMZ, S41-S56) to better understand the

spatial variations in TOC in mangrove sediments. Sample collection

was conducted at the lowest tide level on 22 July. Fifty-six sediment

samples (0-3 cm) were collected with approximately 10 m intervals,

with approximately 20 m collected at several sites. The locations are

shown in Figure 1. Surface sediments were packaged in the labeled

polyethylene sealed bags, transported to the lab and then stored at

-20°C before analysis. Meanwhile, samples from different zones

were collected to analyze the bulk density. Elevation data were

collected monthly to calculate the sediment deposition rate.
2.3 Sample processes and analyses

Frozen surface samples were first thawed at room temperature

and completely dried with electric oven at 45°C.
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2.3.1 Sediment grain size
Each sediment sample was pretreated with 5 mL H2O2 (10%)

and 5 mL HCl (10%) sequentially to remove the organic matter and

carbonate and then washed with deionized water, followed by the

addition of 5 ml 5% (NaPO3)6 to prevent flocculation. After 15 min

of ultrasonic vibration, the grain size of the surface sediment sample

could be determined by a Beckman laser particle size analyzer

(LS13320, Coulter). Glass beads particle size standard material

(Chinese Standard Material GBW(E) 120009d) was selected to

determine the accuracy. The precision was lower than 0.3%.
2.3.2 Elemental and stable isotope analysis
Samples were ground to sieve an 80-mesh nylon screen for

elemental and stable isotope analysis. The TOC and d13C were

analyzed after removing carbonate carbon by acidification with HCl

(0.1 M), washed in deionized water, and subsequently dried at 65°C.

Total nitrogen (TN) was analyzed in non-acidified subsamples. The

TN and TOC concentrations were analyzed by an elemental

analyzer (TOC-V, Shimadzu). Standard materials (TMQC0177

and RMH-A073) were used to measure the accuracy of TOC and

TN, with the precision of 0.3% and 0.3%, respectively.

The organic carbon accumulation rates (OCAR) were

calculated by multiplying TOC content, bulk density with annual

deposition rate of the sediment.

The stable isotope d13C was measured by stable isotope mass

spectrometry (Delta Plus XP, Thermo). The accuracy of d13C was

determined using a variety of standard materials including Caffeine

(IAEA-600), Cellulose (IAEA-CH-3), Ammonium Sulfate (IAEA

N2) and Black Carbon (the Chinese Standard Material GBW04407

and GBW04408), with a precision of 0.1‰. d13C isotopes deviated

from the standard value by the following:

d 13C(‰ ) = (Rsample=Rstandard – 1)� 1000

Where Rsample was the isotope ratio (
13C/12C) of the sample, and

Rstandard was the isotope ratio (13C/12C) of the international

VPDB standard.
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2.3.3 Stable isotope mixing model
Bayesian isotopic modeling package Stable Isotope Mixing Model

in R (SIMMR) based on the C/N and d13C features were performed to

quantitatively calculate the proportional contributions of potential

organic carbon sources to deposited TOC (Parnell et al., 2010;

Watanabe and Kuwae, 2015). Given that early degradation of the

sedimentary organic carbon did not significantly alter the composition

of stable isotope, we assumed isotopic fractionation and concentration

dependency of 0. We ran the model 1×104 iterations, with the results

performed by a box plot describing the 50% confidence interval.
2.4 Statistical analysis

Different sources of organic carbon were identified by utilizing

a combination of atomic C/N ratios and the stable isotope d13C.
All statistical analyses were performed with SPSS software

(Ver 23.0), Origin software (Ver 9.1) and R programming (Ver

4.2.0). One-way ANOVA was employed to test the significance

differences of sediment composition, elemental and stable

isotopic composition in different zones. Principal component

analysis (PCA) was used to investigate the relationships between

geochemical parameters.
3 Results

3.1 Sediment composition

A plot of the percentages of sediment composition on a ternary

diagram is shown in Supplementary Figure S1. Mangrove surface

sediments were composed of sand, ranging from 46.66% to 98.65%

(Figure 2). Meanwhile, the silt fraction ranged from 1.25% to 43.29%,

with a clay fraction of less than 13.75%. The sand fraction of CMZ

(91.18 ± 6.2%) was highest but markedly dropped to 64.37 ± 11.28%

in IMZ (p<0.01), as shown in Table 1. The median grain size of

the sediment varied similarly to this variation pattern (p<0.01).
FIGURE 1

Study area and sampling sites; (A) Beibu Gulf; (B) Nanliu River Delta and locations of sampling sites.
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To contrast, the fine fraction (<63 mm) displayed an inverse trend,

increasing as follows: CMZ, FMZ and IMZ. The sediment grain sizes

of the different zones varied widely, with respective values of 265.62

± 149.58, 172.93 ± 44.58 and 110.24 ± 56.13 mm for the median size

in CMZ, FMZ and IMZ.
3.2 Elemental and stable
isotope composition

The contents and within system spatial variations in elemental

and stable isotope compositions in the mangrove sediments are

displayed in Table 1; Figure 3. Overall, the TOC values ranged from

0.02 to 0.66%. The mean TOC value of the IMZ was significantly

higher than those in the CMZ and FMZ, with values of 0.26 ± 0.08%,

0.06 ± 0.13% and 0.05 ± 0.03%, respectively (p<0.01). There was no

significant difference between the CMZ and FMZ. The TN contents

ranged from 0.006 to 0.065%, which slightly increased from 0.01 ±

0.01% to 0.02 ± 0.01% for CMZ and FMZ, but the values in IMZ

(0.04 ± 0.01%) were significantly higher (p<0,01). The within-system

d13C values varied from -23.66‰ to -19.95‰, with significant

differences between different zones. The organic carbon
Frontiers in Marine Science 04
accumulation rates ranged from 2.59 to 269.60 g•m-2•a-1, with

values of 8.77 ± 19.87, 24.78 ± 12.53, 167.19 ± 57.79 g•m-2•a-1 for

CMZ, FMZ and IMZ.

The significant component loading matrix of principal

component analysis (PCA) is listed in Supplementary Table S1.

The first two components accounted for 83.82% of the data

variation (Figure 4). The first component (PC1) illustrated

71.03%, which showed a significant positive loading for clay, silt,

TN and TOC, with a negative loading for sand. These results also

supplied strong evidence for the increase of TOC and TN with the

increase of fine fractions. The second component (PC2) accounted

for12.59%, showing significant positive load for d13C.
3.3 Contributions of sedimentary organic
carbon sources

Sedimentary d13C values varied narrowly from -23.66‰ to

-19.95‰, with C/N values ranging from 5.43 to 28.01 (Figure 5).

Three sources (terrestrial organic, marine derived organic and

mangrove derived organic) were selected as endmembers for the

mixing model. The signatures of endmembers were obtained from
FIGURE 2

The bulk sediment composition in mangrove ecosystems.
TABLE 1 Sediment composition, median size, elemental TOC, TN, atomic C/N, and d13C of the sediments from different zones in the Nanliu Delta
mangrove ecosystem.

Location n Sediment composition (%) Median
size
(mm)

TOC
(%)

TN
(%)

C/N d13C
(‰)

Clay Silt Sand

CMZ 25 1.03 ± 1.28 7.78 ± 5.01 91.18 ± 6.2 265.62 ± 149.58 0.06 ± 0.13 0.01 ± 0.01 8.06 ± 4.53 -21.61 ± 0.53

FMZ 15 1.68 ± 0.94 10.68 ± 7.75 87.65 ± 8.41 172.93 ± 44.58 0.05 ± 0.03 0.02 ± 0.01 6.95 ± 1.12 -20.97 ± 1.19

IMZ 16 5.46 ± 3.11 30.16 ± 9.09 64.37 ± 11.28 110.24 ± 56.13 0.26 ± 0.08 0.04 ± 0.01 11.09 ± 2.67 -22.32 ± 0.47

* ** ** ** ** ** ** **
CMZ, creek mudflat zone; FMZ, fringe mangrove zone; IMZ, interior mangrove zone*, P<0.05; **, P<0.01.
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region-relevant literature. The terrestrial organic and marine derived

organic sources were demonstrated by riverine sediments flowing

into the Beibu Gulf (C/N = 12.6 ± 1.9 andd13C = (-24.3 ± 0.6)‰) and

phytoplankton in the South China Sea (C/N = 6.5 ± 0.7 andd13C =

(-16.1 ± 0.8)‰) (Xue et al., 2009; Zhang et al., 2021).The contents of

C/N andd13Cwere usually consistent between mangrove litter leaves

and dead roots (Kusumaningtyas et al., 2019; Sasmito et al., 2020).

Thus, the mangrove endmember was regarded by the leaves of
Frontiers in Marine Science 05
different mangrove species nearby the coastal areas (C/N = 36.4 ±

7.3 andd13C = (-28.7 ± 0.8) ‰) (Xia et al., 2015; Meng et al., 2017).

Most sediment samples were located in the area connecting

marine phytoplankton and riverine sediments, indicating most

mixtures of these two endmembers. Variations ind13C and TOC

were observed among the three zones (Table 1). Therefore, the

contributions of different endmembers in the CMZ, FMZ and IMZ

were estimated, as shown in Figure 6. The contribution proportion

of riverine sediments ranged from 39.2% to 74.1%, with values of

61.3 ± 3.8%, 43.7 ± 16.1% and 68.9 ± 4.1% for the CMZ, FMZ and

IMZ, respectively. The values of marine phytoplankton were 35.1 ±

1.8%, 53.5 ± 16.3% and 26.8 ± 2.1% (ranging from 24.7% to 63.1%).

The contribution of TOC from mangrove leaves was quite small,

with values from 0.9% to 6.9%. TOC from riverine sediments

accounts for many more fractions of TOC in both the CMZ and

IMZ. However, the fractions of marine phytoplankton were quite

equal to the part of riverine sediments in the FMZ.
4 Discussion

4.1 Effects of mangrove on sediment
grain size

The mangroves sediment composition can provide useful

information to understand the effects of sedimentation processes

of fluvial and marine (Yang et al., 2014; Tue et al., 2018). The
A B

DC

FIGURE 3

The within-system spatial variations in elemental and isotopic composition for sediments: (A) TOC (%); (B) TN (%); (C) d13C (‰); (D) The organic
carbon accumulation rates (g•m-2•a-1).
FIGURE 4

Principal component analysis (PCA) plot showing the
multivariate variation.
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mangroves sediment was mainly composed of sand and silt. It is

consistent with the finding from the Marapanim River estuary,

where sediments consist of sand (12-64%) and silt (34-80%) (Matos

et al., 2020). Additionally, the results were similar to the

observations from the Tien Yen Bay mangrove forests (Tue et al.,

2018). The pattern of sediment composition does not fit with the

reports of mangroves from the Gulf of Papua, the Red River Delta,
Frontiers in Marine Science 06
Vietnam and Jiulongjiang Estuary, China (Walsh and Nittrouer,

2004; Alongi et al., 2005; Tue et al., 2012). The higher fractions of

sand and silt in this study reflected a high energetic environment

influenced by wave and fluvial processes (Long et al., 2022).

Mangrove ecosystems play a crucial role in sedimentary

composition in coastal environments (Furukawa and Wolanski,

1996). The dense mangrove trees can effectively reduce wave energy

and tidal flows and capture silt and clay. Low hydrodynamics in

mangrove creeks may cause a higher fraction of fine sediments.

Research has described that tidal currents decrease from bare flats

through pioneer vegetation to interior mangroves (Van Santen

et al., 2007). Because of the hydrodynamic attenuation and the

ability of vegetation roots to combine sediments, fine fractions can

accumulate in the interior mangrove. The fine fractions increased

from the CMZ through the FMZ and to the IMZ, which indicated

that mangrove ecosystems enhanced the accumulation of fine

sediment grains. However, the ages of the native mangrove

species of Aegiceras corniculatum in this study were less than 5

years, less able to capture more fine particles. This may be one

reason why the fine fraction in the IMZ was lower than those in

other researches (Xue et al., 2009; Zakaria et al., 2021; Zhang

et al., 2021).
4.2 Impacts of ecosystem on sedimentary
organic carbon storage

The sedimentary TOC and TN contents in this study were lower

than those found in adjacent coastal sediments (Kauffman et al.,

2018; Vilhena et al., 2018; Jiang et al., 2020).The highest value was

surprisingly found in S2 from CMZ, which was significantly

different from the values of ambient sites. The CZ is affected by

the tidal scouring process, and phytoplankton may be washed into

the area at high tide and remained at low tide. This may cause the

extremely high TOC content in S2. Considering the strong
FIGURE 5

Tracer plot of d13C and C/N (molar ratio) of sediments from the
Nanliu River Delta and potential endmembers.
A B C

FIGURE 6

Variations in the contributions of different endmembers to sedimentary TOC by SIMMR: (A) CMZ; (B) FMZ; (C) IMZ. (Boxes enclose the 50%
credibility interval; lines within boxes represent median values).
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hydrodynamic effects and high rate of sediment deposition in this

mangrove ecosystem, the carbon storage capacity cannot be

underestimated (Long et al., 2022). The organic carbon

accumulation rates of IMZ (167.19 ± 57.79 g•m-2•a-1) were 3-5

times higher than the freshwater lake, while they were slightly below

the global mangrove average rate (Jennerjahn, 2021; Mei et al.,

2024). The carbon accumulation rates were related to continent,

biogeographic region and coastal settings. The accumulation rates

was estimated at 38 ± 13.5 g•m-2•a-1 in a macro-tidal mangrove

forest on the Amazon coast (Passos et al., 2023). Liu et al. (2020)

reported that the accumulation rate of burial organic carbon was

estimated at 130 g•m-2•a-1 in the lower layer of mangrove with

12 years in Nanliu River estuary. Thereafter, even though the

mangrove ecosystem is new-developing in this study, the carbon

accumulation rate cannot be ignored.

The TOC and TN concentrations increased from the CMZ and

FMZ to the IMZ (Figure 3), which may be directly influenced by fine

fractions (clay and silt). This result suggested the capture ability for

carbon and nutrient nitrogen together with the fine fractions of the

mangrove ecosystem. The relationship among sediment composition,

elemental and stable isotope composition is shown in Supplementary

Figure S2. The TOC and TN contents increased as the fine fractions

increased. This positive correlation pattern may be caused by the

large surface areas and high adsorption capacity of the fine fractions

(Loring and Rantala, 1992; Kumar et al., 2016). Obviously, there was a

strong negative correlation between these contents and the sand

fraction, indicating poor accumulation of this matter in the coarser

fraction. The significant positive correlation between TOC and TN

(p<0.001) suggested the probable same origin of these matter.

There was an inverse relationship between sedimentary TOC

and d13C, same with findings of other sediment cores in mangroves

and other organic carbon-rich sediments, which presented quietly

different from sediments of the oxygen minimum zone of the

northeastern Mexican Pacific (Bouillon and Boschker, 2006;

Sánchez et al., 2013; Zhang et al., 2021). The shift in relationship

between sedimentary TOC and d13C may be caused by the

microbial mechanisms and the different organic carbon sources.

Due to the very early development stage of mangroves and most

creek mudflat areas, the degradation of organic carbon could be

neglected. The TOC and d13C relationship mostly resulted from

different mixtures of organic carbon sources.
4.3 Sources of sedimentary organic carbon

Sedimentary organic carbon from different sources usually

demonstrate different elemental and stable isotope characteristics,

providing clues on the origins of the organic carbon pool (Bouillon

et al., 2008; Sasmito et al., 2020). The d13C versus C/N values

indicated mixed sources of the sedimentary organic carbon. As seen

in Figure 6, sedimentary TOC mostly originated from marine

phytoplankton and riverine sediments. Furthermore, the

contribution of riverine sediments is higher than that of marine-

derived organic carbon at most sites, which is 2.5-fold higher in the

IMZ. The hydrogeomorphic process could influence the differences

in sedimentary TOC (Saintilan et al., 2013). When the tide
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transports riverine sediment to the estuary, the air-exposed roots

attenuate tide velocity by increasing friction. Thus, the velocity of

ebb tide carrying riverine sediments is slowed, and then the

sediment is deposited and stored, known as the “tidal pumping”

effect (Woodroffe et al., 2016). This may be responsible for the large

contribution of riverine sediments, which could be regarded as the

terrigenous organic carbon source.

This result is similar to those of other studies, which showed a

larger proportion of marine derived organic carbon source

(Kennedy et al., 2004; Tue et al., 2012, Tue et al., 2018).

Marchand et al (Marchand et al., 2005). found that algal material

occupied a large part of sedimentary TOC, especially in the very

early development stages of mangrove forests. Research has found

that contribution of marine described organic carbon to the

sedimentary TOC gradually decreased from the subtidal habitat

to the bottoms and banks of creeks (Matos et al., 2020). This spatial

pattern was not obvious in this study, perhaps caused by the high

energetic environment and the short sampling distance.

Meanwhile, the growth period of the mangroves in this study

was less than 5 years. The forest is not as dense and lush as other

mature mangroves. This resulted in a low contribution (0.9%–6.9%)

of mangrove leaves to sedimentary TOC. Conversely, research

found that natural mature mangrove forests contributed more

than 80% of sedimentary organic carbon in the mangrove

ecosystems (Tue et al., 2012). Similarly, Zhang et al. found that

the average contribution of mangrove-derived organic carbon was

more than 68.5% (Zhang et al., 2021). The large discrepancy

between previous studies and present results might be caused

by several factors, including hydrodynamic conditions,

geomorphological settings, mangrove density and growth stage

(Chen et al., 2017). Furthermore, previous work also found that

the short-term restoration of mangroves (less than two decades) will

markedly increase the sediment carbon reserves (Feng et al., 2019).

Therefore, the low contribution of mangrove forests to sedimentary

TOC in this study confirms the potential of carbon storage of

immature mangroves in the future. Even though the mangrove

ecosystem in this study was new-developing, it also played an

important role in carbon sequestration. Furtherly, while the

amount of carbon sequestration of the mature mangroves is well

known, the high carbon accumulation rate of young mangroves

should not be ignored. It means that cultivation of young

mangroves is very important to conserve and restore the

mangrove ecosystem.
5 Conclusions

To better understand the spatial pattern of sedimentary organic

carbon in mangrove ecosystems, a within system transect was

selected to obtain a representative set of samples from developing

immature mangroves in the tropical Nanliu River Delta. The

majority fraction of mangrove sediment was sand and silt,

reflecting a high energetic environment. There were significant

differences in TOC, TN and d13C between the different zones.

The TOC contents increased as follows: CMZ<FMZ<IMZ,

suggesting the capture ability of organic carbon for mangroves.
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The covariation between C/N and d13C suggested a mixture of

sources (riverine sediment and marine phytoplankton) contributing

to the sedimentary organic carbon. Furthermore, the contribution

of riverine sediments is higher than that of marine-derived organic

carbon at most sites, which is 2.5-fold higher in the IMZ. The

contribution of mangrove leave only occupies less than 7%. As

mangroves grow, the proportion of mangroves to sedimentary TOC

will also increase. In the future, mangrove restoration, which is one

of the most important carbon sink routes, should be emphasized

through policies.
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