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DeformableFishNet: a high-
precision lightweight target
detector for underwater
fish identification
Zhukang Ruan, Zhuowei Wang* and Yiqing He

School of Computer Science and Technology, Guangdong University of Technology,
Guangzhou, China
The application of computer vision in fish identification facilitates researchers and

managers to better comprehend and safeguard the aquatic ecological environment.

Numerous researchers have harnessed deep learning methodologies for studying

fish species identification. Nonetheless, this endeavor still encounters challenges

such as high computational costs, a substantial number of parameters, and limited

practicality. To address these issues, we propose a lightweight network architecture

incorporating deformable convolutions, termed DeformableFishNet. Within

DeformableFishNet, an efficient global coordinate attention module (EGCA) is

introduced alongside a deformable convolution network (EDCN/EC2f), which is

grounded in EGCA, to tackle the deformation of fish bodies induced by swimming

motions. Additionally, an EC2f-based feature pyramid network (EDBFPN) and an

efficient multi-scale decoupling head (EMSD Head) are proposed to extract multi-

scale fish features within a lightweight framework. DeformableFishNet was deployed

on our freshwater fish dataset, with experimental outcomes illustrating its efficacy,

achieving amean average precision (mAP) of 96.3%. Themodel comprises 1.7million

parameters and entails 4.7 billion floating-point operations (FLOPs). Furthermore, we

validated DeformableFishNet on three public underwater datasets, yielding

respective mAPs of 98%, 99.4%, and 83.6%. The experiments show that

DeformableFishNet is suitable for underwater identification of various scenes.
KEYWORDS

fish identification, underwater images, deformable convolution, attention mechanism,
deep learning, underwater target detection
1 Introduction

As technology advancements in artificial intelligence, the Internet of Things, and big

data continue to flourish, edge computing has emerged as a pivotal paradigm shift within

the realm of computational sciences (Deng et al., 2020; Chang et al., 2021). Leveraging the

capabilities of edge devices, computer vision-based detection applications have infiltrated a

myriad of domains (Li et al., 2022b; Jiang et al., 2023). Among these, the application of
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computer vision for fish detection assumes paramount importance

in advancing intelligent aquaculture systems. By meticulously

analyzing the visual characteristics and anatomical structures of

fish, this technology facilitates automatic species identification and

categorization. This not only enables real-time surveillance of fish

populations’ spatial distribution and density in aquatic ecosystems

but also furnishes invaluable ecological information. Nevertheless,

implementing fish detection and classification in submerged aquatic

habitats presents significant challenges, primarily due to the distinct

complexities intrinsic to underwater environments.

In recent years, scholarly endeavors have largely focused on

leveraging deep learning-driven detection and classification

approaches to tackle the intricate challenges of fish detection and

classification. Convolutional neural networks (CNNs) have gained

remarkable prominence due to their inherent capability to

autonomously discern and adaptively learn relevant features,

thereby eliminating the need for manual feature engineering and

exhaustive multi-stage analyses—for example, Labao and Naval

(2019) innovatively combined region-based CNNs with long

short-term memory to create a pioneering fish detection system.

Similarly, Cai et al. (2020) employed the MobileNetv1 architecture

in conjunction with YOLOv3 to develop an effective fish detection

model. Furthermore, Prasetyo et al. (2022) designed a multi-stage

residual network based on VGGNet to excel in fish classification

tasks. It is worth noting that Xu et al. (2021) exploited transfer

learning strategies and the advanced SE-ResNet152 model to

adeptly address the intricate issue of identifying small-scale,

imbalanced fish species with commendable accuracy. Collectively,

these studies illustrate the vibrant progress in harnessing AI-

powered tools to enhance the monitoring and management of

aquatic ecosystems.

Underwater fish detection and recognition also confront the

significant hurdle of limited labeled data availability. In addressing

this constraint, Allken et al. (2018) innovatively adopted a deep

visual image synthesis technique to augment the training dataset,

achieving an impressive 94% classification accuracy for cod,

Atlantic herring, and Atlantic mackerel. Meanwhile, Banan et al.

(2020) leveraged the pretrained VGG16 model and further fine-

tuned the expansive ImageNet corpus to boost the recognition

capabilities for multiple fish species. This approach yielded

significantly improved average classification rates, particularly in

distinguishing among four different Asian carp species. Despite

such progress, the dearth of freshwater fish datasets that accurately

reflect natural environmental conditions persists as a pressing

concern in the field.

Within the realm of deep learning-powered object detection,

two primary architectural paradigms dominate the landscape: two-

stage and one-stage frameworks. The two-stage approach

commences with a meticulous region proposal phase, wherein

areas suspected to harbor potential objects are pinpointed.

Subsequently, these nominated regions undergo scrutiny by a

CNN to precisely identify and localize objects within those

confines. Esteemed exemplars embodying this methodological

route encompass R-CNN, R-FCN, Fast R-CNN, Faster R-CNN,

and Mask R-CNN. On the other hand, one-stage algorithms are
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such as the YOLO series (Redmon et al., 2016; Redmon and

Farhadi, 2017, 2018; Mao et al., 2019; Bochkovskiy et al., 2020;

Ge et al., 2021), SSD, and RetinaNet. These models ingeniously

intertwine the region proposal procedure with the actual object

detection task, streamlining the process for both enhanced speed

and maintained accuracy. They are lauded for their uncanny

ability to swiftly and accurately detect objects without the need

for an explicit segmentation step, thereby illustrating the

remarkable duality of speed and precision in modern object

detection technology.

Recently, transformer-based architectures have risen to

prominence, showcasing profound benefits across a wide array of

visual tasks. These innovative models uniquely excel at discerning

and encapsulating long-range interdependencies between objects,

thereby empowering transformer-driven detectors to either match

or surpass the performance benchmarks set by their more

traditional counterparts. In the domain of object detection, a suite

of groundbreaking models has emerged, each capitalizing on

transformer-based encoder–decoder designs. Chief among these

are Vision Transformer (ViT) (Dosovitskiy et al., 2020), Swin

Transformer (Liu et al., 2021), and DETR (end-to-end object

detection with transformers) (Carion et al., 2020) as well as the

likes of RT-DETR (real-time detection transformer) and DINO

(DETR with Improved deNoising anchOr boxes) (Zhang et al.,

2022a). Despite these strides, compact yet efficient CNN-based

object detection models still maintain their stronghold in striking

the critical balance between speed and precision, as exemplified by

the likes of YOLOX (Ge et al., 2021) and the subsequent generations

of the YOLO family extending from YOLOv6 to YOLOv9 (Li et al.,

2022a; Wang et al., 2023). This dynamic underscores the relentless

pursuit of excellence in the rapidly evolving space of visual object

detection technology.

Our investigation has illuminated several pivotal challenges

inherent to contemporary underwater fish detection efforts. While

current research extensively employs sophisticated detection

models to boost fish detection performance, it often fails to

adequately address specific challenges unique to this domain.

Fish, being naturally non-rigid organisms, pose a particular

challenge; their pose deformations during swimming can

drastically undermine detection precision. Furthermore, the

similarity in features across different fish species, compounded by

notable intra-species variations, introduces an additional layer of

intricacy to the task. In the realm of smart fisheries, there is a

pressing requirement to optimize fish detection models for edge

device implementation without sacrificing operational effectiveness.

Lastly, the bulk of existing research centers on marine fish detection,

with scant attention given to the distinct challenges and

requirements of detecting fish in freshwater environments.

In this paper, in order to solve the challenge of underwater fish

detection, we combine the proposed modules to propose a new

network structure with lightweight and deformable convolution

(DeformableFishNet). In addition, we capture and create an

underwater fish dataset by using underwater cameras in natural

underwater habitats to verify the performance of DeformableFishNet.

The contribution of this work can be summarized as follows:
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1. We have designed an efficient global coordinate attention

mechanism (EGCA). EGCA enhances the key features of

fish targets, leading to improved detection accuracy of fish

by the detector. To address the issue of body distortion that

fish experience while swimming in water, resulting in

various body shapes within the same fish, we employ

EGCA attention and deformable convolution to design a

deformable convolution network (EDCN/EC2f).

2. For the purpose of lightweighting the model network structure

and extract fish features better, we have designed a feature

pyramid network structure (EDBFPN) by using EDCN/EC2f.

Then, we redesigned an efficient multi-scale decoupled head

(EMSD head) to reduce the model’s parameter count and

FLOPs. The EMSD head can obtain multi-scale feature maps

through cheap convolution operations.

3. We combined the proposed modules to propose the

DeformableFishNet. We applied DeformableFishNet to

our freshwater fish dataset and public underwater

datasets. The experiments show that our model not only

performs admirably in detecting fish beneath the surface

but also exhibits robust capabilities in identifying objects

across a diverse array of underwater scenarios, showcasing

its broad applicability and robustness in underwater

target detection.
2 Related work

2.1 Fish identification and classification

In recent years, extensive research has focused on employing

deep learning methodologies for fish detection and classification.

DeepFish (Qin et al., 2016), for instance, initially extracts

background features through sparse and low-rank matrix

factorization, subsequently employing deep learning architectures

to discern the key characteristics of frontal fish images. Another

study by Zhou et al. (2022) integrates a self-attention mechanism

within a tower-like structure, preceding the main CNN with a

generative adversarial network (GAN) to enrich data variability.

Researchers in the study of Knausgård et al. (2022) utilize a squeeze-

and-excitation ResNet (SE-ResNet) augmented with a compressed

and encouraged (CE) loss function for individual fish classification

per image, and they also implement transfer learning strategies to

mitigate the constraints imposed by limited training samples for

various fish categories. The work presented by Ben Tamou et al.

(2021) comprises a dual faster R-CNN configuration where the

models share either a common region proposal network or a unified

classifier. AdvFish (Zhang et al., 2022b) introduces a min–max

bilevel adversarial optimization framework, enhancing model

robustness by training on adversarially perturbed images using an

adaptive perturbation methodology. Lastly, Mathur et al. (2020)

merges features derived from layers 154 and 157 of ResNet-50 to

elevate the model’s overall performance.

Most studies have used better neural networks to enhance the

performance of the models. However, fish is a non-rigid object. Fish
tiers in Marine Science 03
can change their shape and posture due to swimming or bending,

which may affect their features and appearance models. In this

paper, we propose an efficient global coordinate attention module

(EGCA) and EGCA-based deformable convolutional network

(EDCN/EC2f) to address this problem.
2.2 Neural network module

The primary objective of convolutional layers is to extract

features from input data. Conventionally, these layers are

designed with fixed sizes and shapes. A key limitation of such

traditional convolutional layers lies in their reduced adaptability to

unforeseen variations, leading to a weaker generalization capacity.

To address this issue, prevailing strategies often entail utilizing

extensive datasets, incorporating more intricate deformable

examples, employing diverse data augmentation methodologies,

and manually devising customized features and algorithms.

Nonetheless, despite these efforts, these conventional approaches

continue to face constraints in achieving optimal adaptability

and generalization.

Deformable convolution (Dai et al., 2017; Zhu et al., 2019;

Wang et al., 2022) introduced offset amounts in the receptive field,

which can be learned and adapted to fit the actual shape of objects.

This allows the convolutional regions to always cover the

surrounding area of the object, regardless of how it deforms.

Deformable convolution learns appropriate convolution kernel

parameters for each task, dynamically adjusting the shape and

weights of the convolutional filters to capture features in the

input data more effectively.

Deformable convolutional networks can dynamically adjust the

shape and weights of convolutional kernels, but the adjustment of

kernel offsets is generated only once through a convolution.

Therefore, we propose an EGCA-based deformable convolutional

network (EDCN/EC2f).

Traditional feature pyramid networks (FPN) suffer from

information loss and redundancy when extracting features at

different scales. Bi-directional feature pyramid network (BiFPN) (Tan

et al., 2020) addresses this issue by fusing features from different

resolutions through lateral and vertical connections, allowing for better

integration and utilization of features across different scales.

In comparison to traditional self-attention downward FPN,

BiFPN has several advantages. Firstly, it removes nodes with only

one input edge. Secondly, it adds an additional edge between original

input and output nodes to facilitate merging more features without

increasing cost. Finally, it treats each double-directional path as a

single feature networking layer and repeats the same layer multiple

times to achieve a higher-level feature fusion. BiFPN employs three

weighted fusion methods, namely, unbounded fusion, Softmax-based

fusion, and fast normalized fusion.

BiFPN enables better feature fusion with fewer parameters and

computational resources. However, BiFPN was not specifically

designed for underwater fish detection and classification tasks.

Therefore, we propose an EC2f-based feature pyramid network

(EDBFPN), a dedicated architecture for underwater fish detection

and classification tasks.
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2.3 Object detection models

YOLOv8 is one of the latest versions of YOLO developed by

Ultralytics, which builds upon the success of previous versions

while introducing new functionalities and improvements to

enhance performance and flexibility. The backbone network and

neck utilize a richer gradient flow structure with C2f and adjust

different channel numbers for various scale models. The head part

separates the classification and detection heads, switching to the

current mainstream decoupling head structure, and replaces

anchor-based with anchor-free. YOLOv8 uses Task-Aligned

Assigner positive and negative sample matching method and

introduces distribution focal loss (DFL).

YOLOv8, compared with two-stage model and Vision

Transformers model, has less computation and parameters.

However, its head still has a large amount of calculation and

parameters, and it is not a model designed specifically for

underwater fish detection and classification tasks. Therefore, by

combining multiple plug-and-play modules proposed by us, we

designed a new network structure with lightweight and deformable

convolution (DeformableFishNet) specifically for underwater fish

detection and classification tasks.

In summary, based on previous research and the characteristics

of underwater fish detection and classification tasks, we propose

several plug-and-play modules, namely, EGCA, EDCN/EC2f,

EDBFPN, and EMSD head. Finally, we combine the proposed

modules to form a dedicated network for underwater fish

detection and classification tasks called DeformableFishNet.
3 Methodology

The proposed DeformableFishNet network architecture is

shown in Figure 1. We aimed at overcoming the unique

challenges posed by underwater fish detection. To tackle the

inherent issue of fish body distortion, which often compromises

accurate feature extraction, we integrated a novel deformable

convolution network (EDCN/EC2f) module into the backbone

network. This module serves to efficiently and effectively extract

crucial fish features such as morphological structures and textural

details, thereby ensuring robust representation learning even in the

face of complex body movements.

Furthermore, recognizing the importance of multi-scale feature

integration in enhancing detection performance, we incorporated

an EC2f-based feature pyramid network (EDBRPN) module

within the neck part of the network. This EDBRPN module

facilitates superior fusion of fish features extracted across various

scales, thereby promoting comprehensive and discriminative

understanding of the fish within the scene.

Lastly, in the head portion of the network, we adopted an

efficient multi-scale decoupled (EMSD) head module. This

innovative component empowers the model to procure multi-

scale fish features with minimized computational overhead, thus

dramatically reducing the parameter count and overall

computational complexity of the detection model. As a result, this
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economization not only enhances the model’s speed and

accuracy but also significantly eases its deployment onto

resource-constrained edge devices.
3.1 Efficient global coordinate
attention module

Using attention mechanism can make the detection model

automatically find and pay attention to the most relevant areas or

features in the input image. It is helpful to strengthen the

recognition ability of fish characteristics and focus on key areas,

especially in complex and fuzzy underwater environment. When

dealing with non-rigid object deformation, illumination change,

occlusion, and other situations, attention mechanism helps the

detection model to meet the challenges of these fish detection

tasks flexibly, helps the model capture subtle local details,

improves the recognition of boundaries and small targets, and

then improves the overall performance of the model. Inspired by

CA (Hou et al., 2021), CBAM (Woo et al., 2018), and SimAM (Yang

et al., 2021) attention modules, we designed an efficient global

coordinate attention module (EGCA). The structure of EGCA is

shown in Figure 2.

Given an input tensor with feature dimensions of C × H × W,

we first use parameter-free SimAM attention to obtain a tensor F1

that reduces redundant information in the input tensor and

enhances our ability to perceive and utilize key features related to

the input. We then multiply F1 with the input tensor, followed by

global average pooling and convolution operations to produce a

tensor F2 with global attention information.

We separately apply global average pooling in the width and

height directions to the input tensor, resulting in two tensors, F3

and F4, with shapes C ×H × 1 and C × 1 ×W, respectively. We then

concatenate these two tensors along the channel dimension,

resulting in a tensor F5 with shape C × 1 × (H + W). After

applying a convolution layer, we obtain two tensors F6 and F7

with shapes C ×H × 1 and C × 1 ×W, respectively, through channel

splitting and transpose operations.

To obtain more refined and meaningful information, we

perform additional convolution operations on tensor F5. Then,

we use Sigmod operation to obtain tensor F8 with weights on both

the width and height dimensions. We use channel splitting after

transposing the tensor to obtain separate weight matrices F6 weight

and F7 weight for the width and height directions, respectively.

Tensor F8 takes the mean value and multiplied with tensor F2 to

obtain tensor F9.

Finally, we perform Sigmod operations on the products of F6

and F6 weight, F7 and F7 weight, and F9 and their respective

weights and then multiply the results with the input tensor to obtain

the output tensor of the EGCA attention module.

The EGCA attention mechanism weights the spatial

coordinates of the feature map and focuses on the information in

the global spatial coordinates, adaptively adjusting the importance

of each position, thereby improving the model’s ability to perceive

and understand space information. This allows the model to better
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FIGURE 2

Structure of EGCA.
FIGURE 1

Overview of DeformableFishNet. The detailed structure of some modules will be shown below.
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capture the key positions in images, videos, or other spatial data,

enhancing the expressiveness of the spatial features.
3.2 EGCA-based deformable convolution
(EDCN/EC2f)

As fish swim underwater, their supple bodies undergo a gamut

of deformations and contortions. Notably, even a single fish

specimen can manifest a myriad of postures, morphing seamlessly

from one silhouette to another. Conventional CNNs, with their

rigidly fixed convolutional kernel weights, enforce uniform

receptive fields across all regions of an image, which can prove

inadequate when confronted with the nuanced demands of tasks

like fish detection where adaptability is paramount.

Deformable convolution (Dai et al., 2017; Zhu et al., 2019;

Wang et al., 2022) is a type of convolutional operation. This

technique endows the model with learnable parameters that

enable the generation of adaptable convolutional kernels tailored

specifically to the idiosyncrasies of the input data. By learning the

optimal kernel parameters for each given task instance, deformable

convolution deftly adjusts the geometric structure and weighting of

the convolutional filters. This dynamism allows for a more incisive

capture of the intrinsic features embedded within the input samples,

thereby enhancing the model’s performance across a broad

spectrum of inputs.

However, earlier implementations of deformable convolution

derived the offset amounts needed to reshape the kernels by simply

applying additional convolutional layers to the same input feature

maps. Recognizing the necessity to solve the difficulty of feature

extraction caused by fish swimming, we innovatively integrated the
Frontiers in Marine Science 06
EGCA mechanism with deformable convolution, thus giving birth

to the EGCA-based deformable convolutional network (EDCN),

which is visually illustrated in Figure 3. Our EDCN employs a

convolutional operation coupled with an EGCA attention module

to compute the finely calibrated offset quantities required for the

deformable convolutional kernels.

To escalate the effectiveness of fish feature extraction even

further, we built upon the C2f convolutional module of the

YOLOv8 model, devising the EC2f module, as showcased in

Figure 4. In this evolution, the EDCN substitutes the secondary

convolutional layer within the original Bottleneck structure.

Culminating our architectural enhancements, we judiciously

implemented the EC2f module into the backbone network of

YOLOv8, thereby fortifying its capability to extract and interpret

the complex and varied features of fish in underwater imagery.
3.3 EC2f-based feature pyramid network

The BiFPN (Tan et al., 2020) is a hierarchical feature network

structure that enables bidirectional feature fusion between different

levels of feature pyramids. Through top-down and bottom-up

feature propagation and fusion, BiFPN can effectively combine

low-level detail features and high-level semantic features,

providing mult i-scale and mult i-dimensional feature

expression capabilities.

In order to fuse the fish features extracted at various scales, the

detection model can promote a comprehensive and differentiated

understanding of the fish in the scene. To achieve better

performance and accuracy while reducing the model complexity,

we referenced BiFPN and designed an EC2f-based feature pyramid
FIGURE 3

Structure of EDCN.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1424619
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Ruan et al. 10.3389/fmars.2024.1424619
network (EDBFPN), as shown in Figure 5. In EDBFPN, the Fusion

module performs a weighted sum of the input features based on

learned weights to implement feature fusion. Fusion uses Fast

normalized fusion in BiFPN.
3.4 Efficient multi-scale decoupling head

Han et al. (2020) and Tang et al. (2022) found that traditional

neural networks often produce excessive and redundant feature

numbers, which lead to additional parameters and floating-point

operations. Pointwise convolution acts as an upward and

downward transformation of feature channels. Howard et al.

(2017); Sandler et al. (2018), and Howard et al. (2019) discovered

and utilized pointwise convolution to fuse features across different

channels. Yu and Koltun (2015) and Yu et al. (2017) pointed out

that using dilated convolution can enlarge the receptive field of the

feature map without changing its shape and ensure that the input

and output feature maps have the same shape. Wang et al. (2018)

suggested that using multiple expansion coefficients with different

dilation rates leads to better performance when performing dilated

convolution. To maintain high accuracy and lightweight models, we

redesigned an efficient multi-scale decoupling head (EMSD head)

with a new structure, as shown in Figure 6. In the EMSD head, we

design an efficient multi-scale convolution module (EMSConv) that

can obtain multi-scale features at a low cost. To obtain multi-scale

features without increasing the number of parameters and floating-

point operations, we first divide the input feature channel into four

parts. The first part uses a regular convolution kernel with a size of 1

and no dilation. In the second, third, and fourth parts, we use

convolution kernels with the size of 3 and the dilation rates of 1, 2,

and 3, respectively, for dilated convolution. We concatenate the
Frontiers in Marine Science 07
four feature maps obtained after each convolution operation and

then use pointwise convolution to fuse the features across

different channels.
4 Experiment and results

4.1 Underwater image datasets

4.1.1 Freshwater fish dataset
The experimental endeavor of this meticulous study was

meticulously conducted employing two distinct species of

freshwater fish, thereby substantiating the efficacious application

of the pioneering DeformableFishNet framework. Presently,

scholarly investigations into the realm of underwater fish

identification predominantly revolve around marine dwellers,

overlooking the rich biodiversity inhabiting freshwater

ecosystems. Simultaneously, there exists a palpable dearth of

comprehensive datasets capturing underwater fish imagery within

their natural freshwater habitats.

In response to these challenges, this study took action by

creating a freshwater fish dataset that authentically reflects the

conditions found in real-world environments. Leveraging RGB

camera technology submerged within the aqueous environs of the

esteemed Guangzhou Pearl River Park located in the southern

Chinese province of Guangdong, the research team captured

high-quality images of fish populations thriving in their native

freshwater milieu. The specimens featured in these photographic

records represent two prominent species: the vibrant and

ornamental koi fish, known for their striking colors and patterns,

and the resilient tilapia, an economically significant fish species.

Through such rigorous empirical efforts, this study not only
FIGURE 4

Structure of EC2f. The shortcut represents whether to make a residual connection or not. n represents the number of stacked Bottleneck modules.
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addresses a critical gap in the field but also promotes advancements

in underwater fish recognition technologies applicable to diverse

freshwater settings.

Tilapia and koi fish have different shapes, but they both belong

to lateral flat fish, and their bodies have a certain streamlined

structure, which helps them to move quickly in the water. The body

color and texture of tilapia are relatively monotonous, not as

colorful and ornamental as that of koi fish.

Tilapia is tall and flat, with a raised back and a slightly rounded

abdomen. The dorsal fin has more than 10 fin spines, the caudal fin

is flat or round, and there are obvious longitudinal stripes on the

side and caudal fin. Mouth margin is not necessary. The body color

of tilapia is usually grayish brown, and the edge of scales may be

black. There will be six or seven black horizontal bands on the side

of tilapia during the juvenile period, and the body color may

become bright in the reproductive season. Koi fish has a typical

spindle shape, plump figure, straight back line, slightly rounded

abdomen, big mouth crack, a pair of tentacles on both sides of the

corner of his mouth, dorsal fin and gluteal fin at the back, and

caudal fin in a fan shape or Shuang Ye shape. The biggest feature of

koi fish is its rich colors and unique stripes. Common colors are red,

white, black, yellow, and blue, and there are various combinations of

spots, patches, and lines. The color pattern of each koi fish

is unique.
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As shown in Figure 7, more than one fish is captured in each

photo, and the fish is captured at various angles and brightness. The

purpose is to ensure that the dataset is closest to the life state of fish

under natural conditions. We used open-source image annotation

tool “Labellmg“ to create ground truth as shown in Figure 8,

selecting 4,691 images for our dataset. Following a ratio of 7:1:2,

we divided the images into training sets, validation sets, and

testing sets.

4.1.2 Fish4Knowledge23 dataset
In order to verify the performance of DeformableFishNet in

underwater fish detection, we apply DeformableFishNet to

Fish4Knowledge23 dataset for experimental verification. The

Fish4Knowledge23 collection is exclusively composed of

underwater images of fish. Originating from a collaborative

initiative between Taiwan Power Company, Taiwan Ocean

Research Institute, and Kenting National Park, this dataset was

meticulously compiled over a period spanning from October 1,

2010 to September 30th, 2013 at underwater monitoring stations

strategically positioned in Taiwan’s Nanwan Strait, Orchid Island,

and the serene waters of Houbihu Lake.

Each and every fish image encapsulated within this dataset is

carefully extracted from underwater video footage encompassing

visual representations of 23 unique fish species, totaling an
FIGURE 5

Structure of EDBFPN.
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FIGURE 7

Overview of the freshwater fish dataset. There are photos of tilapia and koi fish with different angles and brightness.
FIGURE 6

Structure of EMSD head.
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impressive 27,370 individual frames. However, it is worth noting

that the resolution quality of these images is relatively low. The

distribution of data is notably skewed, with the prevalence of certain

fish species’ images being approximately a thousand-fold greater

than the rarest ones.

4.1.3 Brackish dataset
In our study, we deploy DeformableFishNet onto the challenging

brackish dataset to extensively investigate and validate its prowess in

detecting targets amidst the obscure and indistinctive depths of

underwater environments. This particular dataset was meticulously

gathered in the narrow straits of Northern Denmark, encapsulating a

diverse array of marine life forms, including fish, crustaceans such as

crabs, and various other aquatic creatures. Each dataset entry is

meticulously annotated with precise bounding boxes demarcating the

spatial locations of the targets. Comprising a total of 14,518 annotated

images hosting a cumulative tally of 28,518 instances distributed

across six distinct categories, the brackish dataset primarily

emphasizes dimly lit and blurry underwater scenarios.

4.1.4 RUOD dataset
In order to comprehensively assess and affirm the versatile

application potential of DeformableFishNet across a multitude of

underwater scenarios, we subject it to rigorous testing on the
Frontiers in Marine Science 10
expansive RUOD dataset. This dataset exemplifies a wide array of

general underwater landscapes and encapsulates a myriad of

underwater detection complexities that pose significant challenges

to existing methodologies.

The RUOD dataset boasts a diverse array of target categories,

ranging from schooling fish and diving humans to intricate marine

flora and fauna such as starfish, vibrant corals, majestic sea turtles,

spiny sea urchins, elongated sea cucumbers, bivalve mollusks like

scallops, elusive cephalopods like squids, and ethereal jellyfish,

cumulatively encompassing 10 distinct classes.

Table 1 presents the statistical data of underwater datasets.
4.2 Implementation details

For model training and inference, we utilized Ubuntu 20.04.6

LTS, an AMD EPYC 7543P 32-Core CPU processor, and CUDA

12.0. The graphics processing unit (GPU) used was NVIDIA RTX

A5000 with 24 GB of memory. The network development

framework employed was torch-2.0.1+cu117. The integrated

development environment (IDE) used was PyCharm. We set the

epoch to 400, batch size to 16, and image size to 640 × 640. The

optimizer used was stochastic gradient descent (SGD) with an

initial learning rate of 0.01 and weight decay of 0.0005.
TABLE 1 Statistical data of datasets.

Dataset
Image
(num)

Label (num) Species Source Size (pixel)

Freshwater fish 4,691 More than 4,691 2 Captured from fresh water 1,920 × 1,080

Fish4Knowledge 27,370 More than 27,370 23 Captured from open sea 320 × 320 and 640 × 640

Brackish 14,518 28,518 6 Captured from brackish water Variable

RUOD 74,903 More than 74,903 10 Consists of multiple datasets, such as
URPC, UDD, DUO, and UODD

Variable
FIGURE 8

Dataset labeling. Tilapia is in the purple box. Koi fish is in the green box.
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4.3 Evaluation metrics

We have chosen precision (P), recall (R), F1-score (F1), mean

average precision (mAP), parameters, floating-point operations

(FLOPs), and frames per second (FPS) as the comparative metrics

to evaluate the detection performance and determine the strengths

and weaknesses of the model. Using IoU = 0.5 as the standard,

precision and recall can be calculated using the following formulas

Equations 1, 2:

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + PN
(2)

TP represents the number of true positive samples correctly

identified as positive, FP represents the number of false positive

samples incorrectly classified as positive, and FN represents the

number of false negative samples incorrectly classified as negative.

F1-score is the harmonic average of precision and recall, which is

used to comprehensively consider the performance of classifier. The

value range of F1-score is between 0 and 1, where 1 represents the

perfect classifier and 0 represents the worst classifier. mAP50 is the

area under the precision–recall (PR) curve formed by precision and

recall. For mAP50:95, the area under the PR curve is calculated by

dividing it into 10 IoU thresholds ranging from 0.5 to 0.05 to 0.95

and then taking the average of the results. FPS represents the

number of images detected by the model per second.
4.4 Experiment results

4.4.1 Ablation experiment
In the YOLO-based object detector, we validated the

effectiveness of each proposed module. We conducted ablation

experiments on the proposed modules in YOLOv8. Table 2

presents the results of the ablation experiments of the EGCA

module. After YOLOv8 added DCNv2 or EDCN, the FPS of the

model decreased, but the detection accuracy of the model is

improved. Comparing YOLOv8 + EDCN (EGCA + DCNv2) and

YOLOv8 + DCNv2, the R of YOLOv8 + EDCN (EGCA + DCNv2)

is lower, but P and F1 are higher. In particular, the mAP50:95 of

YOLOv8 + EDCN (EGCA + DCNv2) is as high as 79.1%.

Experimental results show that the EGCA module is effective.

Table 3 presents the results of the ablation experiments of all

modules. The variations in various loss functions during the

training process are illustrated in Figure 9. We can find that the
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proposed modules have played a significant role in improving the

performance of the model. When the EC2f module was added to the

backbone network of YOLOv8, P reached its highest value of 92.6%,

mAP50 reached its highest value of 96.6%, and mAP50:95 reached its

highest value of 79.1%. This indicates that the proposed EC2f

module adapts well to the changing poses of swimming fish.

When only the EDBFPN module was added to the original

YOLOv8, all performance metrics of the model improved, and

the number of parameters and FLOPs decreased. This suggests that

the EDBFPN module effectively combines performance

improvement and model lightweighting. When only the EMSD

head was added to the original YOLOv8, the number of parameters

decreased to 2.6M, and FLOPs decreased to 5.8G. This shows that

the EMSD head module effectively reduces the number of

parameters and FLOPs in the model.

When the different models are combined together, the

improved model shows varying degrees of improvement in all

performance metrics compared to the original YOLOv8 while

also reducing the number of parameters and FLOPs to varying

degrees. When both EDBFPN and EMSD head were added to

YOLOv8, the mAP50 decreased by 1%, but the parameter count

reduced to the optimal value of 1.7M. Finally, when we integrate all

our modules into YOLOv8, the model experiences a significant

reduction in parameter count and FLOPs while maintaining

excellent detection performance. The performance metrics of

DeformableFishNet still outperform the original YOLOv8.

4.4.2 Experimental results of different models
In pursuit of a comprehensive and stringent comparison of

model performance under authentic circumstances, we employed

the widely recognized COCO evaluation metrics to scrutinize the

comparative merits and deficiencies across a variety of models.

Central to this evaluation is the average precision (AP), a metric

derived from the precision–recall curve, harmoniously integrating the

dual facets of precision and recall. COCO adopts mean average

precision (mAP) as the principal gauge of overall model efficacy,

which is achieved by averaging the AP scores across all object

categories. It is worth noting that COCO further incorporates the

intersection over union (IoU) threshold concept, wherein AP

calculations are performed for a range of IoU levels and reported

as AP@[0.5:0.05:0.95]. This signifies that the AP is computed at IoU

thresholds incrementally progressing from 0.5 to 0.95 in 0.05

intervals before being averaged, thereby furnishing a holistic

reflection of model performance across a spectrum of localization

difficulties. Given the substantial variation in object sizes within the

COCO datasets, the evaluation metrics take into account the diverse

dimensions of targets, segmenting them into small, medium, and
TABLE 2 Results of the ablation experiments of the EGCA module.

Method P R F1 mAP50 mAP50:95 Parameters FLOPs FPS

YOLOv8 91.1% 90.4% 91.0% 96.0% 76.6% 3.2M 8.7G 709

YOLOv8 + DCNv2 91.0% 91.5% 91.0% 96.5% 77.7% 3.0M 8.0G 684

YOLOv8 + EDCN (EGCA
+ DCNv2)

92.6% 90.8% 92.0% 96.6% 79.1% 3.1M 7.9G 625
The bold values are the optimal values for this column.
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large categories and computing the corresponding AP values. This

ensures a balanced assessment of model competence across all target

sizes. Moreover, COCO also presents average recall (AR) with a pre-

determined limit on the number of detections, offering insights into

how effectively a model can identify true positives when constrained

by a finite number of predicted bounding boxes, thereby providing a

complementary perspective on model performance.

Table 4 shows the comparison of our proposed method with

recently proposed methods in terms of COCO metrics. Sparse
Frontiers in Marine Science 12
R-CNN is a two-stage algorithm. RTMDet, YOLOv7, YOLOv8,

and YOLOv9 are one-stage algorithms, and both DINO and RT-

DETR are transformer-based algorithms.

It can be clearly observed that DeformableFishNet achieves the

highest average precision (AP) in various scenarios. In the case of an

IoU range from 0.50 to 0.95, DeformableFishNet achieves an AP of

75.2%, representing an 11.1% increase over the performance of

Sparse R-CNN in the same IoU range and 0.4% higher than the

second-best YOLOv8. When considering a maximum detection
FIGURE 9

Loss function during the training process of the ablation experiment. The horizontal axis in the figure represents the number of training epoch.
TABLE 3 Results of the ablation experiments of all modules.

YOLOv8 EC2f EDBFPN
EMSD
head

P R F1 mAP50 mAP50:95 Parameters FLOPs FPS

✓ 91.1% 90.4% 91.0% 96.0% 76.6% 3.2M 8.7G 709

✓ ✓ 92.6% 90.8% 92.0% 96.6% 79.1% 3.1M 7.9G 625

✓ ✓ 90.4% 92.0% 91.0% 96.3% 77.8% 2.0M 7.1G 434

✓ ✓ 91.2% 91.1% 91.0% 96.3% 77.6% 2.6M 5.8G 361

✓ ✓ ✓ 91.3% 92.2% 92.0% 96.6% 78.6% 2.1M 6.9G 476

✓ ✓ ✓ 92.0% 91.8% 92.0% 96.6% 77.6% 2.7M 5.6G 338

✓ ✓ ✓ 90.6% 91.8% 91.0% 95.9% 77.6% 1.7M 4.9G 357

✓ ✓ ✓ ✓ 92.0% 91.0% 92.0% 96.3% 78.1% 1.7M 4.7G 350
fro
The bold values are the optimal values for this column.
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count of 10, DeformableFishNet’s Average Recall (AR) is marginally

lower compared to YOLOv7. Conversely, with a maximum detection

count of 100, DINO surpasses all other algorithms. Nevertheless,

across all evaluated metrics, DeformableFishNet has the best

detection performance. The parameters of DeformableFishNet is

only 1.7M, and the FLOPs is only 4.7G. In general ,

DeformableFishNet demonstrates superiority over other algorithms.

4.4.3 Experimental results in different
underwater datasets

In Figure 10, it can be found that DeformableFishNet is effective on

freshwater fish dataset. Table 5 shows the experimental results of our

model on the proposed freshwater fish dataset. DeformableFishNet has

achieved excellent results in many indicators such as P, R, and mAP.

DeformableFishNet achieved P of 92.0%, R of 91.0%, mAP50 of 96.3%,

and mAP50:95 of 78.1%. Figure 11 is a normalized confusion matrix.

For koi, the model correctly identified them as koi (true positive) in
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94% cases. However, in the remaining 6% cases, it mistook koi for other

kinds of fish (false negative). For tilapia, the model correctly identified

them as tilapia (true positive) in 94% cases, but in 20% cases, it mistook

tilapia for koi (false positive). For background, the model successfully

identifies it as background (true negative) in 94% cases, but in 5%

cases, it mistook the background for tilapia (false positive).

DeformableFishNet performs well in identifying koi and tilapia, but

there are some errors in identifying the background. This may require

further optimization to reduce false positives.

The experimental findings pertain to the comparative detection

results for tilapia and koi fish. Upon scrutiny, DeformableFishNet

exhibits a higher aptitude for accurately detecting tilapia relative to

koi fish. This differential performance could potentially be

attributed to the unique physical attributes of these species. Koi

fish, renowned for their vivid colors and intricate textures, present a

broader and more diverse set of visual features. Each individual koi

displays a distinctive pattern and hue arrangement, which might
FIGURE 10

Performance values in the freshwater fish dataset.
TABLE 4 Results of comparative experiments.

Model
APIoU=0.50 APIoU=0.75

APIoU=

0.50:0.95
ARmaxDets=1 ARmaxDets=10

ARmaxDets=100 Parameters FLOPs

Sparse R-CNN-r50 90.2% 73.3% 64.1% 45.8% 75.8% 78.6% 2.5M 7.5G

DINO-4scale 94.6% 86.0% 73.9% 49.5% 80.6% 83.2% 47M 279G

RT-DETR-r18 95.2% 86.7% 74.6% 50.8% 80.1% 82.8% 20M 60G

RTMDet-l 94.9% 84.9% 72.9% 48.9% 79.5% 80.3% 52.3M 160.3G

YOLOv7-l 95.2% 86.8% 74.5% 51.0% 81.4% 81.6% 37.6M 106G

YOLOv8-n 95.1% 87.3% 74.8% 50.6% 80.7% 80.8% 3.2M 8.7G

YOLOv9-c 95.1% 86.2% 73.5% 49.9% 80.2% 80.6% 25.5M 102.8G

DeformableFishNet 95.4% 87.7% 75.2% 51.0% 80.6% 80.6% 1.7M 4.7G
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necessitate a more sophisticated recognition process. On the whole,

DeformableFishNet can be well applied to the detection of

freshwater fish. Figures 12, 13 show the detection results of

DeformableFishNet on the freshwater fish dataset.

To substant iate the versat i l i ty and robustness of

DeformableFishNet in the realm of fish recognition, we applied

DeformableFishNet to Fish4Knowledge23 dataset, and the results

are shown in Table 6. In Figure 14, it can be found that

DeformableFishNet is effective on Fish4Knowledge23 dataset. We

can find that P reaches 96.7%, R reaches 97.6%, mAP50 reaches

99.4%, and mAP50:95 reaches 85.5%. Displaying DeformableFishNet’s

consistency and reliability across a broad spectrum of IoU thresholds.

DeformableFishNet has achieved excel lent results in

Fish4Knowledge23 dataset. In all kinds of fish, the index values

have reached above 90.0%. The highest mAP50 value of 99.5% was

achieved in the detection of various fish species such as Myripristis

kuntee, Amphiprion clarkia, and Plectroglyphidodon dickii. In the

detection of Neoniphon samara, the mAP50 value reached the lowest

at 97.6%.
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Figure 15 is a normalized confusion matrix. In the first line

(Dascyllus reticulatus), the model can almost always correctly

identify this fish and only in a few cases misjudged it as other

species or backgrounds. In the second row (Myripristis kuntee), the

model can perfectly identify this kind of fish. In the next few lines, it

also shows a similarly high accuracy, such as for Amphiprion

clarkia, Plectroglyphidodon dickii, etc.

However, in line 12 (Scolopsis bilineata), although the model

can correctly identify in most cases, some are misjudged as other

types, such as Ncoglyphidodon nigroris and Zancius cornutus. The

last line represents the background, and it can be seen that the

model rarely misjudges any kind of fish as the background, which

shows that it has a strong ability to distinguish between fish

and background.

DeformableFishNet is excellent in identifying most fish species,

but there may be confusion between certain species—for example,

Scolopsis bilineata is sometimes misjudged as NCglyphodon Niger

or Zancius cornutus. In addition, the model rarely makes mistakes

in judging the background, which shows that it has good

background removal ability. Figure 16 shows the detection results

of DeformableFishNet on Fish4Knowledge23.

We engaged the DeformableFishNet model in a rigorous

evaluation using the brackish dataset, aiming to authenticate its

efficacy under the challenging conditions of murky and indistinct

underwater scenes. In Figure 17, it can be found that

DeformableFishNet is effective on brackish dataset. The

experimental results are presented in Table 7. In the brackish
FIGURE 11

Confusion matrix in the freshwater fish dataset.
TABLE 5 Results of DeformableFishNet in the freshwater fish dataset.

Class P R F1 mAP50 mAP50:95

All 92.0% 91.0% 92.0% 96.3% 78.1%

Koi 90.2% 89.3% 89.7% 95.0% 74.6%

Tilapia 93.8% 92.7% 93.2% 97.6% 81.6%
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FIGURE 13

Detection results of DeformableFishNet in the freshwater fish dataset.
FIGURE 12

Detection results of DeformableFishNet in the freshwater fish dataset.
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dataset, DeformableFishNet achieved P of 98.0%, R of 96.6%, and

mAP50 of 98.0% as well as mAP50:95 of 81.2%. The mAP50 of

DeformableFishNet in detecting starfish and crab reached 99.5%,

which was better than that of other marine organisms.

DeformableFishNet not only performs well in fish detection but

also evidences its adaptability and effectiveness in recognizing and

detecting non-fish marine species, such as crabs and starfish.

Although DeformableFishNet recorded its lowest mAP50 score in

detecting small fish compared to other creature categories, it still

maintained 95.4% mAP50 in this regard.

Figure 18 is a normalized confusion matrix. The model

correctly identified the fish in 98% of the cases and in only 2%

of the cases misjudged the fish as other categories. For small fish,

the model correctly identified small fish in 93% of the cases, and in

the remaining 7% of the cases, most of them were misjudged as

fish and a small part as background. For crab, the model correctly

identified the crab in 99% of the cases and only misjudged the crab

as other categories in 1% of the cases. For shrimp, the model

correctly identified shrimp in 98% cases and misjudged shrimp as

other categories in 2% cases. For jellyfish, the model correctly
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identified jellyfish in 93% cases and misjudged jellyfish as

other categories in 7% cases. The model has a good detection

effect on starfish. The model correctly identified starfish in 100%

cases, and there was no misjudgment. Generally speaking,

DeformableFishNet performs well in identifying various aquatic

organisms, especially fish, crab, shrimp, and starfish. For small fish

and jellyfish, although there is a high accuracy, there are still

some misjudgments.

Figure 19 shows the detection outcomes of DeformableFishNet

on the brackish dataset. DeformableFishNet excels in detecting

objects in dark and blurry underwater environments and

demonstrates equally commendable performance in the detection

of other marine life forms.

In order to thoroughly assess the adaptability and effectiveness of

the DeformableFishNet model across a multitude of underwater

settings, we executed a series of rigorous tests harnessing the RUOD

dataset. In Figure 20, it can be found that DeformableFishNet is

effective on RUOD dataset. The comprehensive experimental

outcomes are encapsulated in Table 8, illustrating that

DeformableFishNet secured a noteworthy P of 86.3%, R of 75.6%,
TABLE 6 Results of DeformableFishNet in the Fish4Knowledge23 dataset.

Class P R F1 mAP50 mAP50:95

All 96.7% 97.6% 97.1% 99.4% 85.5%

Dascyllus reticulatus 98.2% 96.9% 97.5% 99.2% 86.7%

Myripristis kuntee 99.5% 100% 99.2% 99.5% 85.8%

Amphiprion clarkia 99.8% 100% 99.9% 99.5% 79.5%

Plectroglyphidodon dickii 100% 99.7% 100% 99.5% 79.6%

Chromis chrysura 100% 98.9% 99.4% 99.5% 82.1%

Lutjanus fulvus 95.2% 94.7% 94.9% 99.3% 78.4%

Pomacentrus moluccensis 99.0% 100% 99.2% 99.5% 90.9%

Abudefduf vaigiensis 98.2% 100% 98.6% 99.5% 80.2%

Zebrasoma scopas 97.2% 100% 98.3% 99.5% 84.9%

Chaetodon trifascialis 98% 100% 98.7% 99.5% 85.6%

Acanthurus nigrofuscus 91.8% 97.0% 94.3% 99.2% 88.6%

Siganus fuscescens 86.8% 100% 92.9% 99.5% 89.5%

Canthigaster valentine 96.7% 100% 98.3% 99.5% 77.0%

Balistapus undulates 95.7% 100% 97.8% 99.5% 92.4%

Hemigymnus melapterus 93.6% 100% 96.7% 99.5% 83.3%

Scolopsis bilineata 96.5% 100% 98.2% 99.5% 84.8%

Ncoglyphidodon nigroris 100% 63.8% 78.0% 99.5% 93.1%

Scaridae 95.9% 100% 97.9% 99.5% 88.0%

Hemigymnus fasciatus 98.9% 100% 99.4% 99.5% 85.5%

Chaetodon lunulatus 99.8% 99.0% 99.3% 99.5% 83.9%

Pempheris vanicolensis 87.3% 100% 93.2% 99.5% 99.5%

Neoniphon samara 99.2% 96.8% 98.0% 98.0% 82.0%
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FIGURE 15

Confusion matrix in the Fish4Knowledge23 dataset.
FIGURE 14

Performance values in the Fish4Knowledge23 dataset.
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and mAP50 of 83.9%. Concurrently, the model achieved mAP50:95 of

60.4% on the diverse and challenging RUOD dataset.

A highlight from these results was DeformableFishNet’s

superior performance in the detection of cuttlefish, where it

reached its pinnacle mAP50 score of 96.7%. Given the RUOD

dataset’s absence of granular classifications for fish species, the

model faced its most daunting challenge in the “fish” category,

recording a minimum mAP50 of 66.1%. Nevertheless, this datum

underscores the robustness of DeformableFishNet even in the

presence of less defined categories.

Figure 21 shows the performance of the model in identifying

underwater creatures. The darker the color, the higher the accuracy,
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while the lighter the color, the lower the accuracy. In the RUOD data,

DeformableFishNet performs well in identifying sea cucumbers, sea

urchins, scallops, starfish, corals, divers, cuttlefish, and turtles, but

there are some misjudgments in identifying fish and jellyfish. At the

same time, the model easily misjudges the background as jellyfish and

turtles. Figure 22 shows the detection results of DeformableFishNet

on the RUOD dataset. DeformableFishNet exhibits performance in

the arduous task of underwater object detection under a wide array of

environmental conditions.

In this study, DeformableFishNet performed well on freshwater

fish dataset. Compared with other target detection algorithms,

DeformableFishNet achieves higher detection accuracy with lower

parameters and floating-point computation. In the open underwater

datasets, although DeformableFishNet has some misjudgments, it

also has high accuracy. Overall, DeformableFishNet not only

performs well in fish detection but also performs well in identifying

various aquatic organisms.

There is still much room for improvement in this research.

DeformableFishNet is designed based on the characteristics of

freshwater fish dataset. However, the number of samples in

freshwater fish dataset is limited, and there are few fish species.

DeformableFishNet performs well on several datasets, but the actual

underwater environment is complex and changeable, and the

diversity of fish posture, size, Color, and background may exceed

the coverage of the training data. Future research can further

enhance the generalization ability of the model, for example, by

introducing more diverse training data, adopting data
TABLE 7 Results of DeformableFishNet in the brackish dataset.

Class P R F1 mAP50 mAP50:95

All 98.0% 96.6% 97.0% 98.0% 81.2%

Fish 98.8% 98.0% 98.4% 99.1% 86.6%

Small
fish

94.1% 91.5% 92.8% 95.4% 68.8%

Crab 99.2% 99.0% 99.1% 99.5% 88.0%

Shrimp 96.5% 97.8% 97.2% 98.5% 73.7%

Jellyfish 99.6% 93.3% 96.4% 95.9% 72.1%

Starfish 99.9% 99.7% 99.8% 99.5% 98.1%
FIGURE 16

Detection results in the Fish4Knowledge23 dataset.
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enhancement technology, or designing more robust feature

representation methods.

Underwater images often face problems such as blur, large

illumination variation, and turbid water quality, which may affect

the recognition accuracy. Developing a feature extraction method
Frontiers in Marine Science 19
that can resist these interference factors or incorporating a specific

adaptive mechanism into the model will be the key to improve the

recognition robustness.

DeformableFishNet is an improvement on YOLOv8. According

to the official test, YOLOv8 can realize real-time detection on high-
FIGURE 18

Confusion matrix in the brackish dataset.
FIGURE 17

Performance values in the brackish dataset.
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definition video stream. Although DeformableFishNet has paid

attention to the lightweight of the model, it may be necessary to

reduce the computational cost (FLOPs) or improve the reasoning

speed in some application scenarios. DeformableFishNet needs to

be tested and adjusted according to the actual situation of edge

devices. Exploring a more efficient network structure design, model

pruning, quantization technology, or hardware acceleration scheme

is the future improvement direction.
Frontiers in Marine Science 20
5 Conclusion

In this paper, we proposed a new network structure named

DeformableFishNet. First, we design an EGCA attention module and

combine it with deformable convolution to introduce EDCN and

EC2f convolution modules as the backbone and neck units of the new

network. Second, to better extract features, perform feature fusion,

and lightweight the neural network, we propose the EDBFPN.

Finally, aiming to maintain high performance and maximize

lightweightness for deployment on edge devices for fish detection

and classification, we redesign an EMSD head that obtains multi-

scale feature maps through inexpensive convolution operations.

The experimental results show that the performance of

DeformableFishNet is obviously better than many algorithms.

The experimental results show that all the modules we proposed

have achieved good results. In our freshwater fish dataset, the

mAP50 of the DeformableFishNet has achieved 96.3% and the

mAP50:95 has achieved 78.1%. In three public underwater datasets,

the DeformableFishNet got 98%, 99.4%, and 83.6% mAP50,

respectively. The parameters of DeformableFishNet is 1.7M, and

the FLOPs is 4.7G. Compared with the target detection algorithm

YOLOv8, the proposed model parameters are reduced by 1.5M and

the FLOPs by 4G. DeformableFishNet is suitable for deployment on

edge devices to achieve real-time underwater fish detection and

classification. DeformableFishNet not only achieves high accuracy

in the recognition task but also is friendly to edge devices. This

study is expected to promote the application of fish identification

method based on deep learning in production.
TABLE 8 Results of DeformableFishNet in the RUOD dataset.

Class P R F1 mAP50 mAP50:95

All 86.3% 75.6% 80.0% 83.9% 60.4%

Holothurian 85.0% 67.1% 75.6% 78.5% 48.5%

Echinus 92.3% 83.2% 87.7% 92.3% 54.5%

Scallop 85.4% 63.2% 73.8% 79.5% 51.3%

Starfish 88.7% 79.7% 84.1% 88.0% 55.3%

Fish 80.2% 56.5% 67.3% 66.1% 46.3%

Corals 78.2% 66.0% 71.9% 72.5% 53.0%

Diver 90.1% 91.4% 90.8% 94.4% 76.2%

Cuttlefish 93.7% 93.9% 93.8% 96.7% 81.5%

Turtle 93.5% 89.3% 91.4% 94.7% 81.2%

Jellyfish 75.6% 65.3% 70.3% 73.1% 56.2%
FIGURE 19

Detection results in the brackish dataset.
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FIGURE 20

Performance values in the RUOD dataset.
FIGURE 21

Confusion matrix in the RUOD dataset.
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In the future, we will continue to expand the freshwater fish

dataset, planning to include underwater images of freshwater fish

from more species and ecological environments to significantly

enhance the diversity and comprehensiveness of the dataset. We

will further optimize the model according to the resource

consumption during the actual deployment of edge devices. In

addition, we will devote ourselves to developing a series of advanced

technical models, such as real-time fish tracking system, efficient

fish quantity estimation method, and methods for fish disease

identification, all of which will provide strong data and technical

support for fishery resource management, ecological protection,

and related scientific research fields.
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Detection results in the RUOD dataset.
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