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Marine sediments host heterogeneous protist communities consisting of both

living benthic microorganisms and planktonic resting stages. Despite their key

functions in marine ecosystem processes and biogeochemical cycles, their

structure and dynamics are largely unknown. In the present study, with a

spatially intensive sampling design we investigated benthic protist diversity and

function of surface sediment samples from three subregions of the

Mediterranean Sea, through an environmental DNA metabarcoding approach

targeting the 18S V4 region of rRNA gene. Protists were characterized at the

taxonomic level and trophic function, both in terms of alpha diversity and

community composition, testing for potential differences among marine

subregions and bathymetric groups. Overall, Alveolata and Stramenopiles were

the two divisions that dominated the communities. These dominant groups

exhibited significant differences among the three Mediterranean subregions in

the alpha diversity estimates based on the detected ASVs, for all computed

indices (ASV richness, Shannon and Simpson indices). Protist communities were

also found to be significantly different in terms of composition at the order rank in

the three subregions p-value < 0.01). These differences were mainly driven by

Anoecales, Peridiniales, Borokales, Paraliales and Gonyaulacales, which together

contributed almost 80% of the average dissimilarity. Anoecales was the dominant

order in the Ionian – Central Mediterranean and Adriatic Sea, but with

considerably different relative abundances (52% and 36%, respectively), while

Borokales was the dominant order in the Western Mediterranean Sea (33%).

Similarly, significant differences among the three marine subregions were also

highlighted when protist assemblages were examined in terms of trophic

function, both in terms of alpha diversity (calculated on the ASVs for each

trophic group) and community composition p-value < 0.01. In particular, the

Adriatic Sea stood out for having the highest relative abundance of autotrophic/

mixotrophic components in the surface sediments analyzed. Conversely, no

significant differences in protist assemblages were found among depth groups.

This study provided new insights into the taxonomic and trophic composition of
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benthic protist communities found in Mediterranean surface sediments,

revealing geographical differences among regional seas. The results were

discussed in relation to the Mediterranean environmental features that could

generate the differences among benthic protist communities.
KEYWORDS

benthic protists, eDNA metabarcoding, Mediterranean Sea, resting stages, sediments,
trophic function
1 Introduction

Eukaryotic unicellular organisms belonging to the polyphyletic

group of marine protists play a variety of crucial roles in marine

ecosystems and the whole Earth’s biosphere, from primary

production to biogeochemical cycling and climate regulation

(Caron et al., 2012). In particular, protist communities of marine

benthic habitats exhibit key ecosystem functions, coupling the

benthic and pelagic compartments. Protists found in marine

sediments are typically nanosized (< 20 um), barotolerant and

can assume diverse trophic roles (e.g., predators, decomposers,

parasites or symbionts). They are responsible for energy transfer

through aquatic food webs, acting as trophic links, contribute to the

carbon dioxide exchanges, storage and decomposition of organic

matter and nutrients remineralization (Caron et al., 2012; Thurber

et al., 2014; Schoenle et al., 2021). Moreover, protist diversity of

marine sediments consists not only of truly active benthic species,

but also of resting stages of eukaryotic planktonic organisms (e.g.,

diatoms and dinoflagellates), that ensure them the long-term

survival in harsh environmental conditions (Belmonte and

Rubino, 2019). Therefore, marine sediments act as “seed banks”,

allowing the spatio-temporal persistence of these species, with only

a very small proportion of resting stages needed to originate

blooms in response to environmental changes (Ellegaard and

Ribeiro, 2018).

Due to their pivotal and multifaceted ecosystem functions,

shedding light on the diversity and composition of benthic

protists, at the taxonomic and functional level, is thus of crucial

importance for a better understanding of marine ecosystems and

predicting their response to ongoing climate and environmental

changes, in terms of food web dynamics, biogeochemistry, carbon

sequestration and sediment stability (Fuks et al., 2012). Lastly,

gaining information on the potential presence of planktonic

resting stages in marine sediments may help in disentangling the

spatio-temporal dynamics of overlying plankton communities, as

well as tracing present and predicting future blooms of potentially

harmful algae (Ellegaard and Ribeiro, 2018). Despite the urgent

need of more accurate information, sediments are one of the least

studied marine environments due to its vastness and remote access,

which implies difficulties in sampling activities, and current

knowledge on benthic protists relies on sparse and locally
02
restricted data (Forster et al., 2016; Cordier et al., 2022).

Traditionally, taxonomic and functional characterization of

benthic marine protists have been challenging due to

methodological limitations. Many small eukaryotic species (< 3

mm) living in the sediments are unculturable, poorly described or

unknown and/or difficult to identify based on morphological

classification (Forster et al., 2016; del Campo et al., 2023).

Moreover, resting stages produced by protists (e.g., diatom and

dinoflagellate spores and cysts, respectively) are often difficult to

identify and their germination requires long incubation periods

(Kremp et al., 2018; Ellegaard et al., 2020).

In the last decade, the DNAmetabarcoding approach applied to

environmental samples (eDNA metabarcoding; Taberlet et al.,

2012; Taberlet et al., 2018) has proven to be a useful tool to

overcome the above-mentioned difficulties in studying the

diversity of protists in marine ecosystems (De Vargas et al., 2015;

Burki et al., 2021), including European and Mediterranean coastal

sediments (Massana et al., 2015; Reñé et al., 2020). However, this

methodology is not free from technical biases that may originate in

different steps of the experimental workflow, from sample collection

and DNA extraction protocols, to the choice of the barcode gene

and primers (e.g., preferential amplification of some taxa, gene copy

number variation, etc.), the use of sub-optimal bioinformatic

pipelines and incomplete/inaccurate reference sequence databases

(Ruppert et al., 2019; Ficetola and Taberlet, 2023). All the above-

mentioned shortcomings may result in false negatives (i.e., the

failure to detect some taxa), false positives (due to misclassification

or contamination), or in biased relative abundances of sequences.

Moreover, studying protist communities in marine sediments using

eDNA can be challenging, due to the presence and temporal

persistence of intra- and extra-cellular DNA in surface sediments,

sometimes originated from different sources (Pawlowski et al.,

2022). Nevertheless, the rapid maturation of the field, including

the development of strategies to mitigate these issues and the

deriving uncertainties (Santoferrara, 2019), as well as the growing

accumulation of new data has made metabarcoding a powerful and

cost-effective tool for the study of marine protist diversity and

ecology (Burki et al., 2021).

The Mediterranean Sea is an oligotrophic basin, highly

differentiated into subregions based on hydrodynamic and

climatological regimes as well as human coastal pressures
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(Reygondeau et al., 2017; Ayata et al., 2018). Therefore, trophic

conditions and productivity differ among subregions, and this may

be reflected in the structure and dynamics of marine protist

assemblages in the water column. Marine areas of high

productivity are mainly located near important freshwater inputs

from rivers (D’Ortenzio and Ribera d’Alcalà, 2009). In addition,

human activities are important drivers that significantly affect the

functioning of coastal and offshore marine ecosystems, both pelagic

and benthic (i.e., fishing net trawling, dredging, translocation,

eutrophication, ballast water discharge and mariculture) (Cloern

et al., 2016; Casabianca et al., 2022). This could suggest that the

diversity and community composition of protist assemblages may

vary in the different Mediterranean subregions, as well as their

trophic structure and dynamics (Burki et al., 2021).

In this study, we investigated benthic protist assemblages (i.e.,

the living and resting stage components of unicellular eukaryotes)

from surface sediments in three subregions of the Mediterranean

Sea: Adriatic Sea, Ionian – Central Mediterranean and Western

Mediterranean, using an eDNA metabarcoding approach targeting

the V4 region of the 18S SSU rDNA and a spatially intensive

sampling design. Specifically, we aimed to: (1) characterize benthic

protist communities in terms of taxonomic composition and

function, and (2) test for potential differences in protist

assemblages among marine subregions and depth at both taxa

and trophic level.
2 Materials and methods

2.1 Samples collection

In the Mediterranean Sea along the Italian peninsula, a total of

94 sediment samples were collected at the surface (about 1 cm

depth) between 2015 and 2017 (Supplementary Table S1,

Supplementary Figure S1). Samples were collected using a Van

Veen grab, a sampler commonly used for sampling sediments from

coastal and shallow marine seafloor. This kind of grab is also

suitable for sampling different types of sediments (Klemm et al.,

1990). Despite the known limitations of grabs (e.g., premature/

incomplete closure, clogging, sediment loss, etc.), these samplers

should be preferred over corers for collecting surface sediments

(Moncada et al., 2024). Moreover, subsampling activity was applied

to grab samples, which contained the first layer of bottom sediment

collected in undisturbed areas. Precaution was also taken to

maximize the recovery of the surface sediment. The marine

subregions of the Mediterranean Sea were defined according to

the MSFD (Marine Strategy Framework Directive 2008/56/EC), as

described in Article 4 of the MSFD (Jensen et al., 2017; Servello

et al., 2019). In this study, we referred to them as the Adriatic Sea

(ADRIATIC), the Ionian – Central Mediterranean Sea (CMED),

and the Western Mediterranean Sea (WMED). The depths of the

samples ranged from 1 to 1,018 m, and they were divided into two

depth groups defined by a threshold corresponding to the sharpest

discontinuity in the distribution of depth values found between 152

and 171 m. This depth corresponds approximately to the outer
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margin of the continental shelf, right above the upper part of the

continental slope. The distribution of the samples above and below

this discontinuity resulted in two groups of 64 and 30 sites,

respectively, with depths ranging from 1 to 161 m in the first

group and from 162 to 1,018 m in the second group.
2.2 Molecular analysis

Before DNA extraction, samples were treated to separate resting

stages from sediments according to the procedures described in

Kim et al. (2016); Perini et al. (2019) and Casabianca et al. (2020).

For each sample, DNA was extracted using DNeasy PowerSoil Kit

(Qiagen, Hilden, Germany) according to the manufacturer’s

instructions with the following modifications. Briefly, an

incubation step at 70°C for 10 min was performed prior to the

bead-beating step which was increased to 20 min. Both steps were

added to facilitate the rupture of the resting stages. All

centrifugation steps were performed at 12,000 rpm with a final

total DNA elution of 50 µl. Amplification of the V4 region of the

18S SSU rDNA was performed using TAReuk454FWD1 and

TAReukREV3 (Stoeck et al., 2010). Illumina adapters, PCR

reaction mixture and thermal conditions were described in

Marinchel et al. (2023). Three independent PCR replicates were

performed for each sample and then pooled for sequencing, in order

to minimize the effects of PCR stochasticity. Negative controls

(blanks) were included during the resting stage purification phase

(N = 3), DNA extraction (N = 28) and PCR amplification (N = 6) to

control for potential contaminants throughout the whole

experimental workflow. Positive controls (N = 6) were included

in each PCR amplification batch to check for potential amplification

failure or bias and test the efficiency of the bioinformatic parameter

set. Positive controls were represented by mock communities

assembled using four diatom cultured strains of Chaetoceros

socialis , Guinardia flaccida , Pseudo-nitzschia spp., and

Skeletonema marinoi and three dinoflagellate cultured strains of

Alexandrium minutum, A. pacificum, and Scrippsiella spp. For each

taxon included in the mock communities, DNA was extracted from

cultured cells using DNeasy Plant Kit (Qiagen, Hilden, Germany)

according to the manufacturers’ instructions. DNA was quantified

using Qubit fluorometer with a Quant-iT dsDNA HS Assay Kit

(Invitrogen, Carlsbad, CA, USA) and mixed using equimolar

concentrations (2 ng/µl). Positive controls were then amplified

and processed equally to environmental samples. PCR products

were purified with the MinElute PCR Gel Extraction Kit (Qiagen,

Hilden, Germany), according to the manufacturer’s protocol.

Library preparation was performed in two amplification steps: an

initial PCR amplification with specific primers and a subsequent

amplification integrating relevant flow-cell binding domains and

unique indices (using the NexteraXT Index Kit; FC‐131‐1001/FC‐

131‐1002). The obtained libraries were sequenced at Fondazione

Edmund Mach (S. Michele a./A., Trento, Italy) using an Illumina

MiSeq platform (2 x 300 bp paired-end sequencing). A total of 94

marine samples were sequenced (ADRIATIC, N = 46; CMED, N =

30; WMED, N = 18).
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2.3 Bioinformatic analysis

Demultiplexed fastq reads were checked for sequence quality

using FastQC v0.12 (Andrews, 2010) and trimmed using Cutadapt

version 3.5 (Martin, 2011). Primer sequences and their reverse

complements were trimmed in both directions, with the default

maximum error rate of 0.1. Sequences less than 80 base pairs long

were filtered out. Trimmed reads were then imported into QIIME2

(Bolyen et al., 2019) for quality filtering, denoising, merging, and

classification. Quality filtering was performed with a minimum

quality threshold of 25 per base. Denoising was performed with

DADA2 (Callahan et al., 2016) using the q2-dada2 plugin with the

following parameters set to: –p-trunc-len-f 244 and –p-trunc-len-r

193. The obtained Amplicon Sequence Variants (ASVs) were

classified using the VSEARCH algorithm (Rognes et al., 2016)

against the PR2 Protist Ribosomal Reference database, ver. 5.0.0

(Guillou et al., 2013), using a sequence identity threshold of 97%. It

should be emphasized that the PR2 database classification treats

several diverse groups of protists as actual taxonomic divisions, even

though contemporary classification systems do not recognize them as

such. This is the case for Alveolata, Stramenopiles, Opisthokonta, and

Rhizaria. We utilized this nomenclature throughout the text to ensure

agreement with the reference sequence database. The metabarcoding

dataset was exported from QIIME2 and then imported in R (ver.

4.3.1; R Core Team, 2022) for the post‐sequencing removal of

contaminant reads. Decontamination of all obtained ASVs was

performed using MICRODECON (McKnight et al., 2019), a specific R

package developed for the identification and removal of contaminant

reads. Through an iterative process, a constant (i.e., ASV or OTU

fully emerged as a contaminant) is found and used for samples

decontamination. Specifically, the decon function was run with

default parameters, except for the thresh parameter, which was set

to 1 to prevent the removal of rare taxa. The decontaminated

metabarcoding dataset was then imported again in QIIME2 for the

removal of non-target taxa (i.e., pluricellular organisms, fungi)

through the filter-table plugin of q2-taxa (–p-exclude). Taxonomies

were collapsed at the division and order ranks using the QIIME2 taxa

collapse plugin with the –p-level flag set to 3 and 6, respectively.
2.4 Statistical analysis

Statistical analyses were performed using R (ver. 4.3.1; R Core

Team, 2022) and PAST version 4.08 (Hammer et al., 2001). The

decontaminated metabarcoding dataset was used to create

rarefaction curves using the rarecurve function of VEGAN R

package ver. 2.6-4 (Oksanen et al., 2017). Read counts were

normalized into relative abundances using the decostand function

(method = “total”) using VEGAN R package; all further analyses were

performed on the normalized dataset.

To estimate protists alpha diversity of the three different marine

subregions, we computed ASV richness for each site using the

specnumber function in VEGAN R package for: (a) all the obtained

ASVs (total), (b) for each protist division separately (excluding

those with less than two ASVs), and (c) for protist trophic function
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separately (see below for details on the trophic classification). In

addition, we calculated Shannon and Simpson indices for each

division represented with more than one ASV, and for each trophic

function separately, using the diversity function of the VEGAN R

package, setting “index = shannon” and “index = simpson”,

respectively. To compare ASV richness, Shannon and Simpson

indices obtained from each sample among subregions, we

computed Kruskal-Wallis test which, in case of significant

differences, was followed by Dunn’s post hoc test with p-values

adjusted according to Bonferroni correction. These tests were

conducted in PAST.

The analysis of community composition was performed at both

taxonomic level, collapsing ASVs at the order level, and trophic

function. ASVs that were not classified at order rank were removed

from the dataset.

Protists were classified into four functional groups based on their

trophic function: autotrophs/mixotrophs, heterotrophs, parasites,

and heterotrophs/parasites. The autotrophic and mixotrophic

components were treated together because the taxonomic rank

used for ASVs classification (i.e., order) could often include taxa

with both autotrophic and mixotrophic behavior (i.e.,

dinoflagellates). Similarly, the heterotrophic/parasitic trophic group

was assigned to the taxonomies that could have heterotrophic or

parasitic trophism (in this study Sagenista and Opisthokonta). The

trophic function was assigned according to Armeli Minicante et al.

(2019) and Encyclopedia of Life (https://eol.org/).

To reduce the impact of outliers, the protist community

composition was analyzed by non-metric multidimensional

scaling (nMDS) based on Euclidean distances, using the

metaMDS function of the VEGAN R package for both taxonomic

classification (order rank) and trophic function. Multivariate

differences between sample groups were analyzed through the

analysis of similarity (ANOSIM) and adjusted using Bonferroni

correction to check for significant differences between subregions

and depth groups considering both taxonomic classification (order

rank) and trophic function of protists. Two-way and one-way

ANOSIM tests were performed in PAST using 999 permutations

and Euclidean distance. To assess which taxonomic orders were

responsible for the observed differences among groups, the

similarity percentage (SIMPER) test was performed on Euclidean

distance in PAST.

Figures were created using GGPLOT2 package ver. 3.4.0

(Wickham, 2016).
3 Results

3.1 Sequencing

After trimming and bioinformatic filtering, a total of 1,633,778

merged reads were obtained from Illumina amplicon sequencing,

representing 6,589 amplicon sequence variants (ASVs). In the mock

positive controls, we found 130,109 reads, corresponding to 57

ASVs. Of these, 24 ASVs (129,085 reads) were assigned to the genus

or species rank of the protist taxa included in the mock
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communities, 3 ASVs were classified at a higher taxonomic rank

(102 reads); 25 ASVs (289 reads) remained unassigned, and five

were assigned to Minorisa minuta (633 reads), a common

heterotrophic nanoflagellate found in coastal waters (Keeling and

del Campo, 2017). Overall, all the target taxa were amplified, but

false negatives (i.e., the failure to detect a taxon, which was included

in the mock community) occurred for the diatom genera

Chaetoceros and Pseudo-nitzschia, resulting in two false negatives

each. After completing the screening of the mock positive controls,

they were removed from the dataset for further analysis (i.e.,

statistical analysis).

In the negative controls (blanks), we identified a total of 51,898

reads, corresponding to 209 ASVs. Of these, 116 ASVs (37,465

reads) were assigned to non-target taxa (i.e., Metazoa, Fungi,

Streptophyta) or remained unassigned. The ASVs found in

blanks, which were identified as eukaryotic protists were assigned

to the fol lowing divisions: Amoebozoa, Chlorophyta,

Choanoflagellata, Alveolata and Stramenopiles (14,433 reads;

93 ASVs).

During the decontamination analysis, a total of 11 ASVs

identified as systematic contaminants were removed from the

entire dataset, all of which belonged to non-target groups of

organisms (i.e., non-protists). Moreover, 52 ASVs identified as

occasional contaminants were occasionally removed from some

samples (for a total of 103,343 reads), when they did not reach the

abundance threshold inferred from the algorithm for filtering out

occasional contaminations. Of these, 19 ASVs were assigned to

protist taxa, for a total of 66,079 reads removed; specifically, they
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belonged to Caecitellaceae (47,185 reads), Bicoecea (16,060 reads),

Alexandrium spp. (1,086 reads), Acanthoecida (949 reads),

Paraphysomonas and Chaetoceros spp. (399 and 400 reads,

respectively). The non-protist taxa removed from the dataset for

being identified as contaminants belonged to Metazoa, Fungi,

Streptophyta, Pseudofungi, Lobosa, Mesomycetozoa, Conosa,

Rhodophyta, Breviatea, Amoebozoa, and Ulvophyceae class of

Chlorophyta. After the post-sequencing decontamination analysis,

the dataset retained a total of 1,348,073 reads, corresponding to 6,578

ASVs. The dataset was then further refined by removing unclassified

ASVs (387,624 reads) and those corresponding to non-protist

eukaryotes and non-target pluricellular organisms (254,400 reads).

The final dataset comprised 706,049 reads, which corresponded to

1,766 ASVs, classified into 389 protist taxa. The rarefaction curves

showed an appropriate sequencing depth, with only a few samples

failing to reach the plateau (Supplementary Figure S2).
3.2 Diversity of the benthic
protist communities

The detected protist taxa belonged to 14 divisions (Figure 1),

corresponding to 63 classes and 117 orders (Supplementary Figure S3).

In the three marine subregions, Alveolata and Stramenopiles

resulted to be the divisions with the highest relative abundances

(Supplementary Table S2). The highest relative abundance recorded

for Alveolata was found in ADRIATIC (66.18%), while in CMED,

Stramenopiles were the most represented (57.82%). WMED
FIGURE 1

Taxonomic composition of the protist communities at division level of the three Mediterranean subregions studied based on the regional sea
classification: Adriatic Sea (ADRIATIC), Ionian – Central Mediterranean Sea (CMED) and Western Mediterranean Sea (WMED). The bar charts (A) show
the relative abundance (y-axis) of each protist division in each sampling site (x-axis); sites are ordered by depth groups (superficial; deep). The pie
charts (B) show the relative abundance of divisions for each subregion: ADRIATIC, CMED and WMED.
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instead, resulted to be the most heterogeneous of the three

subregions, with a higher fraction of protists belonging to

Chlorophyta (5.14%) and Rhizaria (2.55%), besides Alveolata

(62.8%) and Stramenopiles (27.47%). In the two most represented

divisions (i.e., Alvolata and Stramenopiles), the orders mainly

contributing (> 10%) to the total relative protist abundances in all

the three subregions were Peridiniales (division Alveolata),

Borokales, Anoecales, and Paraliales (division Stramenopiles)

(Table 1). In addition, Gonyaulacales (Alveolata) were found to

contribute for about 10% of the total protist abundance in

ADRIATIC, but not in the other subregions, while Sagenista_X

(Stramenopiles) were found to account for about 22% of the total in

WMED, but not in other subregions.

When alpha diversity was calculated among subregions, the

mean per sample of each index was similar (Table 2). Specifically,

the highest value recorded for ASV richness was 52.06 in WMED

and the lowest was 49.07 in CMED. For the Shannon index, the

highest mean per sample was recorded in ADRIATIC (3.33) and the

lowest in WMED (3.1), while the mean per sample of the Simpson

index was 0.94 in ADRIATIC and CMED, and 0.9 in CMED. When

these indices were calculated for each division, some differences

among the mean per sample per subregion were highlighted. In
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ADRIATIC, the highest value for ASV richness and Shannon index

was recorded for Alveolata, while the highest Simpson index was

recorded for Kathablepharidacea and Prasinodermophyta. In

CMED, the highest mean per sample for ASV richness and

Shannon index was recorded for Stramenopiles, while the highest

Simpson index was recorded for Telonema. In WMED Alveolata

showed the highest values for ASV richness and Shannon index,

Kathablepharidacea showed the highest mean per sample for

Simpson index.

Considering all the protist ASVs obtained for each site, no

statistically significant differences between marine subregions were

highlighted for the alpha diversity indices computed (Kruskal-Wallis,

p-value > 0.05; Supplementary Table S3). When alpha diversity was

examined for each division separately, statistically significant

differences between marine subregions were found in the Alveolata

and Stramenopiles divisions for ASVs richness, Shannon and Simpson

indices (Kruskal-Wallis, p-value < 0.01; Supplementary Table S3), in

the Kathablepharidacea for ASV richness and Simpson index

(Kruskal-Wallis, p-value < 0.01; Supplementary Table S3), in the

Cryptophyta for Shannon index (Kruskal-Wallis, p-value < 0.05;

Supplementary Table S3) and in the Telonema for Simpson

index (Kruskal-Wallis, p-value < 0.05; Supplementary Table S3).
TABLE 1 Relative abundance of orders belonging to the Alveolata and Stramenopiles divisions in the three Mediterranean subregions.

Division Order ADRIATIC (N = 46) CMED (N = 30) WMED (N = 18)

Alveolata CONThreeP_X 1.97% 0 < 1%

Dinophyceae_X 9.42% 2.93% 4.59%

Acanthoecida < 1% 1.29% < 1%

Chloropicales < 1% < 1% 2.04%

Choreotrichida 1.87% 1.02% 1.6%

Cryomonadida < 1% < 1% 1.59%

Dino-Group-I 1.53% 4.77% 8.26%

Dino-Group-II 1.24% 4.70% 4.36%

Eugregarinorida < 1% 0% 2.05%

Gonyaulacales 11.08% 1.61% < 1%

Gymnodiniales 4.69% 1.96% 6.34%

Oligotrichida 4.18% < 1% 5.1%

Peridiniales 27.36% 15.92% 27.37%

Prorodontida < 1% < 1% 3.44%

Stramenopiles Gyrista_XX < 1% < 1% 3.16%

Sagenista_X 3.37% 2.76% 21.88%

Anoecales 36.35% 52.11% 15.13%

Borokales 18.44% 11.88% 33.08%

Chaetocerotales 2.23% 5.86% 4.92%

Labyrinthulomycetes 5.48% 5.92% 9.34%

Paraliales 29.52% 17.47% 6.78%

Paraphysomonadales 1.82% < 1% < 1%
In brackets, the number of sampled stations.
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Specifically, for all alpha diversity indices computed, significantly

higher values were highlighted for Alveolata in ADRIATIC

compared to CMED (Dunn’s post hoc test, p-value < 0.01;

Supplementary Table S4); while for Stramenopiles, significantly

higher values were found in CMED compared to ADRIATIC and

WMED (Dunn’s post hoc test, p-value < 0.01; Supplementary Table

S4). For the Kathablepharidacea division, significantly higher values

were found in CMED compared to ADRIATIC and WMED for ASV

richness and Simpson index (Dunn’s post hoc test, p-adjusted < 0.05;

Supplementary Table S4). For the Cryptophyta division, significantly

higher values were found in CMED compared to ADRIATIC for the

Shannon index (Dunn’s post hoc test, p-value < 0.05; Supplementary

Table S4). Lastly, for the Telonema division, significantly higher values

were found in ADRIATIC compared to WMED for the Simpson

index (Dunn’s post hoc, p-value = 0.053; Supplementary Table S4).

The taxonomic composition of the protist communities was

further investigated at the order rank. For this specific analysis, a

total of 2,867 reads, corresponding to 8 protist taxa, were removed

from the dataset as they were not unambiguously classified by order

rank. The resulting non-metric multidimensional scaling (nMDS)

plot showed partial, but not complete, overlap among the three

Mediterranean subregions (Figure 2).

There was a limited overlap between CMED and WMED, with

only six WMED stations having similar assemblages (three
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belonging to the 1-161 depth group and three to the 162-1,018

depth group). The protist assemblages found in the 162-1,018 depth

group of CMED and WMED showed no overlap. When both depth

groups were considered, the overlap between ADRIATIC and

CMED was greater. The result of the two-way ANOSIM test

rejected the null hypothesis of equal assemblages for the three

Mediterranean subregions (R = 0.26, p-value < 0.01), while no

significant differences were found when considering depth groups.

The one-way ANOSIM test performed at the order level to compare

the taxonomic composition between subregions, showed that the

dissimilarity between CMED and WMED was slightly higher (R =

0.27, p-value < 0.01; Supplementary Table S5); while the most

similar assemblages resulted to be those between ADRIATIC and

CMED (R = 0.23, p-value < 0.01; Supplementary Table S5).

The SIMPER analysis showed an average Euclidean

dissimilarity of 0.31 among the three subregions. Specifically,

ADRIATIC had a Euclidean dissimilarity of 0.29 with both

CMED and WMED, while CMED and WMED had a Euclidean

dissimilarity of 0.37 (Supplementary Table S6). The taxonomic

orders with the highest contribution to the mean dissimilarity

between the three marine subregions were Anoecales (33.78%),

Peridiniales (18.69%), Borokales (10.89%), Paraliales (9.16%) and

Gonyaulacales (6.76%), which together accounted for the 79.28% of

the mean dissimilarity (Figure 3). Anoecales was the dominant
TABLE 2 Alpha diversity indices expressed as mean ± standard deviation (SD) of each protist division based on ASVs in the three
Mediterranean subregions.

ASV Richness Shannon Index Simpson Index

Division ADRIATIC
mean
±(SD)

CMED
mean
±(SD)

WMED
mean
±(SD)

ADRIATIC
mean
±(SD)

CMED
mean
±(SD)

WMED
mean
±(SD)

ADRIATIC
mean
±(SD)

CMED
mean
±(SD)

WMED
mean
±(SD)

Alveolata 32.22 ± 15.88 19.07
± 13.08

26.22
± 16.08

2.96 ± 0.53 2.3 ± 0.74 2.61 ± 0.73 0.92 ± 0.04 0.83 ± 0.17 0.87 ± 0.1

Apusomonada 0.02 ± 0.15 0.13 ± 0.35 0.17 ± 0.38 0 0 0 0.98 ± 0.15 0.87 ± 0.35 0.83 ± 0.38

Centroplasthelida 0.02 ± 0.15 0 0 NA NA NA NA NA NA

Chlorophyta 2.52 ± 2.22 3.1 ± 2.86 5.83 ± 5.47 0.65 ± 0.63 0.73 ± 0.73 1.1 ± 1.02 0.9 ± 0.29 0.51 ± 0.37 0.46 ± 0.39

Cryptophyta 0.02 ± 0.15 0.23 ± 0.73 0.17 ± 0.38 0 0.07 ± 0.23 0 0.98 ± 0.15 0.95 ± 0.16 0.83 ± 0.38

Haptophyta 0 0.03 ± 0.18 0 NA NA NA NA NA NA

Kathablepharidacea 0 0.17 ± 0.38 0 0 0 0 1 0.83 ± 0.38 1

Nibbleridia 0 0 0.06 ± 0.24 NA NA NA NA NA NA

Opisthokonta 1.11 ± 1.37 1.43 ± 2.08 1.44 ± 1.5 0.23 ± 0.43 0.3 ± 0.59 0.29 ± 0.48 0.55 ± 0.44 0.59 ± 0.45 0.44 ± 0.44

Picozoa 0.13 ± 0.4 0.4 ± 0.81 0.22 ± 0.55 0.02 ± 0.1 0.07 ± 0.27 0.04 ± 0.16 0.9 ± 0.29 0.78 ± 0.4 0.86 ± 0.34

Prasinodermophyta 0 0.07 ± 0.25 0.06 ± 0.24 0 0 0 1 0.93 ± 0.25 0.94 ± 0.24

Rhizaria 1.76 ± 1.99 2.5 ± 3.41 3.06 ± 3.35 0.37 ± 0.52 0.51 ± 0.65 0.58 ± 0.7 0.53 ± 0.41 0.67 ± 0.35 0.58 ± 0.39

Stramenopiles 14.11 ± 8.09 22.47
± 8.63

14.67 ± 9.15 1.99 ± 0.55 2.52 ± 0.29 1.9 ± 0.9 0.8 ± 0.14 1 0.72 ± 0.28

Telonema 0.07 ± 0.44 0.07 ± 0.37 0.17 ± 0.38 0.01 ± 0.09 0.02 ± 0.11 0 0.99 ± 0.09 0.98 ± 0.1 0.83 ± 0.38

Total 51.98 ± 20.42 49.7
± 19.13

52.06 ± 29.5 3.33 ± 0.45 3.22 ± 0.45 3.1 ± 0.8 0.94 ± 0.03 0.94 ± 0.03 0.9 ± 0.08
fr
NA, not available.
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order in CMED and ADRIATIC, but with considerably different

relative abundances (52% and 36%, respectively; Table 1).

Peridiniales was found with the same relative abundance in

ADRIATIC and WMED (27%) but was less abundant in CMED

(16%). Borokales was the dominant order in WMED in terms of

relative abundance (33%), but the fourth order in ADRIATIC (18%)

and CMED (12%). Paraliales was the second most abundant order

in ADRIATIC (29.5%) and CMED (17.5%) but ranked only at 7th

position in WMED. Lastly, Gonyaulacales was found at relatively

high relative abundance (11.1%) only in ADRIATIC, being present

at very low abundances (1-2%) in WMED and CMED.
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3.3 Functional diversity of the benthic
protist communities

The protist ASVs obtained were assigned to four trophic

functions: autotrophic/mixotrophic, heterotrophic, parasitic,

heterotrophic/parasitic (Figure 4, Supplementary Table S7).

Considering the trophic function of the Mediterranean protist

communities, the surface sediments of ADRIATIC showed the

highest relative abundance of autotrophic/mixotrophic organisms

(65.45%; Supplementary Table S8), followed by WMED (48.43%).

CMED showed a more balanced composition between the
FIGURE 3

Radar chart representing the contribution of each protist order to the dissimilarity among the three marine subregions (ADRIATIC, CMED, WMED),
based on the results of the Similarity of Percentages (SIMPER) analysis performed on Euclidean distances. Protist ASVs were collapsed at the order
level; orders contributing more than 1% to the total community dissimilarity are shown, the remaining orders (< 1%) are labelled as Others.
FIGURE 2

Non-metric multidimensional (nMDS) ordination performed on the protist communities (ranked by order) of the three marine subregions based on
Euclidean distance. Convex hulls are shown in different colours according to the subregion. Depth groups per subregion are defined by solid (1-161
depth group) or dashed (162-1,018 depth group) lines.
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autotrophic/mixotrophic (40.7%) and heterotrophic (42.85%)

components. The parasitic and heterotrophic/parasitic

components were not dominant in any subregion but showed

high relative abundances in CMED and WMED.

For each trophic group, the three marine subregions showed no

differences in terms of the main protist orders detected, but

differences were found in terms of their relative abundances

(Supplementary Table S9).

Alpha diversity was calculated for each trophic group among

the sites of each subregion (Supplementary Table S10). The

autotrophic/mixotrophic component showed the highest mean

per sample for the three alpha diversity indices calculated in all

the three Mediterranean subregions. The trophic groups showed

significant differences among the three marine subregions for ASV

richness, Shannon index and Simpson index (Kruskal-Wallis, p-

value < 0.05; Supplementary Table S11). Specifically, when

considering the autotrophic/mixotrophic component, ADRIATIC

and CMED were found to be significantly different for all the alpha

diversity indices computed (Dunn’s post hoc test, p-value < 0.01;

Supplementary Table S11). Heterotrophic protists showed

significant differences for the Shannon index between ADRIATIC

and WMED, as well as between WMED and CMED, (Dunn’s post

hoc test, p-value < 0.05; please refer to Supplementary Table S12).

However, it is worth noting that only WMED and CMED exhibited

significant differences in heterotrophic ASV richness and Simpson

index. When considering parasitic protists, ADRIATIC was found

to be significantly different from both CMED and WMED in terms

of ASV richness and Shannon index (Dunn’s post hoc test, p-value <
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0.05);, but only from CMED for the Simpson index. With regards to

the heterotrophic/parasitic component, it was observed that

ADRIATIC had a significantly different ASV richness compared

to CMED and WMED (Dunn’s post hoc test, p-value < 0.05).

However, only a difference in Shannon index was observed between

ADRIATIC and WMED, while a marginally significant difference

(Dunn’s post hoc, p-value = 0.054) was found between ADRIATIC

and CMED for Simpson index (Supplementary Table S12).

The non-metric multidimensional scaling (nMDS) was

implemented to examine protist communities according to

trophic groups. The findings indicated that there was partial

overlap among the three marine subregions (Supplementary

Figure S4). However, the two-way ANOSIM test rejected the null

hypothesis of equal assemblages for the three Mediterranean

subregions (R = 0.2, p-value < 0.001). Conversely, no significant

relationship was found when considering depth groups. The one-

way ANOSIM test was then performed to compare the benthic

protist assemblages of the three subregions. According to the

results, only ADRIATIC was found to differ significantly from

CMED and WMED (Supplementary Table S13).
4 Discussion

The aim of this study was to examine microeukaryotic

communities in surface sediments of three Mediterranean marine

subregions: the Adriatic Sea, Ionian–Central Mediterranean Sea,

and the Western Mediterranean Sea. The taxonomic level and
FIGURE 4

Trophic composition of protist communities in the three Mediterranean subregions studied: Adriatic Sea (ADRIATIC), Ionian – Central Mediterranean
Sea (CMED), and Western Mediterranean Sea (WMED). The bar charts (A) show the relative abundance (y-axis) of each protist trophic group for each
sampling site (x-axis); sites are ordered by depth groups (superficial; deep). The pie charts (B) show the relative abundance of protist trophic groups
in each subregion: ADRIATIC, CMED and WMED.
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trophic function were studied, by means of an eDNA

metabarcoding approach targeting the V4 region of the 18S

SSU rDNA.

The relative abundance of Alveolata and Stramenopiles were

found to be dominant in the three marine subregions. This

observation is in line with previous studies that examined surface

sediments from different areas including the Yellow Sea (Gong

et al., 2015) and various coastal sites in Europe (Forster et al., 2016).

These two protist supergroups are known for their contribution to

primary productivity and their role in the carbon cycle. They

include many planktonic microeukaryotes, such as diatoms and

dinoflagellates (Pernice et al., 2013; Brannock et al., 2016; Zamora-

Terol et al., 2020; Mordret et al., 2023). With regards to the

Alveolata division, the samples included several orders, such as

Peridiniales, Gonyaulacales, Gymnodiniales, Oligotrichida and

Prorodontida. It was known that these orders include species that

can produce resting stages (Montresor et al., 1998; Kim et al., 2002;

Ellegaard and Ribeiro, 2018; Belmonte and Rubino, 2019;

Dzhembekova et al., 2020). Two additional orders with high

relative abundances within this division were the parasitic orders

Dino-Group-I and Dino-Group-II. The presence of these orders has

been observed in marine sediments (Guillou et al., 2008; Gong et al.,

2015). Some species within these orders produce free dinospores

that infect hosts, which may contribute to the termination of algal

blooms, with recovered ranges of infected cells between 1% and 25%

(Siano et al., 2011). It has been observed that these parasites can

survive in the resting stage of the parasitized organism

(Chambouvet et al., 2011; Jephcott et al., 2016).

The Stramenopiles division comprised Chaetocerotales order,

which is known to produce resting stages (Ellegaard and Ribeiro,

2018; Belmonte and Rubino, 2019). Additionally, some

heterotrophic nanoflagellate species in Anoecales order are

cosmopolitan, inhabiting both sediments and the water column

(e.g., Caecitellus parvulus). However, there is currently no available

information on the encystment capacity of certain Stramenopiles

orders, such as Anoecales, Borokales, Labyrinthulomycetes, and

Paraliales. These orders may include organisms able of living in or

on sediments for part or all their life cycle and their occurrence have

been reported also by other studies (Gong et al., 2015; Obiol et al.,

2021; Rıós-Castro et al., 2022; Schoenle et al., 2021; Cordier

et al., 2022).

The alpha diversity, computed on the detected protist ASVs,

showed significant differences among the three Mediterranean

subregions for all indices analyzed in the Alveolata and

Stramenopiles divisions. These divisions were the most diverse

and displayed the most pronounced signal in terms of alpha

diversity differences among subregions. Moreover, regional

differences were found in the ASV richness and Simpson index of

the division Kathablepharidacea, in the Shannon index for

Cryptophyta and in the Simpson index for Telonema. At the

order rank, the taxonomic composition of the investigated protist

communities showed significant differences among the three

Mediterranean subregions. Similarly, differences among the three

marine subregions were highlighted also when protist assemblages

were examined in terms of their functional diversity, particularly

their trophic role. In fact, the analysis of alpha diversity conducted
Frontiers in Marine Science 10
on all the ASVs of the four trophic groups (i.e., autotrophs/

mixotrophs, heterotrophs, parasites and heterotrophs/parasites)

showed significant differences for all the trophic groups in the

three subregions. When the functional diversity was investigated in

terms of community composition, significant differences were

found, highlighting the ADRIATIC significantly different from

the other two Mediterranean subregions and presenting the

highest relative abundance of autotrophic/mixotrophic protists

which constituted more than half of the community functional

composition (Supplementary Table S8). These taxonomic

composition and trophic differences of benthic protist

communities retrieved among Mediterranean subregions may

reflect their varying ecological conditions and dynamics. Benthic

protist communities can be diversified depending on various

physical and chemical features of the water column near the

sediment such as temperature, pH, salinity, and dissolved oxygen,

as well as sediment granulometry and organic matter content (Gong

et al., 2015; Pedersen et al., 2015; Forster et al., 2016). All these

ecological factors can promote habitat heterogeneity shaping

different microhabitats, which in turn may favor some taxa over

others. Therefore, while some benthic microeukaryotes are

generalist and can be found in many different habitats, others are

more specialized and may only be found in specific microhabitats

(Brandt et al., 2007; Hortal et al., 2009; Menden-Deuer and

Fredrickson, 2010; Forster et al., 2016; Obiol et al., 2021).

Geological structures of the seafloor can also play a crucial role in

shaping benthic protist communities, leading to spatial segregation

(Scheckenbach et al., 2010; Gong et al., 2015), and ultimately,

creating conditions for allopatric speciation (Forster et al., 2016).

In addition, the structure of plankton assemblages in the water

column can also be affected by trophic and hydrodynamic processes

that can vary among Mediterranean subregions (Glibert et al., 2005;

Valbi et al., 2019; Casabianca et al., 2020). Protist taxa have diverse

potential for colonization, differing in performance and fitness

under certain ecological conditions (or stability/instability), which

is another mechanism that could drive regional differences (Barton

et al., 2013). However, it is important to note that microplankton

populations, including species that produce resting stages, are

usually highly interconnected due to their high dispersal abilities

(Norris, 2000; Palumbi, 2003).

The Mediterranean Sea is characterized by semi-closed

circulation patterns due to the coastal topography. Water masses

flow in from the Atlantic Ocean and divide into western and eastern

Mediterranean basins at the Strait of Sicily undergoing an initial

division (Demirov and Pinardi, 2001) and influencing the dispersal

dynamics of pelagic planktonic organisms and the sinking of resting

stages (Godhe and Härnström, 2010; Halkett et al., 2005; Penna

et al., 2010).

Productive areas are characterized by a higher presence of

phototrophic organisms compared to heterotrophs (Gasol et al.,

1997). Conversely, the heterotrophic component dominates the

benthic and deep-sea food webs, which relies on the amount of

sinking organic matter and in turn decreases with depth (Tecchio

et al., 2013). In this study, the ADRIATIC was the subregion with

the highest relative abundance of autotrophic/mixotrophic protists,

having also the lower average depth of the sampled stations
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compared to WMED and CMED. This can result in shorter sinking

times of pelagic organisms, which can represent the dominant

fraction of the autotrophic/mixotrophic component. The

productivity of the northwestern part of the Adriatic Sea is widely

recognized, and this is largely attributed to the nutrient inputs from

the main river Po and other minor rivers, as well as its

hydrodynamic (Poulain and Cushman-Roisin, 2001; Campanelli

et al., 2004; Cozzi and Giani, 2011; Grilli et al., 2020; Ricci et al.,

2022). In contrast, CMED and WMED are generally considered to

have more oligotrophic waters (Krom et al., 1991; Turley et al.,

2000; Ridame and Guieu, 2002; Siano et al., 2011). It has been

observed that the nutrient levels in the Mediterranean Sea gradually

decrease from west to east (Krom et al., 1991), with a decline in

chlorophyll a concentration (Ignatiades et al., 2009) and primary

productivity (Turley et al., 2000; Moutin and Raimbault, 2002). The

CMED, which represented the eastern and deeper subregion of this

study, had the highest relative abundance of heterotrophic taxa,

being also the most observed trophic habit of the subregion. The

functional diversity of the subregions was likely to be determined by

factors such as nutrient input and bathymetry.

Among the subregions, the autotrophic/mixotrophic protists

were mainly represented by orders that can produce resting stages

and sink to the seafloor. It is noteworthy that ADRIATIC, being the

shallower subregion, it may have relatively short sinking times and,

being also the most productive, could be characterized by a higher

formation of resting stages at the end of algal blooms (Totti et al.,

2019; Ellegaard and Ribeiro, 2018; Casabianca et al., 2020; Neri

et al., 2023). Heterotrophic protists were mainly represented by

Anoecales and Borokales (Supplementary Table S9), which

corresponded to two of the five orders that contributed most to

the differentiation of the communities between the three

subregions. Furthermore, ADRIATIC and WMED showed high

relative abundances of a heterotrophic order that can produce

resting stages such as the Oligotrichida. Regarding the parasites,

the highest relative abundances were shown by dinoflagellate

parasites (i.e., Dino-Group-I and Dino-Group-II) and parasites

living in the benthic compartment (i.e., Labyrinthulomycetes)

(Raghukumar and Damare, 2011; Gong et al., 2015).

In this study, no significant differences in the community

composition of benthic protists between the two groups of

samples defined based on sediment depths were found at either

the taxonomic composition level or trophic function. However, this

did not necessarily mean that differences between shallow and

deeper protist assemblages do not exist. Rather, it indicated that

they were not highlighted by our approach of grouping samples into

two distinct, discrete clusters. A study conducted in the Black Sea

did not reveal any significant pattern between phytoplankton

resting stages and depth distributions clustered by habitat

(Dzhembekova et al., 2018). Conversely, a relationship was found

between alpha and beta diversities of benthic protists and depth

gradient in coastal surface sediments within a limited depth range

(14 m – 75 m) of the Yellow Sea (Gong et al., 2015). Further studies

may be necessary to investigate this aspect in benthic protist

communities of the Mediterranean Sea, considering the

highlighted regional differences and implementing a specific

sampling design.
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In our study, we included negative controls (blanks) during

sediment sample processing, DNA extraction and PCR

amplification. We found that the process of separating the resting

stages from sediments using steel meshes resulted in minor cross-

contamination, even when all precautions were taken to avoid it.

Indeed, the fractionation of samples, depending on their size, might

result in the retention of fragments in the sieves’ steel mesh

(Massana et al., 2015). Therefore, a post-sequencing bioinformatic

process was used to decontaminate the samples. Alternative

procedures for separating protist cells from sediments for DNA

metabarcoding of benthic samples, such as melting seawater-ice

elution, have demonstrated good performance (Uhlig, 1964; Reñé

et al., 2020).

Positive controls (i.e., mock communities of known taxa

composition) were also included, to test for potential

amplification failure. Two of the seven species included in the

mock communities were not detected in a limited number of cases,

suggesting that diversity estimates derived from metabarcoding

may not be free from bias. This can be due to different technical

and biological reasons and, considering the targeted barcode region,

to the widely documented variation in 18S rDNA subunit’s gene

copy number among protist groups and species, which can lead to

the non-detection of some taxa (i.e., false negatives) and

discrepancies between true abundances and metabarcoding-

derived estimates (Gong and Marchetti, 2019; Marinchel et al.,

2023). This bias could potentially be overcome using an eDNA

metabarcoding approach that involves the use of multiple primer

pairs (Ficetola and Taberlet, 2023).

It should be also noted that the study of benthic protists is made

difficult by the processes impacting sediment dynamics. In fact, the

seafloor has a role in shaping communities, as it is subject to

continuous surface resuspension, which may depend on surface

waves, the effect of storms, shipping and trawling, with more or less

strong effects depending on depth (Giannakourou et al., 2005;

Sanchez-Vidal et al., 2012). Thus, the sedimentation rates, the

mechanical resuspension and the interactions between benthic

and pelagic habitats, make the assessment of the dynamics in the

proximity of sediments challenging (Giannakourou et al., 2005;

Cibic et al., 2022). Moreover, currents, horizontal flow speed,

upwelling and depth have been shown to influence the dispersal,

transport and sinking rates of eDNA particles, l iving

microorganisms and resting stages, with the potential to be

recovered in sediments far from their origin (Harrison et al.,

2019; Nooteboom et al., 2019; Nguyen et al., 2023).

When applying eDNA metabarcoding to sediments, another

important aspect to consider is that they represent a complex

matrix. In fact, sediments collect a mixture of extra- and intra-

cellular DNA, hampering the differentiation between living and

dead organisms (Pawlowski et al., 2022). Moreover, once eDNA

reaches the seafloor, it can be adsorbed by sediments and protected

from degradation (Romanowski et al., 1991), with extremely

variable decay times (ranging from days to thousands of years)

depending on sediment structure and on the abiotic and biotic

processes involved (Harrison et al., 2019; Ellegaard et al., 2020;

Pawlowski et al., 2022). In our study, this was not an issue as we

were interested in detecting the benthic organisms and the resting
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stage component sinking from the pelagic domain. The long-term

persistence of eDNA in sediments could be an additional source of

uncertainty when reconstructing living benthic communities or

using them for monitoring purposes (Harrison et al., 2019).

It is worth highlighting that, while our findings may be

influenced by some biases, the associated errors are systematic

and do not invalidate the relative comparisons between samples

and Mediterranean subregions. As a result, we can state that the

major findings of our study are robust, particularly in terms of the

discovered changes in benthic protist community composition

throughout the three Mediterranean subregions.
5 Conclusions

Our study provided important insights into the benthic protist

communities of surface sediments in Mediterranean subregions.

Results obtained from the eDNA metabarcoding approach

highlighted spatial differences in terms of taxonomic composition

and trophic function. Despite the similar relative abundances of two

divisions in three subregions, the relative contribution of orders

outlined regional differences and rare taxa exclusive to one or two

subregions were also detected. The results obtained from the study

of trophic function in sediments are consistent with what is already

known for the water column and confirm that some Mediterranean

subregions can be more productive than others, as evinced by the

surface sediments of the Adriatic Sea. On the contrary, no

differences were found between protist assemblages when they

were clustered in two different bathymetric groups. Despite no

clear barriers to the dispersal process of the benthic protists

emerged, the communities were found to be heterogenous.

To better understand the drivers underlying the detected

pattern of regional differentiation, future studies should consider

the sampling of biotic and abiotic factors from both, the water

column, and the sediments, with the implementation of a multi-

seasonal andmulti-annual sampling scheme. Despite some difficulties

that can arise in extracting the eDNA from the sediments, we believe

that this molecular technique can be a rapid and effective tool in

benthic community studies and monitoring.
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FIGURE S1

Map of the stations sampled in the Mediterranean Sea along the Italian

peninsula. Stations sampled in the Adriatic Sea are shown as circles

(ADRIATIC, N = 46), those sampled in the Ionian – Central Mediterranean
Sea (CMED, N = 30) as triangles, and those sampled in the Western

Mediterranean Sea (WMED, N = 18) as squares. Regional sea borders are
reported with dashed lines. Specifically, the boundary between ADRIATIC and

CMED is between Capo Santa Maria di Leuca (Italy) (39.8° N, 18.36666° E) and
the west coast of Corfu (Greece) (39.75194° N, 19.62777° E). The border

between CMED and WMED runs between Capo Bon (37.08333° N, 11.05° E)

(Tunisia) and Capo Lilibeo (37.8° N, 12.43333° E) (Sicily, Italy); and also, from
Capo Peloro (north-east Sicily, Italy) (38.26666° N, 15.65° E) to Capo Paci

(Calabria, Italy) (38.25° N, 15.7° E) on the mainland.

FIGURE S2

Rarefaction curves showing the relationship between sequencing depth
Frontiers in Marine Science 13
(number of reads) and number of amplicon sequence variants (number of
ASVs) for each site sampled in Adriatic (red), CMED (green) and WMED (blue).

FIGURE S3

Relative abundance of the protist community composition per site at order

rank for the three Mediterranean subregions studied: Adriatic Sea (ADRIATIC),
Ionian – Central Mediterranean Sea (CMED) and Western Mediterranean Sea

(WMED). The colours in the legend are ordered by the mean relative
abundance of orders among subregions.

FIGURE S4

Non-metric multidimensional ordination based on Euclidean distance for
trophic level. Convex hulls outline the perimeter of the sites, which are shown

in different colours depending on the subregion. Depth groups per subregion
are defined by solid (1-161) and dashed (162-1,018) lines.
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