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Fine spatio-temporal prediction
of fishing time using big data
Yizhi Zhao1,2, Peng Chen1*, Gang Zheng1*, Difeng Wang1*,
Jingsong Yang1, Xiunan Li1 and Dan Luo1

1State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography,
Ministry of Natural Resources, Hangzhou, China, 2School of Control Science and Engineering, Dalian
University of Technology, Dalian, China
Overfishing, bycatch, andother anthropogenic threatsmay lead to the destruction of

fragile habitats and substantial losses of marine life. Marine fishery resources can be

protected by adjusting fishing intensity and establishing marine reserves. Currently,

China adopts the closed fishing seasonmanagement approach to protect traditional

fishing grounds, where fine spatio-temporal prediction is essential to efficiently

supervise the wide scope. Fishing vessel behaviors reflect fishers’ experience as well

as the information provided by fish detection radar, while the fishery resource

distribution is relevant to the marine environment. In this study, we identified fishing

vessel behaviors (gillnets, trawls, purse seines, and abnormal behaviors) and

qualitatively assessed and predicted fishing time of different fishing vessel

behaviors to search for high intensity fishing operation areas by constructing a

time-space prediction model. The model was based on big data of fishing vessel

automatic identification systems and3 the marine environment, and was verified in

the East China Sea. The prediction results generally corresponded with the

distribution of traditional fishery resources in the East China Sea and the fishing

efforts provided by the Global Fishing Watch. This model can provide an accurate

and effective refined fishing vessel operation time prediction, and benefits fishing

management and fishery resources protection.
KEYWORDS

automatic identification system, Beidou Vessel Monitoring System, fishing vessel
behavior recognition, marine environmental data, protection of fishery resources,
qualitative assessment of fishing time
1 Introduction

The marine ecosystem plays a crucial role in maintaining the global ecological balance and

is resource-rich. Many coastal countries have acknowledged the development and utilization of

marine resources as the key development direction in the new century. However, human

pressure onmarine resources and demand for marine ecosystem services are often too high (EC

Reg, 2008; Davies et al., 2022). Under the cumulative impact of various human activities, the

marine ecosystem quickly degrades (Costello et al., 2010; Halpern et al., 2015). Fishing is a main

factor that affects the marine ecosystem (Jackson et al., 2001). Globally, most fish stocks are
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caught at the maximum sustainable, or even unsustainable rates

(Ortuño Crespo and Dunn, 2017). High intensity fishing efforts may

lead to oceanic resource collapse, and also cause habitat structure

degradation or loss (Turner et al., 1999). Therefore, efficient fishery

supervision and marine fishery resource protection, along with the

marine ecological environment, has become a top priority.

Traditional fishery management adopts a population-based

approach, focusing on adjusting fishing effort of a single target

species to the level of maximum sustainable yield (Crowder et al.,

2008). In addition to protecting the target individual populations

affected by fishing, marine reserves have been set up worldwide in

recent decades to provide lasting protection for marine ecosystems

(Gerber et al., 2002; Jones, 2002; Lubchenco et al., 2003; Cimino

et al., 2019), but the wide range of marine reserves leads to low

regulatory efficiency. Recently, the emergence of the Automatic

Identification System (AIS) has provided accurate space-time and

behavioral information about fishing vessels, creating conditions for

effective fishery supervision. The potential role of the AIS in fishery

management has been recognized by the International Council for

the Exploration of the Sea (ICES) (Ferrà et al., 2018). In terms of

assessing the fishing intensity of fishing vessels, Natale et al. (2015)

determined the fishing grounds and fishing effort of trawlers based

on AIS data, and verified the method using detailed log data. Ferrà

et al. (2018) used AIS data to assess the range of bottom trawling

activities in the Mediterranean Sea over three years. Furthermore,

Rodrıǵuez et al. (2021) used AIS data to measure fishing efforts in

the high seas and found that fishing effort concentrates along

narrow strips attached to the boundaries of EEZs with productive

fisheries. The aforementioned studies offer a scientific foundation

for fishery production and management, while also contributing to

environmental conservation and the sustainable development of

fishery resources. However, previous works mostly assessed

historical fishing efforts, which lacked a certain degree of

timeliness for fisheries regulation. The challenge lies in selecting

high intensity fishing vessel operation areas for different types of

vessels and dynamically adjusting patrol routes for the coming days

based on temporal and marine environmental shifts to enhance the

efficiency of fishery regulation remains an unresolved issue.

In this study, using the AIS and Beidou Vessel Monitoring

System (VMS) big data of fishing vessels, we (i) modeled fishing

vessel behavior to recognize gillnets, trawls, purse seines, and

abnormal behaviors, and on this basis, conducted qualitative

estimation of fishing time of different fishing vessel behaviors, (ii)

established a coupling model of fishing time and marine

environment big data, and (iii) applied marine environment

forecast data and the coupled models to search for daily high

intensity fishing operation areas of different fishing vessel

behaviors in the coming days.
2 Data

2.1 Fishing vessel big data

Beidou VMS is a vessel monitoring system that utilizes China’s

Beidou satellite positioning. It mainly consists of four parts: Beidou
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satellite navigation system, onshore monitoring center, shipborne

terminal, and Beidou operation service center, and was officially put

into use in 2000. It can transmit real-time ship location and status

information to the land monitoring center through network

communication to exchange information. VMS is mainly for

enforcing fisheries laws, managing fisheries, and conducting

environmental assessments (Lee et al., 2010; Vermard et al.,

2010). Beidou VMS data we use is sourced from the Digital

China Innovation Competition (https://aistudio.baidu.com/

aistudio/datasetdetail/19964/). From September to November

2019, 15166 fishing boats operating in China’s coastal waters were

monitored. The data set comprises ID, longitude, latitude, speed,

heading, reporting time, and fishing vessel type. The data was

recorded at a time resolution of 10 minutes.

AIS is a shipborne broadcast response system adopted by the

International Maritime Organization (IMO). Through this system,

ships can continuously send static (such as ship type, IMO, etc.),

dynamic (such as time, location, speed, heading, etc.), and

navigation-related information (such as ship draft, destination,

etc.) to nearby ships and onshore authorities (Harati-Mokhtari

et al., 2007; Sang et al., 2015; Robards et al., 2016). AIS includes

base station data and satellite data. Tiantuo – 1, HY – 1, and HY – 2

satellites have AIS sensors. AIS data were purchased from a

commercial company (http://www.gogotrade.info/). The data set

collected includes the MMSI, longitude, latitude, speed, heading,

reporting time, and other data of 6538 Zhejiang fishing vessels from

September to December 2021, with a time resolution of three

minutes, mainly distributed in the East China Sea.
2.2 Marine environment data

The fishing vessel operation area is related to fishery resources.

And the distribution of fishery resources is a crucial aspect of the

marine environment. With the rapid advancement of satellite remote

sensing and related technologies, massive marine environmental data

has been generated, providing a possible way to analyze fishery

resources. This study selected sea surface chlorophyll a (chl-a), sea

surface temperature (SST), sea level anomaly (SLA), sea surface wind,

sea surface current, and water depth to establish a model that couples

fishing time and marine environment big data. The sea covering

traditional fishing grounds in the East China Sea is limited to 116°E ~

128°E longitude and 24°N ~ 40°N latitude. The time range is from

September 1, 2021, to December 31, 2021.

Chl-a data is obtained from Himawari–8 (https://

www.eorc.jaxa.jp/ptree/index.html) with a spatial resolution of

0.05° and a temporal resolution of one day. SST is derived from

the Daily Optimal Interpolation Sea Surface Temperature

(DOISST) provided by the National Oceanic and Atmospheric

Administration (NOAA) with a spatial resolution of 0.25° and a

time resolution of one day (https://www.ncei.noaa.gov/data/sea-

surface-temperature-optimum-interpolation/). Water depth data

is sourced from 1 Arc-Minute Global Relief Data ETOPO1

(https://www.ngdc.noaa.gov/mgg/global/relief/ETOPO1/data/

bedrock/). SLA data is obtained from Copernicus Marine

Environment Monitoring Service (CMEMS) with a spatial
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resolution of 0.25° and a time resolution of one day (https://doi.org/

10.48670/moi-00149). Wind data is derived from Cross Calibrated

Multi-Platform (CCMP) provided by the National Aeronautics and

Space Administration (NASA) with a spatial resolution of 0.25° and

a time resolution of 6 hours (https://data.remss.com/ccmp/).

Current data is derived from Ocean Surface Current Analyses

Real-time provided by NASA with a spatial resolution of 0.25°

and a time resolution of one day (https://podaac.jpl.nasa.gov/

dataset/OSCAR_L4_OC_INTERIM_V2.0).
2.3 Marine forecast data

The marine forecast data was obtained for a spatial range of

119°E ~ 125°E, 26°N ~ 33°N, covering the time range from July 25,

2022 to July 31, 2022. The chl-a, SST and current forecast data is

sourced from CMEMS (https://doi.org/10.48670/moi-00015 and

https://doi.org/10.48670/moi-00016) with a spatial resolution of

0.25° and a time resolution of a day. For water depth, we have

used ETOPO1’s water depth data. SLA forecast data is obtained

from Hybrid Coordinate Ocean Model (HYCOM) with a spatial

resolution of 1/12° and a time resolution of one hour (https://

data.hycom.org/datasets/). Wind forecast data is derived from

European Centre for Medium-Range Weather Forecasts

(ECMWF) with a spatial resolution of 0.4° and a time resolution

of 3 hours (https://www.ecmwf.int/en/forecasts/datasets/

open-data).
3 Method

The use of marine big data in the fine prediction of

suspected high intensity fishing operation areas mainly includes

two models. The first is the behavior recognition model of fishing

vessels, whose main function is to identify the behavior types and

abnormal behaviors of fishing vessels, as well as conducting the

corresponding qualitative assessment of fishing time. The second is

the coupling model of fishing time and marine environment big

data, which is mainly used for fine analysis and prediction of fishing

time and is used for searching for suspected high intensity fishing

operation areas in the next few days (Flowchart of the method see

Supplementary Figure S1).
3.1 Model based on big data of fishing
vessel behavior recognition

Fishing vessel behavior recognition utilizes Beidou VMS and

AIS data. Specifically, it uses Beidou VMS data, which includes

fishing vessel type information, to construct and validate the fishing

vessel behavior recognition model. Subsequently, the model is

applied to the AIS data of fishing vessels in Zhejiang Province,

resulting in four types of behavior: gillnet, trawl, purse seine, and

anomalous. Based on these results, we qualitatively evaluated

fishing time for gillnet, trawl and purse seine within each latitude
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and longitude grid unit. The detailed steps for fishing vessel

behavior recognition are provided below.

3.1.1 Classification of fishing vessel
behavior types

The fishing vessel types of Chinese coastal we collected mainly

include gillnet, trawl, and purse seine. Gillnet relies on nets to

intercept the channels of fish and shrimps, allowing the fish to

entangle in the net, thus achieving the fishing purpose. The main

fishing objects of gillnet are the bottom and large economic fishes

and shrimps of the coastal waters, such as sparidae, tuna, pomfret,

sardine, small yellow croaker, swimming crab, and prawns (Fonseca

et al., 2005; Li et al., 2017). Trawl relies on the power of fishing

vessels to tow fishing gear, forcing the fishes to enter the net bag.

The main fishing objects of trawl are bottom and near-bottom

fishes, shrimps, mollusks, and other intensive economic aquatic

animals, such as cod, large yellow croaker, small yellow croaker,

hairtail, flounder, shrimp, and crab (Jin and Tang, 1996; van Marlen

et al., 2014; McConnaughey et al., 2020). A purse seine mainly

forces fish schools to concentrate on the net bag using methods such

as enclosure and towing. The main fishing objects of purse seine are

middle and upper-layer group fishes, such as tuna, chub mackerel,

sardine, and squid (Ohshimo, 2004; Yukami et al., 2009; Eddy et al.,

2016). Their main fishing objects indicate that the behavior types of

fishing vessels are closely related to the spatial fish distributions.

The operating principles of gillnet, trawl, and purse seine fishing

and the spatial distribution of main catches are illustrated

in Figure 1.

3.1.2 Beidou VMS and AIS data preprocessing
Due to data errors and redundancy during the transmission of

VMS and AIS data, it is necessary to clear the erroneous and

redundant data. Erroneous data mainly includes situations such as

missing data and abnormal data. Data abnormalities mainly include

abnormal speed and heading (such as speed>50 knots, heading

greater than 360°), as well as situations where the maritime mobile

service identity (MMSI) is less than nine digits. Redundant data

includes two or more identical records of the same vessel. Error data

and redundant data need to be deleted, whereafter key data, such as

MMSI, speed, course, longitude, latitude, and time, should be

extracted. In AIS data, the units of speed and course are 0.1 knots

and 0.1°, respectively. The speed and course must be divided by 10,

which is consistent with the Beidou VMS data. Voyages are divided

according to the time interval, longitude, latitude, and change in

speed of two consecutive data sent by a fishing vessel. In this study,

the time interval of more than one day, constant or minimal change

of longitude and latitude, and zero speed were taken as the criteria for

dividing voyages, which were filtered to eliminate invalid voyages.

3.1.3 Feature set selection
According to the literature (Huang et al., 2019) and Beidou

VMS data statistics, the three types of fishing vessels have large

differences in longitude, latitude, speed, and course (see

Supplementary Figure S2). Typical trajectories, speed changes,

and frequency distributions of gillnets, trawls, and purse seines
frontiersin.org
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are shown in Supplementary Figures S3–S5, respectively. Therefore,

203 features related to longitude, latitude, speed, and course were

selected, as shown in Table 1. We divide the vessel’s speed into four

intervals: stopping or movement caused by wind and wave (0, 0.5),

low-speed fishing (0.5, 2.5), medium-speed fishing (2.5, 6), and

navigation (6, 12) based on the speed changes and frequency

distribution map.

For longitude and latitude, conventional statistical features such

as mean, max, min, standard deviation (STD), skewness, the

number of different values (nunique), and nine quantiles (q) were

first selected as features (F1 − F30). A complete voyage usually

includes some trajectory points of the vessel when it is moored in

the port. Under the action of wind and waves, these trajectory

points also have small velocities, similar to the operating speed of

the gillnet. Therefore, we selected the mean, max, min, STD,

skewness, the count of unique values (nunique), and nine

quantiles of longitude and latitude with speed less than 0.5 knots

as features (F31 − F60). The number of trajectory points for each

ship, the number of different position values, and the ratio between

the two were counted as features (F61 − F63). We also counted the

number of trajectory points with a speed of less than 0.5 knots, the

number of different position values with a speed less than 0.5 knots,

and the ratio between the two as the feature F64 − F66. The ratio of

the number of trajectory points within the speed range of 0-0.5

knots to the total number of trajectory points and the ratio of the

number of different position values within the speed range of 0-0.5

knots to the total number of different position values are used as the

feature (F67, F68). Moreover, the gradients of longitude and latitude

were calculated, and the word vector matrix of the gradients was

obtained using the term frequency-inverse document frequency

(TF-IDF). Then, we used singular value decomposition (SVD) to

reduce the dimensionality of the matrix, retaining the most

important first ten-dimensional features (F69 − F78). In addition,
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the geohash method was used to geocode longitude and latitude,

and then TF-IDF and SVD were used to extract ten-dimensional

features. Divide the longitude and latitude after geocoded according

to four speed intervals, and repeat the above operation to obtain the

feature (F89 − F128).

For speed, we selected mean, max, min, STD, skewness,

nunique, nine quantiles, and first-order difference as features

(F129 − F144). The mean, variance, skewness, nunique, and nine

quantiles of the speed in the four-speed intervals were also

counted as characteristics (F145 − F196).

For the course, we selected mean, max, min, STD, skewness,

nunique, and first-order differential statistical features as features

(F197 − F203).

Not all features are beneficial for the model, so in the

subsequent model construction process, we will calculate the

importance of each feature and screen the features.

3.1.4 Fishing vessel behavior recognition
model construction

LightGBM is an open source and efficient gradient-boosting

decision tree (GBDT) algorithm developed by Microsoft

(Wang et al., 2017), which belongs to Boosting in integrated

learning (Grabner and Bischof, 2006). It contains multiple weak

classifiers and uses the addition model to continuously optimize

and reduce the training residual of the previous weak classifier to

achieve classification and regression. As the LightGBM algorithm

presents advantages of higher accuracy, faster training speed, big

data processing ability, and supporting parallel learning (Al Daoud,

2019), it was selected to construct a fishing vessel behavior

recognition model.

For the 15166 fishing vessels data of the Beidou VMS, we

randomly divided the dataset into five equally sized subsets. Four of

these subsets were used for model training, while the remaining one
FIGURE 1

Operating principle of gillnet, trawl, and purse seine and spatial distribution of main catches.
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was set aside for testing. This process was repeated five times, with a

different subset selected as the test set each time and the others used

for training. Secondly, trawl, purse seine, and gillnet were mapped

to three labels: 0, 1, and 2, respectively, and thirdly, normalized the

features of the preprocessed training set to eliminate the impact of

unit and scale differences between features and accelerate the

convergence rate of the model. The Sklearn library in Python was

then used to perform principal component analysis, feature

importance assessment, and call and evaluate the model. The

main parameter settings of the algorithm are shown in Table 2.

We selected 203 features to construct the model (Table 1) and

used the average information gain brought by a feature during

splitting as a measure of feature importance. The higher the gain,

the greater the impact of this feature on the training of the model,

and the equation is as follows:

Gain =  
1
2

G2
L

HL + l
+

G2
R

HR + l
−

(GL + GR)
2

HL +HR + l

� �
− g (1)

where GL and GR respectively represent the sum of the first

derivative of the loss function on the left and right nodes, HL and

HR correspond to the sum of the second derivative of the loss

function on the left and right nodes, l is the hyperparameter of the

regularization, and g is regularization on the additional leaf.

Then, we sorted the features in descending order of importance,

deleted them one by one from the lowest importance, and input the

feature set after deletion into the model for training. The model with

91 deleted features has the highest F1-score and accuracy in the

training set, so the top 112 features were ultimately retained for

training the model. The retained features and their importance are

shown in Supplementary Figure S6.

3.1.5 Fishing vessel behavior recognition
model validation

The model validation was based on five-fold cross-validation.

The accuracy, precision, recall, and F1-score were used as

evaluation indicators for the model. We averaged the five

performance evaluations to derive the final result. The five-fold

cross-validation results are listed in Table 3, where the accuracy of

behavior recognition of fishing vessels indicates the proportion of

fishing vessels with correct classification in the total fishing vessels.

The average recall of behavior recognition of fishing vessels

indicates the proportion of a fishing vessel with correct

classification to the real number of such fishing vessels. The

average precision of behavior recognition of fishing vessels refers

to the proportion of a fishing vessel with correct classification in the

total predicted number of such fishing vessels. The average F1-score

of the behavior type identification of fishing vessels is the harmonic

average of the precision and recall (Chicco and Jurman, 2020), and

higher precision and recall are preferred. However, sometimes

they show contradictions between them. The F1-score is a

comprehensive consideration of both. The results showed that the

fishing vessel behavior recognition model used in this study had
TABLE 1 Features description.

Feature Description

F1 − F15 The mean, max, min, STD, skewness, nunique, q=10%, q=20%,
q=30%, q=40%, q=50%, q=60%, q=70%, q=80%, and q=90%
of latitude

F16 − F30 The mean, max, min, STD, skewness, nunique, q=10%, q=20%,
q=30%, q=40%, q=50%, q=60%, q=70%, q=80%, and q=90%
of longitude

F31 − F45 The mean, max, min, STD, skewness, nunique, q=10%, q=20%,
q=30%, q=40%, q=50%, q=60%, q=70%, q=80%, and q=90% of lat
in speed interval (0, 0.5)

F46 − F60 The mean, max, min, STD, skewness, nunique, q=10%, q=20%,
q=30%, q=40%, q=50%, q=60%, q=70%, q=80%, and q=90% of
lon in speed interval (0, 0.5)

F61 − F63 The number of trajectory points, the number of different position
values, and the ratio between the two

F64 − F66 The number of trajectory points within speed interval (0, 0.5), the
number of different position values within speed interval (0, 0.5),
and the ratio between the two

F67, F68 The ratio of the number of trajectory points within speed interval
(0, 0.5) to the total number of trajectory points, and the ratio of
the number of different position values within speed interval (0,
0.5) to the total number of different position values

F69 − F78 The first ten dimensional features of the word vector with latitude
and longitude gradient

F79 − F88 The first ten dimensional features of the word vector with latitude
and longitude after geocode

F89 − F98 The first ten dimensional features of the word vector with latitude
and longitude after geocode in speed interval (0, 0.5)

F99 − F108 The first ten dimensional features of the word vector with latitude
and longitude after geocode in speed interval (0.5, 2.5)

F109 − F118 The first ten dimensional features of the word vector with latitude
and longitude after geocode in speed interval (2.5, 6)

F119 − F128 The first ten dimensional features of the word vector with latitude
and longitude after geocode in speed interval (6, 12)

F129 − F144 The mean, max, min, STD, skewness, nunique, q=10%, q=20%,
q=30%, q=40%, q=50%, q=60%, q=70%, q=80%, q=90%, and first
order difference of speed

F145 − F157 The mean, STD, skewness, nunique, q=10%, q=20%, q=30%,
q=40%, q=50%, q=60%, q=70%, q=80%, and q=90% of speed
interval (0, 0.5)

F158 − F170 The mean, STD, skewness, nunique, q=10%, q=20%, q=30%,
q=40%, q=50%, q=60%, q=70%, q=80%, and q=90% of speed
interval (0.5, 2.5)

F171 − F183 The mean, STD, skewness, nunique, q=10%, q=20%, q=30%,
q=40%, q=50%, q=60%, q=70%, q=80%, and q=90% of speed
interval (2.5, 6)

F184 − F196 The mean, STD, skewness, nunique, q=10%, q=20%, q=30%,
q=40%, q=50%, q=60%, q=70%, q=80%, and q=90% of speed
interval (6, 12)

F197 − F203 The mean, max, min, STD, skewness, nunique, and first order
difference of course
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high accuracy, recall, precision, and F1-score, and could accurately

identify the types of fishing vessel behavior.

3.1.6 Fishing time qualitative analysis
Fishing intensity is related to the fishing time, degree of fishing

mechanization, effective fishing capacity of vessels, horsepower,

labor, and nets. Under the same fishing methods and other

conditions, a longer fishing time means a greater fishing intensity.

High intensity fishing operations can lead to the depletion of fishery

resources. Therefore, we qualitatively evaluate fishing time to

measure the fishing intensity of different behavior types of

fishing vessel.

The behavior recognition model of fishing vessels was applied to

6358 fishing vessels in Zhejiang Province in the East China Sea, and

the data with prediction probabilities of the three types of fishing

vessel behaviors <0.4 were identified as abnormal behaviors. The

behavior type data set after removing abnormal fishing vessel data

were used for subsequent qualitative assessment of fishing time. The

speed and course features of fishing status are different from the

navigation status. The fishing track of each voyage was extracted

using the change of speed and course (Deng et al., 2005; Lee et al.,

2010), and then counted the fishing time of fishing vessels with three

types of behavior (gillnet, trawl, and purse seine) in 0.25° × 0.25°

longitude and latitude grids daily from September to December 2021.

According to the cumulative fishing time per unit longitude and

latitude grid of fishing vessels of each behavior type every day in four
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months, the unit longitude and latitude grid where the first 30% of

fishing time was located was designated as the low fishing time area,

30–60% was the medium fishing time area, and the last 40% was the

high fishing time area. Figure 2 shows the qualitative evaluation result

of daily average fishing time of different fishing vessel behaviors in

Zhejiang Province from September to December 2021.

As the main operation areas offishing vessels were concentrated

in the Zhoushan, Yushan, and Wentai fishing grounds, we selected

the area surrounded by the red line in Figure 2 as the research area.

Then, based on the qualitative assessment results and big data of the

marine environment, we used the decision tree algorithm to

establish a coupling model of fishing time and big marine

environment data.
3.2 Study on coupling model of fishing
time and marine environment big data

The coupling model offishing time andmarine environment uses

fishing time data qualitatively evaluated in section 3.1.6 and marine

environment data including chl-a, SST, SLA, sea surface wind, sea

surface current, and water depth. Using the aforementioned data, a

coupled model was constructed to fine predict fishing times of three

types of fishing vessels. The research on the coupling model offishing

time and marine environment big data includes the following steps.
3.2.1 Marine environmental data preprocessing
The missing chl-a concentration from September to December

2021 was replaced with the monthly average chl-a concentration data

from 2015 to 2021 and the time resolution of all marine environmental

elements (including chl-a, SST, SLA, sea surface wind, sea surface

current and water depth) was then unified to days and the data with

multiple values in a day were averaged. The spatial resolution of all

marine environmental elements was unified to 0.25° × 0.25°, and

down-sampling was conducted for chl-a and water depth data.
3.2.2 Training sample production
The qualitative assessment results of fishing time for each type of

fishing vessel behavior were divided by day (three types × 122 days =

366 documents in total). The longitude and latitude grid point of low

fishing time area was labeled as 1, that of medium fishing time area

was labeled as 2, and that of high fishing time area was labeled as 3.

This study used 12 marine environmental features as the input of the

model, including longitude (Lon), latitude (Lat), chl-a, SST, SLA, sea

surface wind (U10, V10,  
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U102 + V1022

p
), surface current (u, v,ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 + v22
p

), and water depth. We randomly divided the 122 days into

five equally sized subsets. Four of these subsets were used for model

training, while the remaining one was set aside for testing. This

process was repeated five times, with a different subset selected as the

test set each time and the others used for training.
3.2.3 Fishing time and marine environment
coupling model construction

The decision tree is a commonly used supervised learning

classification algorithm, which adopts a top-down recursive
TABLE 3 Fishing vessel behavior recognition model verification results.

Precision Recall F1-Score

Gillnet 0.9384 0.8355 0.8840

Trawl 0.9473 0.9574 0.9523

Purse seine 0.9234 0.9526 0.9378

AVG 0.9364 0.9152 0.9247

Accuracy 0.9374
TABLE 2 LightGBM main parameter settings.

Parameter Value

learning_rate 0.05

boosting_type gbdt

Objective multiclass

Metric none

num_leaves 63

num_class 3

feature_fraction 0.8

bagging_fraction 0.8

min_data_in_leaf 20

Nthread 8
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strategy to establish a relationship model between multiple and

response variables (Song and Ying, 2015; Raju and Laxmi, 2020).

The decision tree has the advantages of simplicity and efficiency,

and its comprehensibility is superior to that of black box models

(such as neural networks) (Kotsiantis, 2013). In this study, we used

the fine trees, optimization trees, and bagged trees in the Matlab

classification learner to construct the model. A fine tree is a decision

tree with many leaves used for fine classification (the maximum

number of splits is 100). An optimizable tree is a decision tree

classifier that can optimize super parameters. The bagged tree is a

self-service aggregation of fine decision trees. In addition, we also

tried to use two common neural networks: convolutional neural

networks (CNN) and long short-term memory (LSTM). For each

type of fishing vessel behavior, the marine environment data were

taken as the variable, and each grid point’s fishing time category was

taken as the response variable. The coupling model of fishing time

and marine environment big data for three types of behavior was

established accordingly.

3.2.4 Fishing time and marine environment
coupling model validation

The validation of coupling model of fishing time and marine

environment big data was based on five-fold cross-validation. The

accuracy, precision, recall, and F1-score were used as evaluation

indicators for the model. We averaged the five performance

evaluations to derive the final result. The five-fold cross-validation

results (Table 4) show that the precision, recall, F1-score, and

accuracy of the bagged tree algorithm were mostly higher than

those of the fine tree, optimizable tree, CNN, and LSTM. The

average precision, recall, F1-score, and accuracy of the coupling

model constructed by bagged tree were 0.5790, 0.5655, 0.5722, and

0.6216, respectively. The above results show that the coupling model

of fishing time and marine environment big data constructed by

bagged tree is superior to the other four methods. Here, we ultimately

chose the bagging tree to build the coupling model.
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3.3 Spatio-temporal prediction of
suspected high intensity fishing
operation areas

The time-space prediction of suspected high intensity fishing

operation areas is based on the coupling model mentioned above, as

well as marine environment forecast data including chl-a, SST, SLA,

sea surface wind, sea surface current, and water depth forecast data.

The detailed steps are as follows: (1) preprocessing marine

environment forecast data and unifying the time resolution of all

marine elements to daily and spatial resolution to 0.25° × 0.25°. (2)

Using the marine environment forecast data as the input of the

coupling model of fishing time and marine environment to search

for daily suspected high intensity fishing operation areas in the

coming days.
4 Results and discussion

This study is mainly divided into four parts. First part analyzed

the results of fishing vessel behavior recognition in Zhejiang

Province. The second and third parts verified the accuracy of the

coupling model by analyzing the fishing time and the relationship

between fishing time and SST. The final part realized and analyzed

fine spatio-temporal fishing time prediction.
4.1 Analysis of fishing vessel behaviors
(taking fishing vessels in Zhejiang province
as an example)

This paper applied a fishing vessel behavior recognition model

to fishing vessels in Zhejiang Province. The 6538 fishing vessel data

were divided into 10607 voyages as input to the model. The data

with prediction probabilities of the three types of fishing vessel
FIGURE 2

Fishing time qualitative evaluation of fishing vessels of three behavior types in Zhejiang province from September to December 2021. The study area
is included within the red line.
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behaviors <0.4 were identified as abnormal behaviors. The

distribution of fishing vessel behavior in Zhejiang Province from

September to December 2021 was shown in Figure 3.

From the fishing vessel behavior recognition results, it can be

found that in the fishing vessel in Zhejiang Province, the proportion

of trawl voyages is 30.17%, the proportion of purse seine voyages is

61.13%, the proportion of gillnet voyages is 7.9%, and the

proportion of abnormal voyages is 0.8%. The high proportion of

purse seine voyages may be due to two reasons: (1) In the collected

fishing vessel data in Zhejiang Province, the number of purse seine

fishing vessels is relatively large; (2) A purse seine fishing vessel is

divided into more voyage data than trawlers and gillnet

fishing vessels.

From Figure 3, it can also be seen that in the collected data, the

fishing areas where fishing vessels catch are mainly concentrated in

Zhoushan Fishing Ground, Yushan Fishing Ground, and Wentai

Fishing Ground along the Zhejiang coast. A small number offishing

vessels go to the Yellow Sea, Bohai Sea, and South China Sea to fish.

The abnormal behavior of fishing vessels mainly occurs in

Zhoushan fishing grounds, and the reasons for its occurrence

may be: (1) Fishing vessels engage in non fishing vessel behaviors,

such as transportation, resource investigation, illegal passenger

transportation, and illegal trading; (2) Fishing vessels are engaged

in more than one type of fishing operation, resulting in two or more
Frontiers in Marine Science 08
types of fishing vessel behaviors in the AIS trajectory, which may

cause the probability of three types of fishing vessel behaviors are

less than 0.4; (3) Some fishing vessels data are incomplete, resulting

in biased extraction of fishing features.

More historical trajectory data of a suspicious fishing vessel can be

queried through relevant AIS data (MMSI number, time, etc.), in order

to conduct a more comprehensive and detailed analysis of the vessel’s

behavior, determine whether there are activities related to national

security and damage to the marine ecological environment, such as

illegal surveying and fishing, and regulate fishing vessel behaviors.
4.2 Analysis of fishing time (grid)

Using the coupled model constructed by bagging trees to estimate

fishing time for the marine environment big data in the testing set in

the East China Sea area, we selected two days to present in the paper.

The predicted results and actual fishing time of gillnet, trawl, and

purse seine on December 4 and 10, 2021, are depicted in Figure 4.

The predicted and actual fishing time of the three fishing types

(Figure 4) indicate that the existing data and the predicted fishing

time of this data point are well matched, and the coupling model is

relatively accurate. The areas with high fishing time of gillnets,

trawls, and purse seines were mainly concentrated in the Zhoushan,
TABLE 4 Fishing time and marine environment coupling model verification results.

Vessel type Classifier Precision Recall F1-Score Accuracy

Gillnet

Fine Tree 0.5653 0.5482 0.5566 0.5872

Optimizable Tree 0.5747 0.5579 0.5661 0.5959

Bagged Trees 0.5864 0.5696 0.5779 0.6105

CNN 0.5814 0.5578 0.5694 0.6076

LSTM 0.5184 0.4806 0.4988 0.5581

Trawl

Fine Tree 0.4512 0.4473 0.4492 0.5371

Optimizable tree 0.4845 0.4694 0.4768 0.5565

Bagged Trees 0.5183 0.5042 0.5112 0.5742

CNN 0.4998 0.4822 0.4908 0.5671

LSTM 0.4535 0.4178 0.4349 0.5336

Purse seine

Fine Tree 0.5886 0.5737 0.5811 0.6435

Optimizable tree 0.5881 0.5720 0.5799 0.6412

Bagged Trees 0.6323 0.6226 0.6274 0.6800

CNN 0.6040 0.5931 0.5985 0.6629

LSTM 0.5746 0.5561 0.5652 0.6344

AVG

Fine Tree 0.5350 0.5231 0.5290 0.5893

Optimizable tree 0.5491 0.5331 0.5409 0.5979

Bagged Trees 0.5790 0.5655 0.5722 0.6216

CNN 0.5167 0.5127 0.5147 0.5779

LSTM 0.4917 0.4829 0.4872 0.5660
Bold indicates optimal.
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Yushan, and Wentai fishing grounds and other sea areas. Fishery

supervision can be efficiently focused on the areas with medium and

high fishing time, such as appropriately reducing fishing intensity of

a certain fishing vessel type to reduce the pressure on the main

species caught by this fishing vessel type, and preventing

illegal fishing.
4.3 Relationship between fishing time
and SST

Among many environmental factors, sea temperature is one of the

critical factors affecting the spatial distribution and abundance of most

fishery resources (Southward et al., 1995). We predicted the fishing

time of the East China Sea on December 4, 2021 and discussed the

relationship between fishing time and SST. The SST was approximately

15–23°C in the predicted high fishing time area of the three types of

fishing vessel behaviors in the East China Sea, changing more

substantially than in the predicted low and medium fishing time

areas in general (Figure 4). According to literature (Hickox et al.,

2000), there is a Zhejiang-Fujian Front along the coast of Zhejiang and

Fujian in winter. The horizontal gradient of temperature, salinity, and

other marine elements in the frontal zones is large, accompanied by the

strengthening of vertical circulation, which leads to nutrient substance

enrichment and provides abundant food for phytoplankton (Belkin

et al., 2009; Bost et al., 2009). Therefore, the frontal zones often form

potential fishing grounds (Polovina et al., 2000; Zainuddin et al., 2004).

The identified high fishing time area was located in the Zhejiang-Fujian

Front area. Liu and Yu (2018) also showed that higher resources are

distributed in the Northern South China Sea near the study area with

SST of 17–24°C in winter, which is consistent with the SST of the

identified high fishing time area.

In winter, the sea temperature in the continental shelf area of

the East China Sea is vertically uniform, and the strength of the

thermocline is mostly <0.1°C/m (Hao et al., 2012). The water depth
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in the high fishing time area is mostly within 50 m, and the

temperature difference between the sea surface and bottom is

small (usually less than 5°C).

Small yellow croakers represent important economic fish, and

live near the bottom of the East China Sea. During the autumn and

winter floods from early September to the end of December, the

fishing methods mainly comprise gillnets and trawls. The sea

bottom temperature estimated from SST in the high fishing time

area of gillnets and trawls was consistent with the temperature

preference of small yellow croakers (Cheung et al., 2009).

Mackerels are one of the main species caught in purse seines in

the East China Sea. Mackerels inhabit the upper and middle sea

level, where the sea temperature is generally 10–27°C (Cheung et al.,

2013). As sea temperature is the main, rather than the only factor

affecting fishery resources, other marine environmental factors such

as abnormal sea surface height and chlorophyll also have an impact

on fishery resources (Solanki et al., 2015). This may explain why

the SST in high, medium, and low fishing time areas was within the

range of suitable habitat water temperature for mackerel, but the

fishing time in the areas differ (Figure 4).
4.4 Spatio-temporal dynamic predict of
fishing time

The historical marine environment data were used to build and

verify the coupling model of fishing time. The coupling mode was

then used to predicted fishing time within one week according to

different fishing vessel behaviors. Figure 5 presents the prediction

result on July 29, 2022, when the East China Sea is in the closed

fishing season.

The following conclusions can be drawn from Figure 5:
1. Suspected high intensity fishing operation area of gillnet

(the medium and high fishing time area) in the East China

Sea predicted on July 29 was mainly located in the

Zhoushan and Wentai fishing grounds, and the SST was

mainly 28–31°C. The scope was consistent with the high

abundance area of main gillnet fishing objects, such as

small yellow croaker and yellow crucian carp, in the East

China Sea in summer (Cheung et al., 2009; Liu, 2004). The

range of medium and high fishing time area predicted for

gillnet was much larger than that for trawl and purse seine,

mainly because the data of gillnet outside 123°E was scarce

and far less than that of trawl and purse seine.

2. The suspected high intensity fishing operation of trawl

predicted on July 29 was mainly located in Zhoushan and

Wentai fishing grounds, and the SST was mainly 27–33°C.

This scope was consistent with the high abundance area of

main trawling objects, such as small and large yellow

croaker and Benthosema pterotum, in the East China Sea

in summer (Cheung et al., 2009; Wang et al., 2020; Xu et al.,

2022). As gillnets and trawls mainly catch bottom and near

bottom fish, the vertical temperature change of the East

China Sea shelf sea area in summer was substantial (Hao

et al., 2012), and the difference between sea bottom and
FIGURE 3

Distribution of fishing vessel behaviors in Zhejiang Province.
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surface temperatures was large, regardless of whether the

temperature range was consistent.

3. The purse seine suspected high intensity fishing operation

predicted on July 29 was mainly located in Zhoushan and

Wentai fishing grounds, and the SST was mainly 27–33°C.

The suspected high intensity fishing operation of purse

seine was consistent with the summer distribution area of

main purse seine objects, such as Chub mackerel, in the

East China Sea (Chen et al., 2009; Yu et al., 2018), and its

temperature included the optimum temperature of

mackerel in summer (Chen et al., 2009).
Additionally, we compared our forecasted results with the fishing

times available on the Global Fishing Watch website for July 29, 2022.

Global Fishing Watch website (Figure 6) shows that areas of high

fishing time are observed in the vicinity of (122-123°E, 30-31°N), (120°

E, 26.5°N), (121.5°E, 27.5°N), and (123.5°E, 27.5°N), which generally

align with our predictions of areas with high fishing time (Figure 5).

The above analysis shows that the refined grid predict of the

prediction model for the suspected high intensity fishing operation
tiers in Marine Science 10
area was generally consistent with the traditional fishing grounds

and Global Fishing Watch. The results can provide a space-time

reference for setting key patrol areas during the closed fishing

season to facilitate the supervision of fishing vessels in the fishing

grounds, achieve refined protection of fishery resources, and

improve the efficiency of fishery supervision.
5 Conclusions

Overfishing, bycatch, and other anthropogenic threats may lead to

the destruction of fragile habitats and substantial losses of marine life.

Most fish stocks worldwide are caught at maximum sustainable or

unsustainable rates. Finding effective regulatory measures to protect

marine fishery resources and the ecological environment is extremely

urgent. In response to the difficult issues of “searching for high intensity

fishing operation area, and classifying and supervising fishing vessels

according to their types” to achieve effective fisheries regulation, this

study attempts to build a prediction model for fishing time based on

AIS and marine environment big data, to achieve fishing vessel fishing
FIGURE 4

Predicted and actual fishing time in the East China Sea (The background is the sea surface temperature (SST) of the day).
frontiersin.org

https://doi.org/10.3389/fmars.2024.1421188
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Zhao et al. 10.3389/fmars.2024.1421188
regulation, qualitative assessment of fishing time, and refined

prediction of high intensity fishing operation areas. The summary of

this study is as follows:
Fron
1. The average accuracy, recall, precision, and F1-score of the

fishing vessel behavior recognition model we constructed

are greater than 0.9, indicating that our model can

accurately identify the behavior of fishing vessels.

2. The results of the qualitative assessment of fishing time showed

that areas with high fishing time mainly occurred in Zhoushan,

Yushan, and Wentai fishing grounds. Fisheries regulation can

focus on areas with medium to high fishing time, appropriately

reducing the effort of fishing vessels of certain types, reducing

pressure on the main fishing species of such vessels, and

preventing overfishing.

3. We used algorithms such as fine optimizable and bagging

trees to establish a coupling model between fishing time

and marine environment big data. The results show that the

bagging tree algorithm is superior. Subsequently, we
tiers in Marine Science 11
explored the relationship between SST and fishing time to

further validate the model results.

4. Finally, we established a spatio-temporal model in the East

China Sea to predict fishing time during the closed fishing

season. The prediction results generally conform to the

distribution of traditional fishery resources in the East

China Sea and the fishing efforts provided by the Global

Fishing Watch, and provide a reference basis for searching

for high intensity fishing operation areas.
However, because some of the data we used in this study were

from AIS fishing vessels in Zhejiang Province and the data volume

was small, we could only conduct analysis and predict fishing time in

the East China Sea. With sufficient AIS data of fishing vessels,

prediction of pelagic fishing time in the open sea can be performed

to strengthen supervision and management of pelagic fishing vessels

during self-help fishing closures, prevent illegal operations by pelagic

fishing vessels, promote conservation of fishery resources in the open

sea, and promote high-quality development of pelagic fisheries.
FIGURE 6

The fishing time provided by the Global Fishing Watch website on July 29, 2022.
FIGURE 5

Prediction results of fishing time in the East China Sea on July 29, 2022.
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