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Effects of exercise training on
growth and physiology of large-
mouth bass (Micropterus
salmoides) reared in a
recirculating aquaculture system
Mingdong Ji1 and Haijun Li2*

1School of Engineering, Huzhou University, Huzhou, China, 2Institute of Agricultural
Bio-Environmental Engineering, College of Biosystems Engineering and Food Science, Zhejiang
University, Hangzhou, China
Large-mouth bass originally lived in rivers and lakes and now is often raised in

recirculating aquaculture systems (RAS). However, the shortcoming of RAS is that

there is very limited space for swimming fish in a high-density culture

environment, thus leading to a lack of exercise. To investigate the effects of

exercise training on growth performance, digestive enzymes, stress, and

antioxidant capacity of large-mouth bass in a RAS, three training water flow

velocities with three replicates were used in the present study: low water

velocity: 0.5 body length per second (bl/s) (LV); medium water velocity: 1 bl/s

(MV); and high water velocity: 1.5 bl/s (HV). 270 large-mouth bass (average initial

body weight 47.51 ± 1.44 g, initial body length 12.71 ± 0.06 cm) were randomly

divided into nine tanks (30 fish per tank). After 27 days experiment, the results

showed that the growth performance of large-mouth bass, including feed intake,

weight gain rate, and specific growth rate, in the HV group was significantly

higher compared to the other groups. On the physiological level, the lipase and

amylase activities were significantly increased in the HV group compared to the

other groups. For the stress response parameters, the cortisol, glucose and

lactate concentrations in the HV group were significantly increased, which may

indicate higher stress in the HV group. Regarding the antioxidant enzyme

activities, the activities of catalase (CAT) and glutathione peroxidase (GSH-PX)

in the LV group were significantly higher than those in the HV group, which

indicated that fish suffered higher oxidative stress in the LV group. Regarding the

immune-related parameters, LZM and ACP activities had no significant

differences among the groups, while AKP activities in the MV and HV groups

were significantly higher than that in the LV group. Overall, the results

demonstrated that exercise training had significant effects on the growth,

digestion, stress, and immune response of large-mouth bass. It is suggested

that exercise training with 1.5 bl/s can enhance fish growth, however, it also

presents a potential risk of inducing stress in fish. Therefore, in rearing large-

mouth bass in RAS, the setting of water flow velocity should not only focus on the

growth of large-mouth bass but also consider its welfare.
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1 Introduction

The large-mouth bass (Micropterus salmoides) has gained significant

prominence in freshwater fish owing to its exceptional reproductive

capabilities, rapid growth rate, and delectable flesh (Cai et al., 2011; Chen

et al., 2021). This predatory species originated in North American lakes

and rivers (Coyle et al., 2010), and it was initially introduced into the

Chinese mainland in 1983 (Harimana et al., 2019). The cultivation of

large-mouth bass in China has traditionally been conducted in ponds.

Nonetheless, this approach is characterized by a significant reliance on

manual labor and a lack of control over the breeding environment.

Recently, the adoption of recirculating aquaculture systems (RAS) has

witnessed substantial growth owing to its numerous benefits, including

reduced water consumption, consistent water quality, and decreased

pollution levels (Martins et al., 2010). Nevertheless, a drawback of RAS is

the constrained area available for fish to swim in a densely populated

culture setting, thus leading to lower exercise levels of captive fish

compared to wild fish (Palstra and Planas, 2011). Furthermore, Palstra

and Planas (2011) discovered that numerous fish species possess an

inherent tendency to swim in opposition to the current, and the absence

of flowing water can hinder the cultivation of this instinct, ultimately

leading to diminished exercise-related benefits such as decreased

physical capacity and muscle mass.

In response to the above-mentioned problems in a RAS, people

generally adjust the water flow velocity in the tank. On the one hand, it

helps clean the feces and residual bait in the aquaculture tank, and on

the other hand, it can induce fish to exercise and maintain good growth

and physiological status. Regarding exercise-induced growth, it is

believed that when the velocity of water flow closely matches the

swimming speed, the cost of transportation is minimized, and energy

efficiency is maximized (Tucker, 1970; Palstra and Planas, 2011). This

specific velocity represents the optimal swimming speed (Uopt).

Therefore, at swimming velocities below Uopt, a significant amount of

energy is expended as a result of increased spontaneous activity.

Conversely, velocities exceeding Uopt render swimming unsustainable

and induce stress, leading to anaerobic metabolism, elevated lactate

levels, oxygen debt accumulation, and eventual fatigue (Davison, 1997;

Palstra et al., 2010). Previous studies have demonstrated that exercise

training serves as a growth-promoting factor in various fish species,

includingNile tilapia (Oreochromis niloticus), gilthead seabream (Sparus

aurata), Qingbo (Spinibarbus sinensis), as evidenced by investigations

conducted by Moya et al. (2019); Obirikorang et al. (2019) and Li et al.

(2016). In addition, researches have indicated that too high water flow

velocity can result in increased stress levels in fish, ultimately

compromising their welfare (Li et al., 2019; Timmerhaus et al., 2021).

According to Timmerhaus et al. (2021), training intensities for fish

are often defined by the water velocity in relation to the fish’s body

length and previous research has traditionally categorized medium

velocities as around one body length per second of water velocity in the

tank (BL/s). In addition, as fish grow, their body length changes,

necessitating adjustments to water flow velocity to accommodate these

changes. However, according to our knowledge, the impact of flow

velocity on large-mouth bass predominantly centers on constant flow

rates (Chen et al., 2021; Zhao et al., 2023), leaving the effects of water

flow velocity based on body length variation on large-mouth bass

unexplored. Furthermore, in a previous study conducted by our
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research team, three different flow velocities (4 cm/s, 0.90 bl/s; 11

cm/s, 2.45 bl/s; and 18 cm/s, 4 bl/s) were utilized for rearing juvenile

fish with an initial body length of 4.5 cm and an average weight of

1.92 g in a RAS. This rearing period lasted for 66 days, during which

the fish grew to a body length of 14.5 cm and a weight of 37.5 g. The

results indicated that the high flow velocity of 18 cm/s, corresponding

to 4 bl/s, resulted in the most optimal growth rate, reaching

approximately 1.2 bl/s during the final phase of the experiment

(Chen et al., 2021). On this basis, the impact of exercise training on

the growth of larger fingerlings, with an average weight of 47.5 g and a

body length of 12.71 cm, was investigated to offer new insights for

implementing real RAS production.

Therefore, three training water flow velocities represented as low

(LV), medium (MV) and high (HV) based on body length variation

were adopted in the present study. The HV was set at 1.5 bl/s,

approximately close to 18 cm/s, which was suggested by Chen et al.

(2021). The MV was set at 1.0 bl/s, according to Timmerhaus et al.

(2021). Timmerhaus et al. (2021) mentioned that previous research

traditionally categorized medium velocities as around one body length

per second of water velocity in the tank. In the LV group, the water

velocity was set at 0.5 bl/s as a control, which was a minimum velocity

to ensure self-cleaning of the tanks. Overall, this study aims to

investigate whether exercise training at different water flow velocities

has different effects on growth performance, feed intake, chronic stress,

and antioxidant capacity of large-mouth bass reared in a RAS.
2 Materials and methods

2.1 Ethics statement

The Zhejiang University Animal Research and Ethics

Committees gave their consent and approval of this study. No

species that were listed as endangered or protected were included in

the field research.
2.2 Experimental animals

Large-mouth bass juveniles were purchased from Hangzhou

Weikang Agricultural Development Co., Ltd and were used in this

experiment. During the experiment, 300 fish were randomly divided

into two groups and subjected to a two-week acclimation period.

During the acclimation period, the juvenile large-mouth basses were

fed twice daily, at 9:00 and 17:00. The fish tank was kept at a

temperature of 22 ± 1°C, with dissolved oxygen of around 6.5-8.5

mg/L, nitrogen concentration was maintained below 0.5 mg/L, and a

photoperiod of 12 hours in light and 12 hours in darkness.
2.3 Experimental recirculating
aquaculture systems

The current study utilized three experimental RAS, each consisting

of three rearing tanks. Each tank had a capacity of 150L, with

dimensions of 0.65 m in diameter, 0.45 m in height, and a water
frontiersin.org
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volume of 0.13 m3. Mechanical and biological filters were used, as well

as a water pump, a thermostat, and other parts that are necessary for

the function of a RAS. The biological filter had a working volume of

300 L and a suspended porous filter with a filling rate of 60%. The

experiment was conducted at Yuya Technology Co., Ltd., Huzhou,

China. According to Arbeláez-Rojas andMoraes, (2013), the tangential

water velocity gradually decreases towards the center and Figure 1

shows the experimental schematic of the rearing tank. A column of

plastic screen, measuring 1/3 of the total diameter of the tank, was

employed to restrict fish access to the central water region in this study.
2.4 Experimental design and
velocity adjustment

At the end of the acclimation phase, a cohort of 270 fish, all of

similar dimensions, was randomly allocated into nine tanks.

Subsequently, the water velocity in each tank was standardized to 0.5

body length per second (bl/s). In the initial week, the water velocity in

each tank was incrementally modified to attain the targeted water

velocity. The experimental procedure was conducted according to the

method reported previously elsewhere (Timmerhaus et al., 2021). The

desired water velocities in the three groups were: LV (low water

velocity): 0.5 bl/s, MV (medium water velocity): 1 bl/s, HV (high

water velocity): 1.5 bl/s. As the duration of the experiment progressed,

the fish exhibited an increase in length, prompting a weekly adjustment

of water velocity to align with the average body length in the respective

tanks. The water velocity in each tank was quantified using a

velocimeter (the LSH10-1M miniature Doppler flow meter) at

distances of 15 cm and 20 cm from the center of the tank, and at

depths of 15 cm and 30 cm. The average velocity across these depths

was deemed representative of the overall water velocity in the tank.

During the experimental period, juvenile large-mouth bass were

fed to satiety twice daily at 09:00 and 17:00 for 27 days. The dissolved
Frontiers in Marine Science 03
oxygen levels in the fish tank were consistently maintained around 6.5-

8.5 mg/L, while the water temperature was carefully regulated at 22 ± 1°

C. Additionally, the nitrogen concentration in the tank did not exceed

0.5 mg/L, and a photoperiod of 12 hours in light and 12 hours in

darkness was implemented.
2.5 Sampling and analysis protocol

Following the completion of the experiment, 24 hours of fasting

was implemented for the fish. At the predetermined sampling

interval, a random selection of fifteen fish from each tank

underwent deep anesthesia using MS-222 at a 120 mg/L

concentration. The fifteen fish from each tank were measured for

body weight. Subsequently, blood samples were drained from the

caudal vein of fifteen fish per tank. During this process, we randomly

mixed the blood of five fish into one sample, and thus, n = 3 for each

tank. The blood was placed in the refrigerator at 4°C overnight,

centrifuged at a speed of 4000 rpm for 10 min, and the supernatant

was collected and stored in the refrigerator at -80°C. After completing

the blood sampling, the fish were quickly dissected under sterile

conditions, and their intestinal and liver tissues were collected.

During this process, we randomly divided 15 fish from the same

tank into 3 groups, obtaining 3 groups of intestinal tissue samples and

3 groups of liver tissue samples, respectively. The collected intestinal

and liver tissues were immediately placed in liquid nitrogen for later

detection of intestinal digestive enzymes and detection of liver

antioxidant enzymes and immune related indicators.

Digestive enzyme activities, including trypsin, lipase, and amylase

activities, in the intestine were measured by assay kits (reference codes:

A080-2-2, A054-1-1, C016-1-1) following the instruction provided by

the manufacturer. The serum concentrations of cortisol, glucose, and

lactate (reference codes H094, F006-1-1, A019-2-1) were determined

using commercial kits according to the methods given by the
FIGURE 1

Top and side view of the experimental schematic of the rearing tank.
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manufacturer. Testing kits (reference codes A001-1-2, A005-1-2, and

A007-1-1) were employed to determine the activities of superoxide

dismutase (SOD), glutathione peroxidase (GSH-PX), catalase (CAT) in

the liver, following the manufacturer’s protocols. The activities of

lysozyme (LZM), alkaline phosphatase (AKP), and acid phosphatase

(ACP) (reference codes A050-1-1, A060-1-1, and A059-1-1) in the liver

were determined using commercial kits. All assay kits were procured

from Nanjing Jiancheng Institute in Nanjing, China.

Additionally, the growth parameters of weight gain rate, specific

growth rate and feed conversion were calculated by Equations 1, 2

and 3, respectively:

Weight gain rate ( % ) = 100� (W2 −W1)=W1 (1)

Specific growth rate ( % =d) = 100� (lnW2 − lnW1)=t (2)

Feed conversion ratio = Feed intake=Weight gain (3)

where W1 is initial body weight (g), W2 is final body weight (g), t is

the rearing time (d).
2.6 Statistical analysis

Data related to growth and physiology of the fish are presented

as a mean ± standard deviation (SD). An analysis of the data was

carried out using the software SPSS 20.0. All data were reviewed for

normality and homogeneity prior to analysis. The comparison of all

indexes within each group was carried out using a one-way analysis

of variance (ANOVA) and Turkey’s test. A significance level of 0.05

was established.
3 Results

3.1 Impact of exercise training on growth
performance and feed intake

Table 1 presents the impact of exercise training on the growth

performance of large-mouth bass. The results indicated that there

were significant differences in growth performance parameters
Frontiers in Marine Science 04
between the LV and HV groups. The final body weight, weight

gain rate, and specific growth rate in the HV group were

significantly higher than those in the LV and MV groups (P <

0.05). In terms of final weight, final body length, weight gain rate,

and specific growth rate, there were no significant differences

between the LV and MV groups (P > 0.05). Compared to the LV

and MV groups, the HV group had a significantly lower feed

conversion ratio (P < 0.05). No significant difference was found

between the LV and MV groups in feed conversion ratio (P > 0.05).

Figure 2 displays the cumulative feed intake for each group.

Notably, the HV group displayed the highest cumulative feed

intake, compared to the LV and MV groups, at the end of the

experiment. Commencing from day 22, the cumulative feed intake

of the HV group surpassed that of the LV and MV groups.
3.2 Effect of exercise training on digestive
enzyme activity

Figure 3 shows the effect of exercise training on digestive enzyme

activity parameters of large-mouth bass under different water velocities.

Compared to the MV group, lipase activity in the HV and LV groups

was considerably higher (P < 0.05). No noticeable differences were

found between the three groups regarding trypsin activity (P > 0.05).

Nevertheless, as the water velocity increased, the trypsin activity also

increased. As for amylase activity, the HV group showed significantly

higher levels than the other groups.
3.3 Effect of exercise training on
stress response

The effect of exercise training on stress response is presented in

Figure 4. The results showed that the exercise training exhibited an

appreciable effect on cortisol, glucose, and lactate concentrations.

The serum cortisol level in the HV group was significantly higher

than those in the LV and MV groups (P < 0.05), but no significant

difference was observed between the MV and LV group (P > 0.05).

In the HV group, glucose concentration was higher compared to the

LV group (P < 0.05), while no significant difference was found
TABLE 1 Impact of exercise training on the development performance of large-mouth bass after 27 days.

Parameters LV MV HV P value

Initial body weight (g) 47.41 ± 1.20 47.59 ± 2.20 47.51 ± 1.42 0.928

Final body weight (g) 79.51 ± 9.63b 74.71 ± 9.28b 90.52 ± 8.11a 0.000

Weight gain rate (%) 67.70 ± 20.31b 56.97 ± 19.49b 90.51 ± 17.08a 0.000

Specific growth rate (% day-1) 1.82 ± 0.43b 1.58 ± 0.45b 2.29 ± 0.31a 0.000

Feed conversion ratio 0.95 ± 0.03a 0.98 ± 0.04a 0.77 ± 0.06b 0.029
Values in the identical row, yet bearing distinct superscripts, exhibit a notable level of dissimilarity (P < 0.05), as follows.
LV, low water flow velocity; MV, medium water flow velocity; HV, high water flow velocity.
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between the MV and LV group (P > 0.05). In the HV group, the

lactate concentrations were significantly higher than those in the LV

and MV groups (P < 0.05), while in the LV and MV groups, there

was no significant difference (P > 0.05).
3.4 Effect of exercise training on
antioxidant enzyme activities and immune-
related parameters

The antioxidant enzyme activity of large-mouth bass subjected

to each group were listed in Figure 5. It was found that the exercise

training had a crucial impact on SOD, CAT, and GSH-PX activities.

There was a significant increase in SOD activity in the HV and MV

groups compared to the LV group (P < 0.05), but no significant

differences were observed among the MV and HV groups (P > 0.05).

The HV and MV groups showed significantly lower CAT activity

than the LV group (P < 0.05), but no significant difference was

observed between the MV and HV groups (P > 0.05). There was a

significant reduction in GSH-PX activity in the HV group

compared to the LV group (P < 0.05), but no significant

difference was found between the LV and MV groups (P > 0.05).

The activity of AKP in the MV and HV groups were significantly

higher than that in the LV group (P < 0.05). Regarding the LZM and

ACP activities, no significant differences were observed among the

groups (P > 0.05).
4 Discussion

4.1 Growth performance

Exercise training can impact the growth performance offish and

may be influenced by various factors such as exercise intensity,
Frontiers in Marine Science 05
employed methodology, and the lifestyle of the fish. The majority of

scientific literature suggests that exercise training can have negative

effects on certain inactive fish, such as the Japanese flounder

(Paralichthys olivaceus) (Ogata and Oku, 2000) and rabbitfish

(Siganus rivulatus) (Ghanawi et al., 2010). While in some

publications, there was evidence that fish growth can be positively

influenced by exercise training, such as Atlantic salmon (Salmo

salar) (Castro et al., 2011), gilthead sea bream (Sparus aurata L.)

(Blasco et al., 2015), yellowtail kingfish (Serbia lalandi) (Palstra

et al., 2015), Schizothorax prenanti (Liu et al., 2018), and

largemouth bass (Chen et al., 2021). In the present study, the HV

group had significantly higher final body weights, weight gain rates,

and specific growth rates compared to LV and MV groups.

Chen et al. (2021) obtained similar results with juvenile large-

mouth bass (1.9-37.5g), which agreed with the findings of this

study. According to their study, the weight gain rate and

specific growth rate of large-mouth bass were significantly

higher at high flow (18cm/s) than at low (4cm/s) and middle

flows (11cm/s). All the above results indicated that exercise

training with high water flow velocity might directly promote the

growth of large-mouth bass. According to Timmerhaus et al.

(2021), fish in the high water flow velocity displayed a more static

swimming position in relation to the tank, whereas fish in the low

water flow velocity displayed a larger degree of locomotor activity,

swimming more dynamically and freely. Based on the research of

Waldrop et al. (2018), swimming exercise has been shown to

potentially enhance growth performance in fish by facilitating

ram ventilation in faster water flow. This process allows for

increased water flow over the gills, reducing the need for active

ventilation through the branchial pump and enabling the

countercurrent oxygen exchange process to operate more

efficiently with reduced energy expenditure. Therefore, exercise

training with high velocity may result in lower energy

consumption for ventilation.
FIGURE 2

Cumulative feed intake among the groups over time.
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Actually, several studies suggested that training fish improved

their growth by increasing their feed intake and improving their

feed conversion ratio (Li et al., 2013). Based on our research, we

found that the outcome was consistent for the large-mouth bass.

Compared to the other groups, the HV group had a significantly

lower feed conversion ratio, which indicated that the fish exposed to

the high water flow velocity performed better food utilization

efficiency. Furthermore, during the period from the 22nd day

until the end of the experiment, HV group had the highest

cumulative feed intake out of all the groups. Based on the results

mentioned above, it can be inferred that exercise training with high

water velocity increases the feed intake of fish, resulting in better

food utilization and, hence, a faster growth rate (Huang et al., 2007;

Liu et al., 2018).
4.2 Digestive enzymes

Digestion enzymes have been commonly used to assess the

nutritional status and growth performance of various fish species

under diverse environmental conditions (Suzer et al., 2006; Zeng

et al., 2012; Li et al., 2013, 2020). According to Ueberschär (1993),

the activity of digestive enzymes can indicate fish’s digestive

capacity and nutritional status. Furthermore, digestive enzyme

activity is commonly measured as a method for assessing
Frontiers in Marine Science 06
digestive capability, and it is a reliable physiological indicator

(Shan et al., 2008). Consequently, the growth rate of fish is

intricately linked to the activity of digestive enzymes, as

supported by the studies conducted by Lemieux et al. (1999) and

Hakim et al. (2006). Overall, increased digestive enzyme activity

indicates improved digestion (Li et al., 2020). In this study, as

compared to MV group, the activities of lipase and amylase were

significantly higher in HV group. A significantly higher level of

amylase activity was observed in HV group than in LV group. Based

on these results, the observed elevation in enzyme activities could

potentially facilitate digestion and increase feed absorption, thereby

contributing to the promotion of large-mouth bass growth. Higher

amylase and lipase activities further explained the reason why the

large-mouth bass in the HV group had better growth performance.
4.3 Stress response

The hormone cortisol serves various functions in fish, including

development, behavior and reproduction (Mommsen et al., 1999).

According to Khansari et al. (1990), stress often affects blood

cortisol levels. When cortisol levels are high, fish experience

greater stress. Furthermore, fish experience an increase in their

plasma glucose and lactate levels when they undergo stressful

situations (Silbergeld, 1974; Strange and Schreck, 1978; Wei et al.,
B

C

A

FIGURE 3

Effect of exercise training on digestive enzyme activity. (A) Trypsin, (B) Lipase, (C) Amylase. Values are presented as mean ± SD from three replicates.
Different letters on the bar chart indicate significant differences (P < 0.05).
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2019). The cortisol level in the HV group was significantly greater

than in the LV and MV groups, as witnessed in the current

investigation. However, there was no apparent difference in

cortisol levels between the LV and MV groups. According to the

aforementioned findings, it indicated that the fish in the HV group

experienced more stress than those in the LV and MV groups.

Additionally, the fish in the HV group had substantially greater

amounts of lactate and glucose than the fish in the LV group.

However, no significant changes were discovered between the LV

andMV groups. It was further shown that fish in the HV group may

be under higher stress.
4.4 Oxidative stress and immune response

Fish have a range of antioxidant mechanisms to defend

themselves against reactive oxygen species (ROS) in reaction to

abrupt changes in their environment (Pandey et al., 2003; Gao et al.,

2016). In general, antioxidant enzymes that have been activated

often eliminate ROS (Pandey et al., 2003). Antioxidant enzymes

such as glutathione peroxidase (GSH-PX), catalase (CAT), and

superoxide dismutase (SOD) are involved in endogenous

antioxidant processes (Hansen et al., 2006). These antioxidant

enzymes function via the subsequent pathways: SOD transforms
Frontiers in Marine Science 07
O2
- into H2O2, while GSH-PX and CAT then convert the hazardous

H2O2 into water and molecular oxygen (O2), so removing any

harmful effects (Bagnyukova et al., 2007). In the present study, a

higher level of SOD activity was detected in the MV and HV groups

compared with the LV group. It is possible that fish in the MV and

HV groups may consume more oxygen due to higher water

velocity, which could result in an increase in O2
- production.

SOD, an important enzyme, helps in converting O2
- into H2O2,

which is the primary and most crucial defense mechanism

(Kohen and Nyska, 2002; Duan et al., 2015). Therefore, the SOD

activity was elevated in the MV and HV groups. Furthermore, when

compared to the fish in the other groups, the LV group’s fish had

noticeably higher levels of CAT and GSH-PX activities. These high

levels of antioxidant enzyme activities indicated that fish exposed to

the low water flow velocity suffered more oxidative stress compared

to other groups. This can be explained by the fact that antioxidant

enzyme activities, such as those of CAT and GSH-PX, were boosted

in fish under oxidative stress to get rid of harmful superoxide

radicals and shield the cells from oxidative damage (Li et al., 2019).

Regarding immune-related metrics, it has been shown that AKP

contributes significantly to disease defense and may enhance

macrophage phagocytic activity (Li et al., 2019). A notable

increase in serum AKP activity serves as an indicator of the

stimulation of innate immunity (Yi et al., 2018). In the current
B

C

A

FIGURE 4

Exercise training effect on stress response. (A) Cortisol, (B) Glucose, (C) Lactate. Values are presented as mean ± SD from three replicates. Different
letters on the bar chart indicate significant differences (P < 0.05).
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study, the AKP activity in the MV and HV groups was significantly

higher than in the LV group. This result revealed that a higher water

velocity environment could improve the innate immune response of

large-mouth bass.
5 Conclusions

In conclusion, the results demonstrated that exercise training

had significant effects on the growth, digestion, stress and immune
Frontiers in Marine Science 08
response of large-mouth bass. Exercise training with high

water velocity remarkably promoted the growth performance

and feed intake of large-mouth bass compared to the other

groups. Large-mouth bass in the MV group had lower

concentration of cortisol, lower enzyme activities of CAT and

GSH-PX, and higher AKP activity than that in the LV group.

However, exercise training with high water flow velocity

may cause stress as the highest concentration of cortisol in large-

mouth bass. Overall, exercise training with water velocity of 1.5 bl/s

can promote the growth performance of the large-mouth
B

C D

E F

A

FIGURE 5

Effect of exercise training on antioxidant enzyme activities and immune-related parameters. (A) SOD superoxide dismutase, (B) CAT catalase, (C)
GSH-PX glutathione peroxidase, (D) LZM lysozyme, (E) AKP alkaline phosphatase, (F) ACP acid phosphatase. Values are presented as mean ± SD
from three replicates. Different letters on the bar chart indicate significant differences (P < 0.05).
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bass, but it is necessary to take the fish welfare into account,

particularly to prevent the stress response from high water

flow velocity.
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