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Carlos Pérez-Collazo,
University of Vigo, Spain

REVIEWED BY

Simon Neill,
Bangor University, United Kingdom
Siming Zheng,
University of Plymouth, United Kingdom

*CORRESPONDENCE

Tao Song

tsong@upc.edu.cn

Zhiyuan Zhang

13811119180@139.com

†These authors have contributed equally to
this work

RECEIVED 28 April 2024

ACCEPTED 28 June 2024
PUBLISHED 06 August 2024

CITATION

Hou B, Fu H, Li X, Song T and Zhang Z (2024)
Predicting significant wave height in
the South China Sea using the
SAC-ConvLSTM model.
Front. Mar. Sci. 11:1424714.
doi: 10.3389/fmars.2024.1424714

COPYRIGHT

© 2024 Hou, Fu, Li, Song and Zhang. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 06 August 2024

DOI 10.3389/fmars.2024.1424714
Predicting significant wave
height in the South China Sea
using the SAC-ConvLSTM model
Boyang Hou1†, Hanjiao Fu2†, Xin Li1, Tao Song1*
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Introduction: The precise forecasting of Significant wave height(SWH) is vital to

ensure the safety and efficiency of aquatic activities such as ocean engineering,

shipping, and fishing.

Methods: This paper proposes a deep learning model named SAC-ConvLSTM to

perform 24-hour prediction with the SWH in the South China Sea. The long-term

prediction capability of the model is enhanced by using the attention mechanism

and context vectors. The prediction ability of the model is evaluated by mean

absolute error (MAE), root mean square error (RMSE), mean square error (MSE),

and Pearson correlation coefficient (PCC).

Results: The experimental results show that the optimal input sequence length

for the model is 12. Starting from 12 hours, the SAC-ConvLSTM model

consistently outperforms other models in predictive performance. For the 24-

hour prediction, this model achieves RMSE, MAE, and PCC values of 0.2117 m,

0.1083 m, and 0.9630, respectively. In addition, the introduction of wind can

improve the accuracy of wave prediction. The SAC-ConvLSTM model also has

good prediction performance compared to the ConvLSTM model during

extreme weather, especially in coastal areas.

Discussion: This paper presents a 24-hour prediction of SWH in the South China

Sea. Through comparative validation, the SAC-ConvLSTM model outperforms

other models. The inclusion of wind data enhances the model's predictive

capability. This model also performs well under extreme weather conditions. In

physical oceanography, variables related to SWH include not only wind but also

other factors such as mean wave period and sea surface air pressure. In the

future, additional variables can be incorporated to further improve the model's

predictive performance.
KEYWORDS

significant wave height forcast, deep learning, South China Sea, convolutional LSTM,
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1 Introduction

Significant wave height (SWH) is an essential parameter in

physical oceanography, traditionally defined as the mean wave

height of the highest third of the waves. Predicting SWH in the

ocean has always been of great interest and involves several fields,

such as oceanography, meteorology, and marine engineering (Deo

et al., 2001; Jain and Deo, 2006; Jain et al., 2011; Wan et al., 2022a).

The precise forecasting of SWH is vital to ensure the safety and

efficiency of aquatic activities such as ocean engineering, shipping,

and fishing (Komen et al., 1996).

Traditional methods for predicting SWH include numerical

models such as deterministic models (phase-resolving) and stochastic

spectral models (phase-averaged). The phase-resolving models are

defined based on the elementary equations of waves, with precise

approximation. The transformation of the surface phenomena is grid

computed with resolutions refined than the corresponding

wavelengths. Therefore, due to high computational demands, these

models are not suitable for large domains and long-term (~5-10 years)

hindcast simulations. The phase-averaged models are based on the

wave energy equation, statistically defining wave scenarios in time and

space. This allows computation of the distribution of wave energy in

terms of direction and frequency, as well as its transformation at each

grid point (Umesh and Behera, 2021). The third-generation spectral

models can accurately simulate the wave dynamics process by solving

the spectral equations of nonlinear interactions (Lionello et al., 1992;

Booij et al., 1999; Ris et al., 1999). Popular phase-averaged wavemodels

include the Wave Model (WAM), Simulating WAves Nearshores

(SWAN) (Liang et al., 2019), the WAVEWATCH(WW3) (Tolman

2009; Lee, 2015; Wan et al., 2022b). The wave models predict variables

such as SWH, wave direction, and wave period by estimating the 2D

action density (Group, 1988). Validated numerical models excel in the

long-term prediction of SWH (Reikard and Rogers, 2011). However,

achieving accurate predictions through numerical models often

demands an extensive array of physical parameters and exceedingly

precise initial conditions, resulting in a significant computational

burden. Recognizing the need for more efficient and accessible

methods to forecast SWH, some studies have turned to statistical

models (Soares et al., 1996; Reikard and Rogers, 2011; Malekmohamadi

et al., 2011). Fusco (2009)1 employed the Autoregression (AR) model

for SWH prediction, with notable findings indicating its suitability for

forecasting waves exhibiting multiple periods. This underscores the

efficacy of the ARmodel in capturing complex wave behaviors, offering

valuable insights into its predictive capabilities for diverse wave

phenomena. Agrawal and Deo (2002) used Auto-Regressive Moving

Average (ARMA) and Autoregressive Integrated Moving Average

(ARIMA) models to predict waves at offshore locations in India.

However, these models have limited predictive power and are

unsuitable for predicting SWH with nonlinearity and

nonsmoothness under complex conditions.

Due to the rapid advancements in computer science and big data

technologies, ocean-atmosphere research has seen a promising increase
1 Fusco, F. (2009). Short-term wave forecasting as a univariate time

series problem.

Frontiers in Marine Science 02
in the application of artificial intelligence (Wang et al., 2019; Yu and

Ma, 2021; Juan and Valdecantos, 2022; Lou et al., 2023; Song et al.,

2023a). Artificial intelligence methods, characterized by their data-

driven approach, involve constructing models using input and target

variables to predict SWH over a given period. Mahjoobi andMosabbeb

(2009) used the SVM algorithm for SWH prediction, and the results

were better than those of the ANNmodels. Ali et al. (2020) developed a

nearreal-time SWH forecasting model using a hybridized multiple

linear regression (MLR) algorithm optimized by covariance-weighted

least squares (CWLS) estimation. This model considers the influence of

several variables to forecast 30-minute SWH. Pokhrel et al. (2020)

propose a Random Forest Classifier-based algorithm to predict rogue

waves in oceanic conditions. Zhang and Dai (2019) introduced a novel

approach by constructing a Conditionally Restricted Boltzmann

Machine (CRBM)-based Deep Belief Network (CRBM-DBN) model

for predicting SWH at two buoys. Their model achieved an impressive

short-term prediction accuracy, with an RMSE of less than 0.1 meters

over a 9-hour forecast horizon.

Several studies have shown that recurrent neural network

(RNN) and its variants have even better performance in SWH

prediction (Gu and Li, 2022; Hao et al., 2023). VS and Enigo (2020)

used an RNN-LSTMmodel to predict SWH at 3 h, 6 h, 12 h, and 24

h, respectively. Meng et al. (2021) proposed a bidirectional Gated

Recurrent Units (BiGRU) network for predicting SWH during

tropical cyclones. Feng et al. (2022) conducted 1h, 3h, 6h, 12h,

and 24h SWH forecasts at three different locations using RNN,

LSTM, and GRU models, respectively, and the results showed that

LSTM and GRU outperformed the traditional RNN.

However, most studies focus solely on single-point SWH forecasts

(Adnan et al., 2023; Gao et al., 2023; Mahdavi-Meymand and Sulisz,

2023; Yevnin et al., 2023). Regional forecasts, on the other hand, hold

greater significance for marine safety, maritime navigation, fisheries,

and other related areas. Zhou et al. (2021) predicted the SWH in

normal and typhoon conditions, respectively, based on the ConvLSTM

algorithm, and the results showed that ConvLSTM could be applied to

2D wave forecasting with high accuracy and efficiency. Han et al.

(2022) used the ConvLSTM algorithm to build three models to predict

SWH in the South China Sea, and the results showed that their

performance was related to the input training data. Song et al.

(2023b) developed an EEMD-LSTM model to predict the SWH, and

the results indicate that the model has the best results compared with

other comparative models for short-term and medium-and long-term

predictions. In physical oceanography, the generation of significant

wave height is related to many physical variables, which has led to

many studies using multiple elements as inputs for SWH prediction

(Yang et al., 2022). To forecast SWH in the Bohai Sea, Yellow Sea, and

East China Sea, Cao et al. (2023) developed a multifactor two-

dimensional SWH prediction model based on the PreRNN

algorithm. The model predicts SWH in the region from 1 to 72

hours. Remarkably, the correlation coefficients of the forecasts for 6

hours, 24 hours, and 72 hours are reported to be 0.98, 0.90, and 0.87,

respectively. Ding et al. (2023) proposed the EOF-EEMD-SCINet

model, which takes the SWH, MWP, and wind speed (WSPD),

significant height of first swell partition (SWH1), and significant

height of wind waves (SHWW) as inputs to predict the Significant

wave height and mean wave period in the South China Sea for 24, 48,
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and 72 hours. The results show that the model can accurately forecast

the changes of SWH and MWP over time and has a higher forecasting

accuracy, which is better than other models.

Attention has become a focal point due to its capacity for

capturing significant data (Niu et al., 2021; Guo et al., 2022;

Soydaner, 2022). Luo et al. (2022) integrated the attention

mechanism with a Bi-LSTM model (BLA) to forecast SWH in the

hurricane-prone area of the Atlantic Ocean. Through comparative

analysis, they determined that BLA exhibited the most optimal and

consistent performance. Shi et al. (2023) achieved consistent and

accurate predictions of SWH by employing a transformer model

based on the attention mechanism. Their work provides valuable

technical support for wave early warning forecasts.Liu et al. (2023)

utilized an attention mechanism to extract the wind-wave mapping

relationship, introducing a regional wave prediction based on

Vision Transformer, whose prediction performance is better than

CNN-RWP. Yang et al. (2024) proposed a novel wave energy

forecasting model composed of a two-layer decomposition

technique and a long short-term memory network with an

attention mechanism. The attention mechanism in the model

allows the LSTM model to achieve superior performance when

dealing with long-time sequences. The results show that the

proposed model is superior to seven other well-known forecasting

methods compared to the long short-term memory network.

In this paper, we utilize the soft focus mechanism in conjunction

with the ConvLSTM model to make regional predictions of SWH in

the South China Sea. The inputs to the model are wind and SWH for

the previous 12 hours and the output is a sequence of SWH for the next

24 hours. We not only compare the prediction performance of this

model with other models but also explore the effect of wind on wave

prediction. Finally, we evaluate the model’s predictive performance

under extreme weather.

The remainder of the paper is structured as follows: Section 2

describes the region studied and the data used in this paper. Section

3 describes the methods used in this paper, the comparative models,
Frontiers in Marine Science 03
and the evaluation metrics. Section 4 shows the experiments and

results analysis. Section 5 is the discussion and conclusion.
2 Study area and data

2.1 Study area

The study area of this paper encompasses the South China Sea,

spanning from 2°N to 26°N latitude and 99°E to 123°E longitude (Shi

and Hu, 2023), as illustrated in Figure 1. The South China Sea is an

immense semi-enclosed marginal sea in the Northwest Pacific Ocean,

with a total area of approximately 3,500,000 km², a maximum depth

exceeding 5,000m, and an average depth exceeding 1,000m. The South

China Sea has unique wave distribution characteristics influenced by

the monsoon and climate (Wang et al., 2018). And the area is also

prone to typhoons, with approximately five typhoons passing through

it each year (Shao et al., 2018; Song et al., 2022).
2.2 Data

This study utilizes 10m u-wind component(u10), 10m v-wind

component(v10), and SWH data from the ERA5 reanalysis dataset.

ERA5, produced by the European Centre for Medium-Range

Weather Forecasts (ECMWF), represents the fifth generation of

atmospheric reanalysis and covers the period from 1950 to the

present (Bell et al., 2021). The time range of the three datasets used

in this study is from January 1, 2020, to December 31, 2021, with a

temporal resolution of 1 hour, totaling 17,544 hours. The spatial

resolution varies: the SWH data has a spatial resolution of 0.5° ×

0.5°, while the u10 and v10 data have a spatial resolution of 0.25° ×

0.25°. Table 1 shows information about the data. These data can be

downloaded here (https://cds.climate.copernicus.eu/).
FIGURE 1

The study area of this paper. It is the South China Sea, specifically located between 2°N-26°N latitude and 99°E-123°E longitude.
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3 Materials and methods

This section presents the methodology used in this paper, the

comparative models, and the evaluation metrics.
3.1 Soft attention mechanism

Attentional mechanisms serve as a technique for artificial neural

networks to emulate human cognitive attention. By introducing

weighted connections, these mechanisms enable the model to focus

on crucial aspects of the input data selectively. In order to improve the

precision of predictions, this study utilizes a soft attention mechanism.

It assists the model in extracting relevant spatiotemporal information

from the hidden states. By dynamically weighting the importance of

different parts of the input sequence, this attention mechanism
Frontiers in Marine Science 04
facilitates the model’s focus on pertinent details, thereby improving

its predictive capabilities.

Figure 2A shows the structure of attention mechanism. It has

two inputs: the hidden state of the previous moment and the input

data of the current moment. They are summed up after a 2D

convolutional layer, then passed through a tanh activation function

and 2D convolution to get the attention score, which is then

inputted into a softmax function to get the final attention

weights. The above process can be represented by Equation 1.

Ak
t = softmax(W*f   (WH*H

k
t−1 +WX*X

k
t ))

~Xk
t = Ak

t ∘Xk
t

(1)

Here, Xk
t is the current input of the kth channel, Hk

t is the

previous hidden state of the kth channel, f is the activation function,

W,WH ,WX are all the trainable weight parameters. “°” denotes the

Hadamard product. “∗” denotes the convolution operation.
TABLE 1 Data information.This study utilizes 10m U-wind component(U10), 10m V-wind component(V10), and SWH data from the ERA5 reanalysis dataset.

Variable Name Resolution Maximum Minimum Average

Significant Wave Height(SWH) 0.5°×0.5° 11.19m 0.03m 1.07m

10m U-wind component(U10) 0.25°×0.25° 30.38m/s 0.02m/s 2.67m/s

10m V-wind component(V10) 0.25°×0.25° 31.76m/s 0.01m/s 2.68m/s
The time range is from January 1, 2020, to December 31, 2021, with a temporal resolution of 1 hour, totaling 17,544 hours.
B

C

A

FIGURE 2

(A) The attention mechanism helps the model extract relevant spatiotemporal information from hidden states by dynamically weighting different
parts of the input sequence, thereby improving its predictive capabilities. (B) The introduction of context vector can prevent the loss of valuable
information when predicting long-term information. we define a context stack to store these vectors. (C) SAC-ConvLSTM combines the attention
mechanism, context vector, and the ConvLSTM model for regional SWH prediction. Its overall structure is an encoder-decoder structure.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1424714
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Hou et al. 10.3389/fmars.2024.1424714
3.2 Context vector

In order to prevent the loss of valuable information when

predicting long-term information, this study introduces context

vectors and defines a context stack to store these vectors. As shown

in Figure 2B, We sum the hidden states of each encoder layer to

obtain a context vector and then feed it into the context stack. The

context vector of the first layer will be at the bottom of the stack, and

subsequent context vectors will be stacked upwards. During the

encoding phase, the encoder retrieves vectors from the context stack

in sequence and combines them with input data for prediction. The

process can be expressed by Equation 2.

Cn−r+1 =o
m

j=1
hjr (2)

Here Cn−r+1 is the context vector for the (n-r+1)th layer of the

decoder. hjr denotes the jth hidden state of the rth layer of the

encoder. m denotes the length of the input sequence.
3.3 Convolutional long and short-
term memory

The spatiotemporal relationship between the data is essential in

predicting Significant wave height. To effectively capture the

spatiotemporal attributes inherent in sequential data, the

Convolutional Long Short-Term Memory (ConvLSTM) algorithm

draws on the powerful capabilities of Convolutional Neural

Networks (CNNs) and Long Short-Term Memory Networks

(LSTMs) (Shi et al., 2015). This research employs the ConvLSTM

algorithm to forecast SWH in the South China Sea accurately. Its

structure of is shown in Figure 3. The formula is as in Equation 3.

it = s   (Wxi ∗Xt +Whi ∗Ht−1 +Wci ∘Ct−1 + bi)

                                 ~Xk
t = Ak

t ∘Xk
t

ft = s   (Wxf ∗Xt +Whf ∗Ht−1 +Wcf ∘Ct−1 + bf )

Ct = ft ∘Ct−1 + it ∘ tanh  (Wxc ∗Xt +Whc ∗Ht−1 + bc)

ot = s   (Wxo ∗Xt +Who ∗Ht−1 +Wco ∘Ct−1 + bo)

                             Ht = Ot ∘ tanh (Ct)

(3)

Here it , ft and ot are the input gate, forget gate and output gate,

respectively. X, C and H represent the input, cell state and hidden

state, respectively. t and t −1 are current and previous time.W is the

learnable weight parameters. b denotes the bias.“s” represents the
sigmoid function.
3.4 SAC-ConvLSTM

Combining the aforementioned attention mechanism, context

vector, and ConvLSTM model, this study proposes a model for

forecasting effective wave heights in ocean regions, named SAC-

ConvLSTM. Its structure is illustrated in Figure 2C.

The model structure mainly consists of an encoder and a

decoder. To ensure that the model captures the key features of
Frontiers in Marine Science 05
the input sequence, we apply the soft attention mechanism before

the encoder. The encoder primarily encodes the sequence processed

through attention, capturing relevant information contained in the

sequence. After each layer produces a result, it is transformed into a

context vector, which is then added to the context stack. The

decoder later retrieves these context vectors and combines them

with input data to produce the output.
3.5 Comparative model

In this section, we present the comparative models used in this

study: Simple Moving Average (SMA), Long and Short-Term

Memory Network (LSTM), Trajectory Gated Recurrent Unit

(TrajGRU) and Convolutional Gated Recurrent Unit (ConvGRU).

3.5.1 Simple Moving Average
SMA is a statistical method that looks at long-term trends by

smoothing out time-series data. SMA can be used to predict SWH

in the ocean. Its formula is shown in Equation 4 (Hansun, 2013).

SMAt =
Xt−1 + Xt−2 +… + Xt−ðn+1Þ

n
(4)

Here SMAt represents the Simple Moving Average at time t,

Xt−i is the ocean significant wave height data at time t − i,n is the

total length of the input sequence.

3.5.2 Long and Short-Term Memory Network
LSTM architecture significantly improves recurrent neural

networks as it tackles the long-term dependency challenge. It

accomplishes this through a gating mechanism comprising input,

forget, and output gates, along with cell states. These gates regulate

the flow of information and forgetting in a highly effective manner.

The input gate determines the amount of current input data to

retain in the cell state. The forget gate decides how much of the cell

state from the previous moment should be preserved. Lastly, the

output gate decides how much of the current cell state should be

output to the output value. The model is defined as shown in

Equation 5 (Hochreiter and Schmidhuber, 1997).
FIGURE 3

The structure of ConvLSTM. ConvLSTM combines the advantages of
CNN and LSTM to effectively capture spatio-temporal dependencies
in sequence data.
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it = s (WxiXt +WhiHt−1 + bi)

ft = s (Wxf Xt +WhfHt−1 + bf )

ot = s (WxoXt +WhoHt−1 + bo)

ɡt = tanh (WxgXt +WhgHt−1 + bg)

Ct = ft ∘Ct−1 + it ∘ gt
ht = ot ∘ tanh (Ct)

(5)
3.5.3 Convolutional Gated Recurrent Unit
Similar to ConvLSTM, ConvGRU replaces the LSTM units with

GRU units. GRU, which stands for Gated Recurrent Unit, can be

viewed as a variant of LSTM. It optimizes the cell structure of LSTM

neural networks, reducing parameters and accelerating training.

GRU simplifies the LSTM architecture by combining the input and

forget gates into a single update gate while discarding the memory

unit. Whenever there is an input to the ConvGRU, the reset gate will

decide whether to clear the previous state, and the update gate will

choose how much information to write to the state. ConvGRU is

calculated as in Equation 6 (Shi et al., 2017).

Zt = s (Wz*Xt + Uz*Ht−1 + bz)

Rt = s(Wr*Xt + Ur*Ht−1 + br)

H
0
t = f (Wh*Xt + Rt ∘ (U*Ht−1) + bh)

Ht = (1 − Zt) ∘H
0
t + Zt ∘Ht−1

(6)

Here Zt and Rt denote the update and reset gate. X and H

represent the input and hidden state, respectively. W and U denote

the weights and bias. f is the activation function.“°” is the Hadamard

product. “s” is the sigmoid function.

3.5.4 Trajectory Gated Recurrent Unit
The Trajectory Gated Recurrent Unit (TrajGRU) generates the

local neighborhood set for each location using the current input and

previous state at each timestamp (Shi et al., 2017). It has dynamically

determined recurrent connections. TrajGRU improves on the

convolution operation in ConvGRU. The convolution operation

basically applies a location-invariant filter to the input. i.e., the

connection structure and weights are fixed for all the locations. The

main formulas of TrajGRU are given as Equation 7.

Ut ,Vt = g (Xt ,Ht−1)

Zt = s Wxz ∗Xt +o
L

l=1

Wl
hz ∗warp(Ht−1,Ut,l ,Vt,l) + bz

 !

Rt = s Wxr ∗Xt +o
L

l=1

Wl
hr ∗warp(Ht−1,Ut,l ,Vt,l) + b

 !

H
0
t = f Wxh ∗Xt + Rt ∘ o

L

l=1

Wl
hh ∗warp(Ht−1,Ut,l ,Vt,l)

 !
+ bh

 !

Ht = (1 − Zt) ∘H
0
t + Zt ∘Ht−1

(7)

Where Xt is the input. Zt and Rt denote the update and reset gate,

respectively., Ht and H
0
t are the memory state and new information.

Ut ,   Vt represent the flow fields that store the local connection
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structure generated by the structure generating network g. The
$warp$ mainly implements local variation so that neighboring points

can be randomly selected to capture the motion of the image.
3.6 Evaluation metrics

In this study, we will use mean absolute error (MAE), root mean

square error (RMSE), mean square error (MSE), and Pearson

correlation coefficient (PCC) to quantitatively assess the

predictive effectiveness of the models. They are calculated as

expressed in Equations 8–11.

MAE =
1
no

n

i=1
ytruth − ypred
�� �� (8)

MSE =
1
no

n

i=1
(ytruth − ypred)

2 (9)

RMSE =
ffiffiffiffiffiffiffiffiffiffi
MSE

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

i=1
(ytruth − ypred)

2
s

(10)

PCC = on
i=1(ypredi − �ypred)(ytruthi − �ytruth)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

on
i=1(ypredi − �ypred)

2on
i=1(ytruthi − �ytruth)

2
q (11)

Where n denotes the total number of predicted SWH, ytrue is the

true value, ypred is the predicted value, �ytruth is the mean of the true

values, �ypred is the mean of the predicted values.
4 Experiments and results analysis

The software environment for the experiments in this study

includes Ubuntu 18.04, Python 3.8, Pytorch 2.1.2, Matplotlib 3.4.2,

and NumPy 1.21.1. The hardware environment comprises an i9–

13900K processor, 64 GB of RAM, and an NVIDIA GTX 4080

graphics card. We employ an early-stopping mechanism during

training with a patience value of 20. The initial learning rate is set to

0.001, and the learning rate is adjusted using ReduceLROnPlateau, with

a patience value of 4. The specific experimental parameters are

configured as follows in Table 2.
4.1 Input sequence length

One of the characteristics of spatiotemporal sequence prediction is

its ability to capture the spatiotemporal relationship within sequence

data. Therefore, the length of the input sequence significantly

influences prediction accuracy. This study conducted experiments on

the input sequence length of the model to get the best prediction

results. Table 3 shows the MAE, RMSE, PCC, and average values

predicted by the model for different input sequence lengths. The first

row represents the input length, the first column represents the

prediction time, and the second represents the evaluation metrics.

The bolded values are optimal. From the table, it can be observed that
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as the sequence length increases, the predictive performance does not

necessarily improve. This could be because excessively short input

sequences fail to provide sufficient information for the model to
Frontiers in Marine Science 07
capture the features in the data. Conversely, overly long input

sequences may contain much redundant information, leading to a

decrease in model prediction accuracy. Overall, the best predictive

performance is observed when the input sequence length is 12, while it

is poorest when the length is 21. Therefore, the input length for the

model in this study will be set to 12.
4.2 Model comparison

Figure 4 depicts the evaluation metrics of each model for SWH

forecasts for the next 1–24 hours. As can be seen from the four

plots, the RMSE, MAE, MSE, and PCC predicted by all models

except the LSTMmodel are close to each other in the first 6 hours of

SWH. As the prediction time increases, each model’s RMSE, MAE,
TABLE 2 Parameter setting.

Parameters Initial Setting

Batch size 32

Learning rate 0.001

Kernel size 3

Number of layers 3

Hidden dim 32

Optimizer Adam
TABLE 3 The evaluation metrics for SWH prediction with different input sequence lengths.

Forecast
Hours

Evaluation
Indicators

3h-input 6h-input 9h-input 12h-input 15h-input 18h-input 21h-input

1h

RMSE (m)
MAE (m)

0.0124
0.0055

0.0127
0.0056

0.0126
0.0056

0.0121
0.0051

0.0145
0.0063

0.0131
0.0058

0.0158
0.0070

PCC 0.9989 0.9998 0.9997 0.9999 0.9999 0.9999 0.9999

3h

RMSE (m)
MAE (m)

0.0435
0.0202

0.0428
0.0198

0.0422
0.0199

0.0418
0.0192

0.0452
0.0205

0.0430
0.0198

0.0490
0.0224

PCC 0.9982 0.9983 0.9983 0.9982 0.9980 0.9981 0.9978

6h

RMSE (m)
MAE (m)

0.0896
0.0430

0.0847
0.0403

0.0826
0.0409

0.0806
0.0385

0.0877
0.0411

0.0841
0.0398

0.0985
0.0466

PCC 0.9925 0.9936 0.9934 0.9933 0.9924 0.9928 0.9909

9h

RMSE (m)
MAE (m)

0.1293
0.0638

0.1214
0.0589

0.1167
0.0599

0.1116
0.0542

0.1231
0.0587

0.1173
0.0564

0.1424
0.0686

PCC 0.9848 0.9878 0.9876 0.9874 0.9857 0.9864 0.9817

12h

RMSE (m)
MAE (m)

0.1623
0.0817

0.1538
0.0756

0.1462
0.0773

0.1365
0.0671

0.1531
0.0740

0.1443
0.0703

0.1813
0.0885

PCC 0.9767 0.9819 0.9816 0.9817 0.9786 0.9800 0.9717

15h

RMSE (m)
MAE (m)

0.1914
0.0979

0.1844
0.0915

0.1743
0.0946

0.1594
0.0792

0.1817
0.0888

0.1698
0.0835

0.2186
0.1078

PCC 0.9688 0.9761 0.9757 0.9763 0.9713 0.9736 0.9610

18h

RMSE (m)
MAE (m)

0.2164
0.1121

0.2122
0.1060

0.1831
0.1001

0.1794
0.0901

0.2076
0.1024

0.1932
0.0959

0.2541
0.1265

PCC 0.9613 0.9706 0.9738 0.9714 0.9641 0.9673 0.9499

21h

RMSE (m)
MAE (m)

0.2379
0.1245

0.2371
0.1192

0.2231
0.1262

0.1966
0.0997

0.2307
0.1148

0.2143
0.1071

0.2875
0.1447

PCC 0.9545 0.9655 0.9649 0.9670 0.9572 0.9613 0.9386

24h

RMSE (m)
MAE (m)

0.2567
0.1356

0.2597
0.1314

0.2446
0.1406

0.2117
0.1083

0.2517
0.1262

0.2340
0.1176

0.3193
0.1623

PCC 0.9481 0.9607 0.9600 0.9630 0.9503 0.9553 0.9270

Average

RMSE (m)
MAE (m)

0.1488
0.0760

0.1454
0.0720

0.1362
0.0739

0.1255
0.0624

0.1439
0.0703

0.1348
0.0662

0.1741
0.0861

PCC 0.9761 0.9816 0.9817 0.9820 0.9775 0.9794 0.9687
Each row follows this structure: the first column indicates prediction time, the second column shows evaluation metrics, and columns 3 to 9 represent various input sequence lengths. The bolded
values are optimal. From the table, it can be seen that the prediction performance is best when the input sequence length is 12.
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and MSE gradually increase, and the PCC decreases. At the same

time, the prediction gap of each model starts to increase with

prediction as well, especially after 12 hours. Compared to the other

models, the SAC-ConvLSTM model has a smoother curve,

indicating that the model has the best prediction performance.

Table 4 shows the RMSE, MAE, and PCC, as well as the mean

values of each model for predicting SWH for the next 1–24 hours.

The table shows that the SAC-ConvLSTM model is better than the

other models for most of the prediction time. In predicting the 24-h

SWH, its RMSE,MAE, and PCCwere 0.2117m, 0.1083m, and 0.9630,

respectively. Compared with other models, the RMSE of SAC-

ConvLSTM’s 24-hour average SWH prediction was reduced by

24% 53%, and the MAE was reduced by 18% 52%. Combining the

prediction results of SAC-ConvLSTM with ConvLSTM and SAC-

ConvGRU with ConvGRU, SA, and Context vector can significantly

improve the prediction accuracy of SWH prediction. Compared with

no SAC, its 24-hour average RMSE decreased by 25% and 26%, MAE

decreased by 24% and 21%, and PCC improved by 1.02% and 0.47%,

respectively. In summary, SAC-ConvLSTM has the optimal

performance for 24-hour SWH prediction among all the models.

To compare the SWH prediction performance of each model

more intuitively, we visualized the prediction results. Figure 5 shows

the prediction plots of each model for 1, 3, 6, 9, 12, 15, 18, 21, and 24

hours, respectively. The first row represents the ground truth (ERA5

data), while the subsequent rows display the prediction plots of each

model. We observe that the prediction results of each model exhibit

minimal differences in the prediction plots of 1, 3, and 6 hours.

However, as the prediction horizon increases, especially in the 15–

24 hour range, disparities in the prediction results of each model

become more apparent. In particular, the SAC-ConvLSTM model
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performs better in predicting the region with high values in the

lower left part of the South China Sea. In contrast, other models

demonstrate poorer prediction in this area. This suggests that the

proposed model performs well in 24-hour SWH prediction and

exhibits strong performance overall.
4.3 The effect of wind on wave prediction

A close connection exists between sea surface winds and waves

in physical oceanography. Generally, the effective wave height is

positively correlated with the magnitude of the sea surface winds. In

other words, higher sea surface winds result in more giant waves,

whereas lower sea surface winds lead to smaller waves. This

correlation underscores the influence of wind on wave dynamics

and highlights the interdependence of these two oceanic

phenomena. Therefore, in order to investigate the effect of sea

surface winds on the prediction of significant wave height in the

ocean, we set up four scenarios using two models, SAC-ConvLSTM

and ConvLSTM, respectively, to carry out the experiments, and

their specific settings are shown in Table 5.

To better illustrate the impact of wind on SWH prediction, we

present comparisons for different models separately. Figure 6

illustrates the results of this experiment. When wind is included

as an input, it improves wave prediction when both models are

used. As the forecast time increases, the MAE and RMSE with the

wind as input compared to single significant wave height (SWH)

input have improved by over 20% at 24 hours.

Figure 7 shows the ground truth and the predictions for the four

scenarios. The first row represents the ground truth (ERA5 data), while
A B

DC

FIGURE 4

The evaluation metrics of each model for SWH prediction for the next 1-24 hours. (A–D) represent MAE, RMSE, MSE, and PCC, respectively. It can
be seen that the prediction performance of the models decreases as the prediction time grows, but the SAC-ConvLSTM model has a smoother
decreasing trend compared to the other models. This also indicates that it has the best prediction performance.
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the remaining four rows represent predictions for each scenario. It can

be observed that Scenario 2 and 4 with a single SWH as input do not

forecast the high-value region well. As the prediction time increases, its

prediction becomes worse. However, after adding wind to the inputs,

Scenario 1 and Scenario 3 improved their predictions relative to

Scenario 2 and Scenario 4. In particular, Scenario 1, the SAC-

ConvLSTM model, with the wind as an input, has been successful in

its ability to capture and predict changes in the high-value region.
4.4 Extreme weather

Due to the monsoon and climatic factors, the South China Sea

frequently experiences extreme weather conditions. To evaluate the
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prediction performance of our model under such conditions, we

selected seven instances of extreme weather for experimentation.

Table 6 presents the information related to extreme weather events.

Figures 8A-G shows the average of the 24-hour predictions of the

present model with ConvLSTM and their errors during seven

extreme weather periods. In each graph, the top row displays, from

left to right, the ground truth, the present model’s predicted value,

and the ConvLSTMmodel’s predicted value, respectively. Meanwhile,

the first graph in the second row illustrates the error between the

predicted value and the ground truth of the present model, and the

second graph represents the error between the predicted value and

the ground truth of the ConvLSTMmodel. In most cases, the present

model outperforms the ConvLSTM model for 24-hour prediction

under extreme weather conditions. This advantage is especially
TABLE 4 The evaluation metrics for SWH prediction by different models.

Forecast
Hours

Evaluation
Indicators

LSTM SMA TrajGRU ConvGRU ConvLSTM SAC-ConvGRU SAC-ConvLSTM

1h

RMSE (m)
MAE (m)

0.0434
0.0195

0.0165
0.0070

0.0164
0.0073

0.0102
0.0042

0.0117
0.0051

0.0119
0.0050

0.0121
0.0051

PCC 0.9989 0.9998 0.9997 0.9999 0.9999 0.9999 0.9999

3h

RMSE (m)
MAE (m)

0.0928
0.0420

0.0539
0.0229

0.0523
0.0240

0.0394
0.0177

0.0429
0.0197

0.0425
0.0189

0.0418
0.0192

PCC 0.9948 0.9975 0.9974 0.9985 0.9982 0.9983 0.9982

6h

RMSE (m)
MAE (m)

0.1530
0.0724

0.1144
0.0495

0.1052
0.0503

0.0935
0.0428

0.0909
0.0433

0.0893
0.0409

0.0806
0.0385

PCC 0.9837 0.9898 0.9896 0.9929 0.9922 0.9928 0.9933

9h

RMSE (m)
MAE (m)

0.2053
0.0998

0.1710
0.0748

0.1542
0.0763

0.1543
0.0709

0.1347
0.0653

0.1321
0.0613

0.1116
0.0542

PCC 0.9687 0.9790 0.9784 0.9841 0.9838 0.9852 0.9847

12h

RMSE (m)
MAE (m)

0.2567
0.1265

0.2209
0.0972

0.1990
0.1011

0.2148
0.0993

0.1738
0.0851

0.1705
0.0794

0.1365
0.0671

PCC 0.9507 0.9674 0.9651 0.9735 0.9744 0.9769 0.9817

15h

RMSE (m)
MAE (m)

0.3122
0.1544

0.2668
0.1181

0.2426
0.1260

0.2713
0.1261

0.2119
0.1042

0.2086
0.0970

0.1594
0.0792

PCC 0.9556 0.9300 0.9505 0.9623 0.9646 0.9682 0.9763

18h

RMSE (m)
MAE (m)

0.3730
0.1843

0.3076
0.1367

0.2835
0.1499

0.3225
0.1505

0.2478
0.1222

0.2451
0.1138

0.1794
0.0901

PCC 0.9073 0.9447 0.9353 0.9513 0.9547 0.9596 0.9714

21h

RMSE (m)
MAE (m)

0.4414
0.2178

0.3439
0.1531

0.3215
0.1724

0.3680
0.1726

0.2811
0.1389

0.2797
0.1296

0.1966
0.0997

PCC 0.8836 0.9347 0.9203 0.9408 0.9452 0.9512 0.9670

24h

RMSE (m)
MAE (m)

0.5331
0.2582

0.3765
0.1679

0.3574
0.1937

0.4083
0.1927

0.3119
0.1545

0.3121
0.1444

0.2117
0.1083

PCC 0.8597 0.9254 0.9050 0.9307 0.9359 0.9429 0.9630

Average

RMSE (m)
MAE (m)

0.2679
0.1305

0.2079
0.0919

0.1925
0.1001

0.2091
0.0974

0.1674
0.0820

0.1658
0.0767

0.1255
0.0624

PCC 0.9448 0.9631 0.9601 0.9704 0.9721 0.9750 0.9820
The first column indicates prediction time, the second column shows evaluation metrics, and the remaining columns display metric values predicted by each model. The optimal value in each row
is in bold.
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significant in nearshore areas. For example, in the coastal area in the

northern part of the South China Sea, the prediction result of the

ConvLSTMmodel is on the high side, while in the coastal area in the

southern part of the South China Sea, its prediction result is on the

low side. In contrast, this is hardly the case for the SAC-ConvLSTM

model. It is evident that, in most cases, the 24-hour prediction

performance of the present model outperforms that of the

ConvLSTM model under extreme weather conditions. This

difference is particularly pronounced in the nearshore areas, where

the ConvLSTMmodel tends to overpredict in the northern nearshore

region of the South China Sea and underpredict in the southern

nearshore region. Conversely, such discrepancies are scarcely

observed in the present model’s predictions.
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5 Discussion and conclusion

This paper proposes a deep learning model named SAC-

ConvLSTM to perform 24-hour prediction with the significant

wave height in the South China Sea. Moreover, 17,544 hours of

ERA5 reanalysis data from January 1, 2020, to December 31, 2021,

are used to train, validate, and test the model. MAE, RMSE, MSE,

and PCC are used to quantify the model’s predictive performance.

12 is chosen as the length of the input sequence. The results show

that the SAC-ConvLSTM model has the best prediction

performance compared to SMA, LSTM, TrajGRU, ConvGRU,

and SAC-ConvGRU, with RMSE, MAE, and PCC of 0.2117m,

0.1083m, and 0.9630 at 24-hour prediction, respectively. This
FIGURE 5

The prediction results of all models for SWH. The first row is the ground truth (ERA5 data). Other rows are the various methods. Each row of 9
images represents the prediction results for 1-24 hours.
TABLE 5 The information of four scenarios.

MODEL INPUT VARIABLE

ConvLSTM SAC-ConvLSTM SWH U10,V10

Scenario 1 ✓ ✓ ✓

Scenario 2 ✓ ✓

Scenario 3 ✓ ✓ ✓

Scenario 4 ✓ ✓
We use two models and two input variables to explore the effect of wind on SWH forecasts.
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FIGURE 7

The comparison of 24-hour SWH prediction results under each scenario. The first row represents the ground truth (ERA5 data). Other rows
represent the predicted results for each scenario.
B

C D

A

FIGURE 6

The experimental results on the effect of wind on SWH prediction, (A, B) are the MAE, RMSE, and lift percentages for Scenarios 1 and 2, while (C, D)
are for Scenarios 3 and 4. The bar charts show the values and the line charts show the percentage lift.
TABLE 6 The information on extreme weather events.

Number Name Peak
classification

Maximum Wind
Speed (m/s)

Start Date End Date

202113 Conson Severe tropical storm 30 2021.9.6 14:00 2021.9.12 17:00

202114 Chanthu Super typhoon 68 2021.9.7 8:00 2021.9.18 5:00

202115 Dianmu Tropical storm 18 2021.9.22 17:00 2021.9.24 8:00

202117 Lionrock Tropical storm 20 2021.10.6 8:00 2021.10.10 17:00

202118 Kompasu Typhoon 35 2021.10.8 2:00 2021.10.14 17:00

20210022 – Tropical depression 15 2021.10.24 14:00 2021.10.27 11:00

202122 Rai Super typhoon 55 2021.12.13 14:00 2021.12.21 7:00
F
rontiers in Marine Science
 11
 frontiersin.org

https://doi.org/10.3389/fmars.2024.1424714
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Hou et al. 10.3389/fmars.2024.1424714
paper also investigates the effect of wind on wave prediction, and

the results show that the longer the prediction time, the more the

wind improves the accuracy of wave prediction, with the RMSE and

MAE improving by more than 20% at 24 hours. The SAC-

ConvLSTM model also has good prediction performance

compared to the ConvLSTM model during extreme weather,

especially in coastal areas.
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However, in this paper, only wind and SWH are used as inputs,

so other physical variables related to wave prediction, such as mean

wave period and sea surface air pressure, can also be considered

inputs to train the model in future studies. The study area of this

paper is limited to the South China Sea, but it can be extended to

other sea areas such as the Bohai Sea, Yellow Sea, and East China

Sea in the future.
A B

D

E F

G

C

FIGURE 8

The averages of the 24-hour SWH predictions of the present model with ConvLSTM and their errors during seven extreme weather periods. (A–G)
are Conson, Chanthu, Dianmu, Lionrock, Kompasu, the tropical depression, and Rai in sequence. Each subplot shows: first row (left to right) -
ground truth (ERA5), SAC-ConvLSTM prediction, ConvLSTM prediction; second row - SAC-ConvLSTM error, ConvLSTM error.
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