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Image stitching and target
perception for Autonomous
Underwater Vehicle-collected
side-scan sonar images
Zhuoyu Zhang1, Rundong Wu1, Dejun Li1*†, Mingwei Lin1*†,
Sa Xiao2 and Ri Lin1

1State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, China,
2Shanghai Marine Equipment Research Institute, Shanghai, China
Introduction: Autonomous Underwater Vehicles (AUVs) are capable of

independently performing underwater navigation tasks, with side-scan sonar

being a primary tool for underwater detection. The integration of these two

technologies enables autonomous monitoring of the marine environment.

Methods: To address the limitations of existing seabed detection methods, such

as insufficient robustness and high complexity, this study proposes a

comprehensive seabed detection method based on a sliding window

technique. Additionally, this study introduces a sonar image stitching method

that accounts for variations in image intensity and addresses challenges arising

from multi-frame overlaps and gaps. Furthermore, an autonomous target

perception framework based on shadow region segmentation is proposed,

which not only identifies targets in side-scan sonar images but also provides

target height measurements.

Results: Comprehensive seabed detection method improves accuracy by 31.2%

compared to the peak detection method. In experiments, the height

measurement error for this method was found to be 9%.

Discussion: To validate the effectiveness of the proposed seabed detection

method, sonar image stitching method, and target perception framework,

comprehensive experiments were conducted in the Qingjiang area of Hubei

Province. The results obtained from the lake environment demonstrated the

effectiveness of the proposed methods.
KEYWORDS

autonomous underwater vehicle, side-scan sonar image, seabed line detection,
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1 Introduction

Autonomous underwater vehicles (AUVs) are playing a crucial

role in scientific, commercial and military applications (Lin and Yang,

2020). In autonomous marine monitoring systems, AUVs typically

serve as platforms carrying side-scan sonar and other sensors for

detecting the topography and targets within a designated area. Upon

completion of their tasks, they either surface or connect underwater to

upload the collected data (Lin et al., 2022; Zhang et al., 2024). Side-scan

sonar (SSS) stands out as a primary device for underwater monitoring

due to its high resolution, cost-effectiveness, and versatility. Leveraging

the principle of echo sounding, side-scan sonar detects underwater

topography. With a lower attenuation coefficient in water compared to

optical devices, sonar proves superior in seabed detection and finds

wide applications across oceans, rivers, lakes, and ports. Current

applications span but are not limited to localized marine ecosystem

monitoring, aquaculture and endangered species detection,

hydrothermal vent and cold seep exploration, underwater search and

rescue operations, among others.

The autonomous monitoring system primarily comprises two

components: the AUV and the docking station. The AUV departs

from the docking station, utilizing its onboard positioning and

control systems, along with side-scan sonar, to investigate the

topography and targets within a designated area. Upon completing

its mission, the AUV reconnects with the docking station underwater,

facilitating energy transfer and data transmission. A schematic

diagram of the operational process is shown in Figure 1.

Equipping the AUV with side-scan sonar enables autonomous

seabed exploration, which is crucial for marine ranches. The

autonomous exploration of marine ranches encompasses two

main aspects:

Topographic Survey: The AUV, equipped with its own

positioning sensors and integrated navigation control system,

navigates along predetermined paths, serving as a platform for

side-scan sonar data acquisition. The positioning system provides

global localization, enabling the collection of topographic data from

specified areas and the georeferenced stitching of side-scan sonar

data, thus facilitating autonomous monitoring.
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Target Settlement Monitoring: The AUV can carry an

appropriate depth sensor, allowing it to bring the side-scan sonar

to a specific depth to detect underwater targets. By employing

corresponding side-scan sonar data processing methods, the AUV

can perceive underwater targets, addressing the issue of

autonomous monitoring within marine ranches.

This comprehensive approach ensures that the AUV can

effectively perform autonomous monitoring tasks, enhancing the

efficiency and accuracy of marine environmental surveys. This

paper investigates the research on image stitching and target

perception methods for side-scan sonar images aimed at AUVs.

Image stitching and target perception are crucial technologies for

long-term monitoring.

Accurately tracking the seabed line from the raw data of side-

scan sonar is essential for subsequent processing, such as slant range

correction, image stitching, and target perception. Side-scan sonar

images exhibit significant grayscale variations at the location of the

seabed line, which has led to the development of numerous methods

for detecting the seabed line. However, the current traditional

seabed line detection methods (Woock, 2011; Ramirez, 2014)

suffer from problems such as low robustness and complex

processes, while deep learning-based methods require building

datasets and have poor model transferability (Zheng et al., 2021;

Qin et al., 2022). Therefore, it is necessary to enhance the robustness

of seabed line detection methods while considering process

complexity. This paper proposes a comprehensive seabed line

detection method based on a sliding window approach. This

method achieves effective seabed line detection with strong

robustness and simplicity, laying a solid foundation for

subsequent image stitching and target perception. Finally, the

paper performs radiation correction and slant range correction on

the images based on the working principles of side-scan sonar.

Due to issues like non-continuous geographic positioning data

and inconsistent resolution in the horizontal and vertical directions

in the data collected by side-scan sonar, it is necessary to combine

global or relative positioning to complete the image stitching of

side-scan sonar, reflecting the true distribution of the seafloor

topography. Applying optical stitching methods directly to

acoustic images leads to problems such as limited feature

matching and stitching errors due to the fewer features, low

signal-to-noise ratio, and the need for sonar data positioning.

Scholars have proposed various solutions to address these

problems, mainly divided into feature-based stitching methods

(Bay et al., 2006) and transform domain-based stitching methods

(Hurtós et al., 2015). However, currently, sonar image stitching

mainly focuses on stitching multiple images and does not address

the frame-to-frame processing issue during underwater vehicle

operation. In the stitching process, the paper derives the

coordinate transformation relationship between the carrier

coordinate system and the navigation coordinate system, as well

as the relevant transformation formulas for geocoding of side-scan

sonar images. It also addresses the gap and overlap problems that

occur during stitching, achieving autonomous image stitching.

As a crucial device for acquiring underwater information, side-

scan sonar has high resolution and can accurately detect underwater
FIGURE 1

AUV operation diagram.
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targets. AUVs equipped with side-scan sonar can achieve

autonomous perception of underwater targets through appropriate

methods. However, there is relatively little research on achieving

target segmentation from raw side-scan sonar data in scenarios where

segmentation is performed simultaneously with data acquisition.

Therefore, a feasible method for autonomous detection by AUVs is

needed. To enable AUVs equipped with side-scan sonar to

autonomously perceive underwater targets, and considering the

difficulty of real-time target perception from side-scan sonar data,

this paper proposes an autonomous target perception method based

on a classification algorithm. First, the effective region image is

obtained by utilizing the seabed line detection results. Then, the

EfficientNet classification algorithm is used to classify the acquired

images into target or non-target categories to save computational

resources. Subsequently, non-local means filtering, K-means

clustering for shadow regions, and improved Region-Scalable

Fitting (RSF) segmentation are applied to the images with targets

to achieve accurate segmentation of shadow areas. After obtaining the

target region, the target height is analyzed.

The remainder of this paper is organized as follows: In Section

2, we introduce the related work on seabed line detection, sonar

image stitching, and sonar image target perception. In Section 3, we

discuss the image preprocessing method based on seabed line

detection. Section 4 presents the method for stitching side-scan

sonar images. Section 5 presents the framework for autonomous

target perception from side-scan sonar images. Experimental results

in a lake environment are presented in Section 6 to demonstrate the

effectiveness of the proposed methods. Finally, conclusions are

drawn in Section 7.
2 Related work

In this section, we reviewed the relevant research on seabed

observation, sonar image stitching, and sonar image target perception.
2.1 Submarine detection

Side-scan sonar images exhibit distinct grayscale variations at

seabed contour positions, leading to the development of numerous

methods for seabed contour detection based on this principle, as

shown in Table 1. Commercial software like Trion (Ramirez, 2014)
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employs a thresholding method, where a pixel is deemed part of the

seabed contour if the difference between its grayscale value and that

of the preceding pixel exceeds a predefined threshold. Enhanced

thresholding methods, before detection, utilize median filtering to

diminish the impact of speckle noise (Woock, 2011). Although

these methods enhance the accuracy of seabed contour detection

through filtering techniques, they fundamentally rely on

thresholding. The selection of thresholds often demands

experienced individuals to tailor them based on real-world

scenarios, and their precision diminishes significantly in complex

seabed environments. A comprehensive bottom-tracking method

for side-scan sonar images in complex measurement environments

(Zhao et al., 2017) initially employs peak detection, followed by

error segment reduction through methods like data filtering,

symmetry assumptions, and continuity assumptions, culminating

in seabed contour data acquisition via Kalman filtering. While this

method boasts robustness, its overall complexity is high. Another

approach, employing semantic segmentation for automatic seabed

contour tracking (Zheng et al., 2021), incorporates a symmetry

information synthesis module, endowing the model with the ability

to consider seabed contour symmetry. Additionally, a one-

dimensional neural network-based method (Qin et al., 2022)

tracks seabed contours using a pre-trained model. Both these

methods necessitate dataset construction and training, with the

completeness of the dataset significantly impacting model

transferability. Traditional seabed contour detection methods

currently suffer from low robustness and complexity issues, while

deep learning-based approaches require dataset construction and

face challenges in model transferability. Hence, there is a need to

enhance the robustness of seabed contour detection methods while

balancing complexity.
2.2 Side scan sonar image
stitching method

Scholars have proposed various solutions, primarily categorized

into feature-based stitching methods and transformation domain-

based stitching methods. Feature-based matching methods involve

computing specific features within an image and then matching

these features. Commonly used features include SIFT (Lowe, 2003),

SURF (Bay et al., 2006), and others. One approach to sonar image

stitching, considering the limited number of matching features,

utilizes the SURF algorithm in conjunction with trajectory line

position constraints (Jianhu et al., 2018), enabling geographic

mosaicking in scenarios with insufficient features. Another

method (Shang et al., 2021) automatically calculates the overlap

region by combining the track line and side-scan sonar image sizes,

then segments the overlap region using the K-means method,

followed by matching each segmented region using SURF to

obtain the stitched image. Transformation domain-based stitching

methods involve transforming images into other domains for

stitching. One method based on curvelet transformation (Zhang

et al., 2021) employs affine transformation to extract and match

features, followed by merging the overlapping regions using the

curvelet transformation. Another method based on Fourier
TABLE 1 Submarine detection method comparison.

Advantages Disadvantages

Threshold method
(Woock, 2011;
Ramirez, 2014)

The running logic is
simple and can be used for
single frame judgment.

Insufficient robustness.

Final peak detection
(Zhao et al., 2017)

Compared to threshold
method, it has

better robustness.

The operation process
is complex.

Neural network
learning (Zheng et al.,
2021; Qin et al., 2022)

The tracking effect within
the dataset is good.

The migration ability
tests the completeness

of the dataset.
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transformation (Hurtós et al., 2015) registers forward-looking sonar

images to address issues such as low resolution, noise, and artifacts.

Similarly, another method (Kim et al., 2021) utilizes Fourier

transformation to stitch forward-looking sonar images to generate

larger-scale images. These methods focus on stitching two complete

side-scan sonar images and do not consider the coupled effects

between sonar data frames within the same image when deployed

on a moving platform like an AUV.
2.3 Target perception method for side scan
sonar images

In traditional methods of segmenting side-scan sonar images,

techniques such as Fuzzy C-Means clustering (Pal et al., 2005), K-

Means clustering (Wong, 1979), level set methods (Ye et al., 2010),

active contours (Chenyang and Jerry, 1998), and MRF (Mignotte

et al., 1999) are commonly employed. Thresholding involves setting

a fixed threshold to categorize pixels above it into one class and

those below it into another. An enhanced Fuzzy C-Means clustering

method (Abu and Diamant, 2019) accurately segments shadow

regions by initially applying a smoothing filter to the image before

clustering. The Region-Scalable Fitting (RSF) method (Li et al.,

2008), based on the level set theory and minimizing fitting energy,

provides a loss function that iteratively approaches the target

boundary, resulting in precise segmentation. However, this

method is greatly influenced by the initial contour and image

quality. A fast and robust side-scan sonar image segmentation

algorithm (Huo et al., 2016), building upon the RSF method,
Frontiers in Marine Science 04
integrates K-Means clustering and NLMSF filtering. It employs

the results of K-Means clustering as the initial contours for RSF

iteration, significantly enhancing both speed and accuracy.

Currently, traditional sonar image perception methods focus on

segmenting localized regions with known existing targets. However,

there is relatively limited research on segmenting targets directly

from raw side-scan sonar data in scenarios involving simultaneous

data collection and segmentation. Target perception methods that

rely heavily on deep learning poses challenges such as dataset

creation, extensive labeling, and poor generalization. Therefore,

there is a need for a feasible method suitable for autonomous

detection by AUVs.
3 Side scan sonar
image preprocessing

This study focuses on preprocessing sonar images, stitching

together images with geographic information, and calibrating target

detection for the autonomous detection of AUVs equipped with

side-scan sonar. The entire workflow is illustrated in Figure 2.

Figure 2 illustrates the entirety of our study. Figure 2A depicts the

scene where an AUV equipped with side-scan sonar operates.

During AUV cruising, the side-scan sonar scans the target area.

Figure 2B shows the preprocessing steps of the side-scan sonar

images. Initially, seabed line detection is conducted, followed by

Radiation correction and Slant range correction. These processes

are detailed in Section 3. Figure 2C displays the image stitching of

each frame of side-scan sonar images. Our focus is on handling gaps
FIGURE 2

(A–D) The overall workflow of this study.
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and overlaps between frames, a topic elaborated in Section 4.

Figure 2D illustrates target detection and height analysis within

the side-scan sonar images, which is extensively discussed in Section

5. The following sections introduce each component of the process.
3.1 Submarine detection

Based on the imaging principle of side-scan sonar and the actual

echo intensity of sonar images, it can be observed that the absence

of strong reflective objects between the transducer and the seabed

results in low echo intensity in that area, forming a dark zone. The

boundary of the dark zone, away from the transmission line,

represents the seabed line, indicating variations in height from

the transducer to the seabed. The seabed line is essential for

radiation correction and slant range correction; thus, precise

detection of the seabed line is crucial.

To address the shortcomings of existing seabed line detection

methods, such as insufficient robustness or complexity, we propose

a comprehensive seabed line detection method based on a sliding

window approach. This method enables adaptable seabed line

detection to complex real-world environments while maintaining

computational simplicity.

Considering the limitations of thresholding and peak detection

methods, the sliding window approach employs a window with a

certain width, enhancing its capability to resist interference with

considerable width. The specific expression for window weighting is

illustrated in below, where n represents the window width and can

be chosen according to requirements, thereby increasing the field of

view width.

W = ½w1,  w2,…,  wn�1�n

The sonar data window centered on the y-th frame and the i-th

pixel on the starboard side can be represented as F, as follows:

F = ½f (xi−left ,   y),…, f (xi,   y),…,   f (xi+right ,   y)�1�n

where f(x, y) represents the pixel intensity of the sonar image at

(x, y), and n = left + right + 1. Then the weighted sum of the data

window can be obtained, as shown below:

g(xi,   y) = WFT

where g(xi, y) reflects the disparity in sonar echo intensity

between the left and right sides of the data point. The larger the

value, the more likely the current data point is to be a seabed line

point. Therefore, the point with the maximum weighting sum g(xi, y)

within the data frame is determined as the seabed line point for

that frame.

In contrast to thresholding and peak detection methods, the sliding

window approach eliminates the need for manually setting a stop

threshold. Additionally, the window weight W is an n-dimensional

first-order matrix with a certain field of view width, resulting in lower

levels of human intervention and increased robustness.

Based on the characteristics of the sliding window approach and

the features of side-scan sonar images, a comprehensive seabed line
Frontiers in Marine Science 05
detection method is constructed with the sliding window approach

as its foundation. The specific workflow is depicted in Figure 2B.

After performing seabed line detection separately on the left and

right sonar images using the sliding window approach, further

refinement of the detected data is conducted through outlier

detection methods. Subsequently, a data smoothing filter is

applied to the final dataset. Regarding outlier detection, it is

assumed that the seafloor terrain exhibits continuous variations.

Leveraging statistical methods, the seabed line data detected by the

sliding window approach is assumed to be represented as follows:

S = ½s1,   s2,…,   sm�1�m

where S is the seabed detection result matrix, andm is the height

of the side scan sonar image. The block size selected for each outlier

detection is (2 × l + 1), so the data block used to detect whether the

data si is an outlier is:

Sk = ½si−l ,   si−l+1,…, si,…, si+l−1, si+l�1�(2l+1)

Sorting Sk yields:

S
0
k = ½s00,   s01,…, s02l�

Calculate the average u and variance t of all data in Sk, excluding
one maximum and one minimum value:

u =
1

2l − 1 o
2l−1

j=1
s0j

The criteria for determining outliers are:

si − uj j > t

where if si is determined to be an outlier, temporarily correct it

using the median in data block Sk and record the corresponding

anomaly flag “Flag”, represented as

Flag = ½fl1, fl2,⋯, flm�
Finally, the sliding average method is used to perform a simple

filtering on the obtained detection results, resulting in smooth data.

To achieve filtering, the window size for filtering is set to (2 × k + 1),

and the specific design is as follows:

si =
1
P o

i+k

j=i−k

sjpj

P = o
i+k

j=i−k

pj

where pj is the weight, designed based on the distance from the

detection point. Points closer to the detection point have a greater

weight, while those closer to the detection point have a smaller

weight. Here, it is defined as follows:

pj = −a(i − j)2 + b

It can be seen that pj decreases with the increase of distance i

from j, and both a and b are normal numbers.
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3.2 Algorithm comparison

To validate the effectiveness of the comprehensive seabed

detection method based on the sliding window technique,

corresponding pool experiments were conducted. The experiment

utilized the HaiZhuo Tongchuang ES1000 side-scan sonar,

mounted on an Autonomous Underwater Vehicle (AUV),

operating at a frequency of 900kHz, with a maximum slant range

of 75m, a horizontal beamwidth of 0.2 degrees, and a vertical track

resolution of 1cm.

During the experiment, the AUV’s propeller speed was

controlled by the AUV’s onboard computer, instructing it to

move slowly in the pool. The relevant parameters of the side-scan

sonar were set, with the maximum slant range defined as 75m. The

echo data from the side-scan sonar was transmitted to the main

computer on the AUV using TCP communication and stored in xtf

format. The actual detection results of the peak detection method

and the sliding window method are shown in Figure 3.

In Figure 3, the red dots represent the detected seabed lines. It

can be observed that the peak detection method deviates from the

true seabed line in some cases due to the influence of noise, while

the sliding window method does not exhibit this behavior.

Therefore, the sliding window method is more robust against

noise interference compared to the peak detection method, and it

can accurately track the seabed line even in the presence of noise.

To quantitatively evaluate the two methods’ detection results, a

quantitative analysis was performed. Based on the resolution of the

side-scan sonar slant range image (each pixel representing 1.4cm *

1.4cm) and considering the pool bottom as a processed flat cement

surface, a tape measure was used to measure the water depth during

the experiment, which was determined to be 5.36m.

To compare the detection results of the two methods

quantitatively, the average values and error rates of the two

methods were calculated, as shown in Table 2.
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It can be seen that the sliding window method proposed in this

study yielded an average measurement of 5.276m. Compared to the

peak detection method, it exhibited higher accuracy and stronger

robustness, with an accuracy improvement of 31.2%.
3.3 Overall processing process.

Given that side-scan sonar displays topographic images, it is

desirable to achieve uniform brightness across distances. In practice,

as sound waves propagate in water, they incur increased loss with

distance, resulting in reduced brightness at the far end of the

transmission line on the image. Additionally, the intensity of

echoes obtained by side-scan sonar is influenced by seabed media

type, roughness, and the grazing angle of sound waves.While modern

side-scan sonar equipment incorporates its own Time-Variant Gain

(TVG) adjustment, it still necessitates some degree of radiometric

correction due to discrepancies between TVG compensation and

actual attenuation. Following the attenuation pattern of sound waves,

a method employingMean Amplitude Gain Compensation is utilized

for radiometric correction of sonar images.

According to the data acquisition principle of side-scan sonar,

the position of the echo is determined by the time it takes for the

sound wave to return. Consequently, in the raw data of side-scan

sonar, the position is determined by slant range, not the horizontal

distance between the detection point and the transducer.

Additionally, due to the aforementioned reasons, the topographic

image in the vertical direction is compressed, with the compression

becoming more severe closer to the transducer and less noticeable

farther away. Therefore, to eliminate invalid data from the dark area

before the seabed line and reflect the true topographic conditions of

the detected area, appropriate slant range correction is required for

the original image. The geometric schematic of slant range

correction is illustrated in Figure 4.
BA

FIGURE 3

Pool experiment actual test effect. (A) Final peak method. (B) The method proposed in this paper.
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From the geometric relationship, it can be seen that the oblique

range and flat range recorded in sonar images form a right-angled

triangle with the ground clearance height. The following calculation

and inference will be based on the starboard image.

Hd =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2r +H2

p

Sr = yRr

where Hd is the horizontal distance from the pixel to the

transducer, Sr is the oblique distance from the pixel to the

transducer, H is the height of the transducer from the seabed, Rr
is the horizontal resolution of the side scan sonar image, and y is the

vertical coordinate of the current pixel. In addition, based on the

seabed detection results, it can be obtained that:

H = sRr

where s is the ordinate of the detected seabed line point.

Therefore, the specific calculation expression for the horizontal

distance Hd can be derived as:

Hd = Rr

ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 + s2

q
Slant range correction restores the compression that originally

existed, thus resulting in corresponding gaps after the correction.

Addressing the gaps between frames, considering the correlation of

data within sonar frames, linear interpolation is contemplated as a

method for filling them.

Assuming two horizontally adjacent pixel points before slant

range correction are denoted as f (x,   y) and f (x,   y + 1), and their

coordinates after correction become (x,   y0) and (x,   y0 + Dy)
respectively, the intensity of the pixel located between these two

points can be calculated as follows:
Frontiers in Marine Science 07
f (x, y0 + a) = f (x, y0) + a ∗
(f (x, y0) − f (x, y0 + Dy))

Dy

where a < Dy.
Based on the aforementioned explanation, the basic process of

preprocessing side-scan sonar images is completed, laying a certain

foundation for subsequent tasks such as image stitching and target

perception. The overall processing process is shown in the Figure 5.
4 Image stitching containing
geographic information during
AUV navigation

Detecting seabed topography is a crucial aspect of

environmental monitoring. After preprocessing the raw side-scan

sonar data, as described in the previous section, we obtain effective

data on the seabed topography scanned by the side-scan sonar.

However, to achieve complete and coherent mapping, it is necessary

to integrate this data with actual positioning and heading

information in order to stitch together each frame of the sonar

images accurately.
4.1 Geocoding

In Section 3, seabed line detection, radiometric correction, and

slant range correction of side-scan sonar images were conducted.

These steps allow for obtaining effective data from side-scan sonar

and the actual relative positions of individual sonar frames.

However, the relative positions between frames still need to be

determined. Therefore, the positioning data obtained from fusion

positioning algorithms is used to position the sonar data frames.

Upon acquiring global positioning data for the sonar data

frames, each data point on these frames is likewise transformed

into global coordinates. This ensures that each pixel on the sonar

data receives global positioning. To meet the display requirements,

considering the slant range resolution of side-scan sonar hardware,

which is 1.4 cm, the resolution of each pixel in the stitched image is

set at 1.4 cm*1.4 cm. This guarantees uniform horizontal and

vertical resolutions. With the resolution determined, global

positioning can be converted into coordinates on the image.

The definition of positioning data related to sonar data frames

and relevant information of pixels on the sonar data frames is as

follows:

X = ½x0, y0, yaw�

sssport = ½valp1, valp2,⋯, valpn�1�n

sssstarboard = ½vals1, vals2,⋯, valsn�1�n

where X represents the positioning information of the sonar data

frame, x0,  y0, and yaw are the horizontal and vertical coordinates of

the global positioning at the center of the sonar data frame and the

heading of the AUV at this time, sssport , and ystarboard are the side scan

sonar port and starboard data, respectively.
TABLE 2 Comparison result.

Final
peak method

The method proposed in
this paper

Average value 3.602 m 5.276 m
FIGURE 4

Geometric diagram of oblique range correction.
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Figure 6 shows the situation of a single data frame in global

positioning. It can be observed that to obtain the coordinates of

sonar data in global positioning, it needs to be translated twice and

rotated once. Firstly, it needs to be translated by x0 units along the

x-axis (i.e. due north direction), then translated by y0 units in the

y-axis direction, and then rotated clockwise at the origin by

yaw angle.

According to the above analysis, the conversion formula from

the coordinates of sonar pixels (xs0,  ys0) in the carrier coordinate

system to the global coordinate system (x,  y) can be obtained as

shown in below. In order to ensure consistency in matrix

calculation, two-dimensional coordinates are extended to three-

dimensional coordinates.
Frontiers in Marine Science 08
x

y

1

2
664

3
775 = R1R2

xs0

ys0

1

2
664

3
775 =

1 0 x0

0 1 y0

0 0 1

2
664

3
775

cos( − yaw) − sin( − yaw) 0

sin( − yaw) cos( − yaw) 0

0 0 1

2
664

3
775

xs0

ys0

1

2
664

3
775

According to Figure 6, for data points A and B on the port and

starboard sides, the global positioning of the known transducer

coordinate point O is (x0,  y0), and based on the calculated

horizontal distance Hd, where L = Hd, the carrier coordinate system

coordinates of data points A and B can be obtained, as shown below.

A : xs0 = −L, ys0 = 0

B : xs0 = L, ys0 = 0

(

In addition, the default origin of computer images is the upper

left corner, the right is the positive x-axis direction, and the down is

the positive y-axis direction. Therefore, in order to ensure that the

image can be located in the global coordinate system of the middle

and northeast of the image as much as possible, corresponding

coordinate transformations are still needed.

Before actual image stitching, it is necessary to convert the

coordinate units mentioned above from meters to pixels. According

to the image resolution of 1.4 cm*1.4 cm introduced earlier, Rr =

0:014  m. The complete coordinate transformation of pixels on the

sonar data frame from the carrier coordinate system to the image

coordinate system can be obtained, as shown below:

x0

y0

1

2
664

3
775 =

1
0:014

R3R4R1R2

xs0

ys0

0:014

2
664

3
775
4.2 Overlap and gap handling

After assigning global positioning to the sonar data frames, due

to the discretization of positioning and the presence of heading
FIGURE 6

The relationship between sonar data frame data and
global positioning.
FIGURE 5

The overall processing process.
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angles, the seamless continuity between consecutive sonar data

frames is disrupted, resulting in considerable gaps or overlaps

between frames. Therefore, to maintain the integrity and visibility

of the images, it becomes necessary to fill these gaps and blend the

overlapping regions. The relationship between the sonar data

frames with localization and the sonar data frames with the route

is illustrated in Figure 2C. Additionally, owing to the placement of

side-scan sonar on both sides of the AUV, the distribution of sonar

data frames is perpendicular to the tangent of the route.

To address the overlap issue during the stitching process of

sonar data frames, the Root Mean Square (RMS) method can be

employed. This method aims to fully utilize the data from each

sonar data frame and effectively highlight prominent features. The

computational formula is presented as follows.

f (i, j) =
1
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
n

k=1

f 2k (i, j)

s

where f (i,   j) represents the final pixel intensity at coordinates

(i,   j), and fk(i,   j) represents the pixel intensity at coordinates (i,   j)

for the k-th sonar data frame.

To address the issue of gaps during the stitching process, the

commonly used region filling algorithm in computer graphics,

namely the scan-line filling method, can ensure seamless filling of

the target area. This method operates in two directions: along the x-

axis and along the y-axis, yet their fundamental principles remain

the same. By observing the relative positions of sonar data frames, it

is apparent that the areas requiring filling form convex quadrilateral

regions bordered by two sonar data frames (where any path

connecting any two points within the region remains inside it).

Hence, employing the scan-line filling method, assuming extension

along the x-axis, the basic procedure of the algorithm can be

summarized as follows:
Fron
a. Determine the minimum and maximum x-coordinates of

the area to be filled, denoted as x1 and x2, respectively.

b. Iterate through each scan line x = a,  a ∈ ½x1, x2� a ∈ Z.

c. Compute the intersection points between the scan line and

the boundaries of the target area at x = a, and record the

maximum and minimum values as ya1 and ya2, respectively.

d. Iterate through each pixel along ya = b,  a ∈ ½ya1, ya2� b ∈
Z. Calculate the pixel intensity at coordinate (a,   ya) and fill

the pixel.

e. Repeat steps 2 to 4 until all pixels within the region

are filled.
Throughout this process, the computation of pixel intensity in

step d utilizes the inverse distance weighting method. Its expression

is presented as follows.

I = (
1
s1
IA1

+
1
s2
IA2

+
1
s3
IA3 +

1
s4
IA4

)=o
4

i=1

1
si

where I represents the intensity of the pixels to be filled, IA and s

represent the intensity of the four corner points in the region and

the Euclidean distance from the pixel to be filled. The specific

schematic diagram is shown in Figure 7.
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It can be observed that the scan-line filling method effectively

handles all pixels between two-line segments. By employing the

inverse distance weighting method, the pixel intensity at the filling

point is predominantly influenced by the intensity of the nearest

corner pixel, while being minimally affected by the farthest corner

pixel intensity, aligning with realistic expectations. Furthermore,

this approach ensures a uniform variation of pixel intensity within

the filling area, thus mitigating abrupt changes in pixel intensity.

In practical application, the four corner points are selected from

the actual data collected by four adjacent side-scan sonars.
4.3 Overall process of side scan sonar
image stitching

In an AUV system, the navigation and side-scan sonar are two

distinct modules. Therefore, achieving the stitching of side-scan sonar

images requires addressing the matching problem between

positioning data and sonar data. In the navigation system, the

update frequency of positioning is determined by the sensor

frequency, and the update frequency of the DVL (Doppler Velocity

Log) generally exceeds that of GPS. However, since positioning data is

calculated by a fusion positioning algorithm (Lin et al., 2023), the

positioning frequency can be aligned with the DVL sensor frequency,

set as fD. The data update frequency of the side-scan sonar is

determined by the maximum slant range and the speed of sound in

water, which can be expressed as follows:

fs =
vs

2 · Rmax

where fs is the data update frequency of the side scan sonar,

Rmax is the maximum oblique range set by the side scan sonar, and

vs is the propagation speed of sound waves in water.

In practical applications, the positioning frequency fD of the

DVL is set at 10 Hz. Utilizing the HaiZhuo TongChuang ES1000

side-scan sonar with a maximum slant range Rmax = 75  m and a

sound speed vs ≈ 1500  m=s, we can calculate the update frequency
FIGURE 7

Scanning filling method filling schematic diagram.
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f of the side-scan sonar data to also be 10 Hz. Hence, maintaining a

nearly identical update frequency between the positioning system

and the side-scan sonar data is feasible. Consequently, simultaneous

recording of the latest positioning data alongside side-scan sonar

data allows for one-to-one correspondence between positioning and

sonar data, effectively resolving the matching issue.

The complete procedure for side-scan sonar image stitching is

outlined as follows:
Fron
a. At the onset of stitching, feed both positioning data and

side-scan sonar data into the program.

b. Apply preprocessing methods outlined in Section 3 to

process the raw sonar data.

c. Employ the sensors carried by the AUV along with their

positioning algorithms to obtain corresponding positioning

for the sonar data frames.

d. Utilize the geographical encoding method described in

Section 4.1 to encode the sonar data.

e. Address gaps and overlaps generated from processing

geographical encoding as discussed in Section 4.2.

f. Iterate steps d and e until all side-scan sonar data frames are

stitched together.
5 Autonomous perception of targets

Utilizing side-scan sonar for monitoring the sedimentation of

underwater targets within a designated area is one of the objectives

of ocean pasture environmental surveillance. Hence, to enable

AUVs equipped with side-scan sonars to autonomously perceive

underwater targets, a method based on a classification algorithm for

autonomous target perception has been proposed. The

aforementioned approach extracts pertinent information from

real-time data captured by the side-scan sonar to generate

effective area images. Upon obtaining these images, this chapter

first employs the EfficientNet classification algorithm to discern the

presence or absence of targets within the effective area images.

Images containing targets undergo comprehensive processing,

including non-local means filtering, K-means clustering, and an

improved region-scalable fitting model for segmentation. This

process facilitates the automatic segmentation of target shadow

regions within side-scan sonar images, with the effectiveness of the

method validated through experimentation. Finally, target height

monitoring is achieved using shadow-based height estimation. The

specific procedure is illustrated in Figure 2D.
5.1 Target existence judgment based on
classification algorithms

In the operation of side-scan sonar systems, there are dark

zones between the seabed line and the transmission line.

Additionally, during practical use, there may be ineffective areas

at the tail end due to mismatches between the set range and the

actual maximum slant range. The region lying between the dark
tiers in Marine Science 10
zones and the ineffective tail end constitutes the effective area.

Figure 8 illustrates the geometric relationship of the side-scan

sonar system.

q is the tilt angle when installing the side scan sonar. When

vertically downward q = 0, qE is the vertical beam width of the side

scan sonar, H is the height of the transducer from the bottom, Rmin

and Rmax are the minimum and maximum slant distances in the

effective area, d is the horizontal distance between the seabed point

and the transducer caused by oblique installation, and wwidth is the

horizontal width in the effective area.

Based on the geometric relationship of the side scan sonar

system, the position of the effective region in the side scan sonar

image is derived, namely the values of Rmin and Rmax. Assuming that

the result of seabed detection is s, measured in pixels, Rmin can be

expressed as follows.

Rmin = s

Calculate based on the triangular relationship:

H = Rmin cosq

Rmax =
H

cos(q + qE)
=

Rmin cosq
cos(q + qE)

=
s cosq

cos(q + qE)

Based on the above, the oblique range (s, s cosq
cos(q+qE)

) of the effective

area can be obtained, where s is the position of the detected seabed line.

Under normal circumstances, install the tilt angle q If it is very

small or 0, then Rmax can be further simplified as follows, and the

diagonal interval of the effective region can be represented as

(s, s
cos qE

).

Rmax =
s cos(0)

cos(0 + qE)
=

s
cosqE

To implement the EfficientNet image classification algorithm

for determining the presence or absence of targets in images, we

conducted experiments using side-scan sonar data. To evaluate the

effectiveness of EfficientNet on side-scan sonar data, we created a

dataset by extracting relevant regions from original side-scan sonar
FIGURE 8

Geometric relationship diagram of side scan sonar system.
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images, comprising two classes: images with targets and images

without targets. The model was trained on this dataset and

subsequently tested using publicly available datasets.

In preparing the dataset, we employed seabed line detection

methods to extract the regions of interest from the images and fixed

the height of each image at 200 pixels to form the image dataset for

classification training. Unlike specific object classification, our task

involved categorizing images broadly into two classes: “haveTarget”

and “noTarget”. Target presence or absence was determined by

matching highlighted areas and shadow regions within the images.

Additionally, during training, 10% of the dataset was reserved for

validation. Examples of images with and without targets illustrated

in Figure 9.

The dataset is split into training and validation sets, with a data

ratio of 9:1 between the training and validation sets. Figure 10

shows the variation process of the loss function value during model
Frontiers in Marine Science 11
training. It can be observed that both the training set loss value and

the validation set loss value can quickly converge to a lower level

and remain stable during the training process.

After obtaining the trained model, we conducted tests to

evaluate its classification performance on a Lenovo Yoga 14sITL

2021 laptop equipped with an Intel Core i5–1135G7 processor. To

assess the generalization capability of the method, we employed the

publicly available dataset from Hohai University consisting of side-

scan sonar images of underwater aircraft wreckage and shipwrecks

for model classification testing. This dataset comprises a total of 447

images, including 385 shipwreck images and 62 aircraft wreckage

images, all of which contain targets. The specific model testing

results are presented in Table 3.

Figure 11 provides examples of classification results, where the

“class” field indicates the classification result generated by the model

(“haveTarget” denotes the presence of a target in the image, while

“noTarget” indicates its absence), and the “time” field represents the

time taken to classify the current image.

Upon examination of the results, the overall accuracy of the

classification is approximately 86%, indicating a relatively high level

of accuracy. Instances of misclassification primarily occur in images

lacking the basic features of highlighted and shadowed areas, as

depicted in Figure 11B, partly due to disparities between the

training and testing datasets.

Furthermore, an observation of the table reveals that the image

classification speed is fast, reaching around 5.36 frames per second.

Considering that the acquisition time for a single frame of side-scan

sonar data is approximately 0.1 seconds, the classification algorithm

can effectively process images at the rate of one per frame, meeting

the requirements for real-time processing.
5.2 Target height estimation

Underwater sonar images exhibit characteristics such as uneven

intensity and high noise levels, which can significantly impede

observation of underwater targets and the effectiveness of automated

segmentation. In order to achieve precise segmentation of the shadow
B

A

FIGURE 9

Example of dataset with or without target images. (A) “noTarget”.
(B) “haveTarget”.
FIGURE 10

Changes in loss values during training.
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regions within side-scan sonar images, a segmentation method is

employed that combines non-local means (NLM) filtering, K-means

clustering, and Region-Scalable Fitting (RSF) energy minimization.

Through testing, suitable filtering parameters are selected, and the

accuracy of clustering is enhanced by optimizing the number of K-

means cluster centers. Additionally, the energy function of the RSF

model is adjusted according to practical considerations to better align

with the realities of shadow segmentation.

The specific process of target segmentation can be found in

Appendix. After obtaining the target, the target height is estimated

using the following method.

According to the detection principle of side scan sonar, the oblique

range is distinguished based on the time of sound wave return. When a

target object with a certain height appears, there will be no sound wave
Frontiers in Marine Science 12
signal return in the oblique range behind the target object, which will

cause certain shadows on the image. Based on this principle, the height

of the target object can be inferred by using the length of the shadow

caused by the target object (Bikonis et al., 2013). Based on the detection

principle of side scan sonar, the geometric relationship diagram of the

target object can be obtained as shown in Figure 12.

Hs is the height of the side scan sonar from the bottom,Ht is the

height of the target object, HLmin and HLmax are the minimum and

maximum slant distances of the bright area caused by the target

object, Rs is the farthest slant distance of the shadow, and Ls is the

length of the slant distance of the shadow caused by the target

object. Based on geometric relationships, the height of the target

object can be intuitively inferred as follows:

Ht =
Ls
Rs

· Hs

where Hs can be obtained based on the seabed detection results.

HLmax and Rs can be segmented based on the aforementioned

images. Assuming that the distance from the seabed to the radiation

is si pixels, and the horizontal resolution of the side scan sonar

original image is Rr ., it can be converted as follows.

Ht =
Rs −HLmax

Rs
siRr
TABLE 3 The model testing results.

NUMBER

OF

IMAGES

Accuracy
Time

consuming [s]
FPS

Sunken ship 385 85.19% 70.315 5.48

Aircraft
wreckage

62 91.94% 12.819 4.84

All 447 86.13% 83.134 5.38
BA

FIGURE 11

Example of test results. (A) Examples of correct classification. (B) Example of classification error.
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To verify the effectiveness of the height estimation method

mentioned above, experimental verification was conducted in a

water tank. The specific experimental scenario is shown in Figure 13.

The actual measurement value of the height of the object is 60

cm. The relevant side scan sonar data was obtained by scanning

with a side scan sonar, and the collected data is shown in Figure 14.

The depth of the water tank is 5.05 m. According to the height

calculation formula calculated above, the calculation result is shown

as follows.

Ht =
Rs −HLmax

Rs
siRr =

70
539

� 505cm = 65:6cm

Based on the actual height of the object of 60 cm, an error rate of

9% can be calculated. Therefore, this height calculation method can

to some extent reflect the actual height of the object.

5.3 Overall process of target
autonomous perception

This section presents an autonomous perception framework for

target detection in side-scan sonar images based on the EfficientNet
Frontiers in Marine Science 13
classification algorithm, aimed at monitoring targets during AUV

cruises in marine farms, as illustrated in Figure 15. To address the

challenge of complex target perception caused by the original side-

scan sonar images, a method is proposed to extract effective regions

from the images based on seabed line detection results.

Subsequently, the EfficientNet classification algorithm is utilized

to determine the presence or absence of targets in these

regions, reducing the burden of shadow segmentation and

validated through experiments. To enhance the accuracy of

shadow segmentation, a combination of NLM filtering, K-means

clustering, and RSF is employed. Target height is calculated using a

shadow-based height estimation method and tested through

pool experiments.
FIGURE 12

Geometric relationship diagram of the target object.
FIGURE 13

Target height calculation test in the pool.
FIGURE 14

Sonar image of the measured object.
FIGURE 15

The entire process of target recognition.
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6 Results

To achieve autonomous data collection with side-scan

sonar, the AUV platform needs to be utilized, enabling it to

autonomously navigate both on the water surface and

underwater to meet the requirements of autonomous

monitoring. The vehicle utilized in this study is a torpedo-

shaped AUV (Zhang et al., 2022), as depicted in Figure 16. The

side-scan sonar utilized is the ES1000 from Hai Zhuo Tong

Chuang, operating at a frequency of 900 kHz, with a maximum

slant range of 75 m, a horizontal beam width of 0.2°, a vertical

beam width of 50°, and a vertical heading resolution of 1 cm. It is

embedded on the side of the AUV. To validate the proposed

algorithms, the side-scan sonar is mounted, and experiments are

conducted in the Qingjiang area of Hubei, China.
6.1 Autonomous acquisition and stitching
experiment of side scan sonar images

Prior to utilizing the positioning data from the AUV, frame-

to-frame data is tightly stitched together to obtain waterfall plots

of the raw sonar data, which are then color-rendered, resulting in

Figure 17A. Using the proposed seabed line detection method, the

side-scan sonar images are analyzed for seabed line detection, with

specific results shown in Figure 17B. Due to the unpredictable

nature of the field environment, it is not possible to accurately

measure the true underwater depth for every frame. However, in

Figure 17B, it is evident that the seabed line detection closely

aligns with the boundary between light and dark regions.

Moreover, analyzing the seabed line detection results from the

left and right-side sonar images reveals consistent results in the

majority of intervals, indicating that due to the close spacing

between the left and right-side sonars, their respective heights

above the seabed should theoretically be consistent, which is

confirmed by the actual detection results, thus validating the

accuracy of seabed line detection. Following the seabed line

detection, the images undergo corresponding radiometric and

slant range corrections, with interpolation applied to fill gaps

resulting from slant range correction to ensure smooth transitions

in pixel intensities. The corrected images are depicted in

Figure 17C. The transition from slant range-based positioning

to horizontal distance-based positioning is seamless, further

validating theoretical effectiveness. Additionally, due to varying
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seabed line heights in each sonar data frame, the effective width of

each frame also differs, which is reflected in the subsequent image

stitching process. Through the aforementioned processes,

processed valid data is obtained from the raw sonar data.

Subsequently, the obtained positioning data is combined with

the sonar data to generate final stitched images reflecting global

geographical locations. The actual stitching results, as shown in

Figure 17D, demonstrate the terrain surrounding the actual

trajectory with minimal gaps and smooth image transitions,

aligning with theoretical analysis. Moreover, given the variation

in seabed lines, the amount of valid data differs across different

sonar data frames, thus validating the effectiveness of AUV

autonomous data collection and image stitching theory.
6.2 Target autonomy
perception experiment

Controlled by the upper computer within the AUV,

autonomous navigat ion is achieved whi le perceiv ing

underwater targets and segmenting target shadow regions

during navigation.

To extract valid regions from raw side-scan sonar images, the

seabed line detection is initially performed on the raw images. The

result of seabed line detection for a single image is illustrated in

Figure 18A, where the red dots represent the detection results.

Figure 18B presents the valid region image after eliminating

invalid areas. These obtained local images of valid regions are

then fed into a classification program to determine the presence of

targets. Figure 18C displays the classification algorithm’s

determination of target existence, with “class” indicating

“haveTarget” when a target is detected, and “time” denoting the

time taken for image classification. Following the designed

workflow, images identified as containing targets proceed to the

target shadow region segmentation program, where accurate

segmentation of the shadow regions is conducted, and the

relevant results are preserved. Figure 18C showcases the

segmentation results of shadow regions in the aforementioned

images. It’s observed that this process effectively separates the

shadow regions from the images. After obtaining the segmented

images of shadow regions, height calculation for targets is

conducted based on height estimation principles, yielding the

height of the targets. Figure 18D represents the results of

height analysis.
FIGURE 16

AUV and AUV working in Qingjiang.
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Thus, the entire process of collecting target shadow regions

from side-scan sonar images has been successfully validated,

affirming the effectiveness of this target perception framework.
7 Conclusions

The paper initially delves into the issue of seabed line

detect ion in side-scan sonar images, considering the
Frontiers in Marine Science 15
characteristics of such images. To address existing problems in

detection methods, such as weak robustness or complex

processes, a seabed line comprehensive detection method

based on the sliding window approach is proposed. This

method offers strong robustness and relatively simple

processes. Validation is carried out through pool and lake

experiments. The experimental results demonstrate a 31.2%

increase in accuracy for our proposed method compared to the

final peak method. Integration of seabed line detection,
B

C

D

A

FIGURE 17

Autonomous acquisition and stitching experiment of side scan sonar images. (A) Waterfall diagram of sonar raw data. (B) Submarine detection
results. (C) The results of image oblique range correction. (D) sonar image stitching results.
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radiometric correction, and slant range correction completes the

preprocessing of side-scan sonar images.

The maneuverability of the AUV results in varying heading

angles and positions for each sonar image frame, posing challenges

for stitching the sonar images between frames. While existing

literature focuses on stitching distinct sonar images, we

approached the task by addressing the gaps and overlaps between

consecutive frames for seamless image stitching. Addressing the

challenge of matching sonar data with positioning data in image

stitching, the transformation relationship between the AUV carrier

coordinate system and the global North-East-Down coordinate

system is derived. Formulas for pixel coordinate transformation

are provided. Subsequent treatment is applied to address gaps and

overlaps in geographic coding, enabling autonomous collection and

stitching of underwater terrain data.

We propose a lightweight, high-frequency target automatic

recognition framework. This framework not only identifies targets

but also computes their heights. EfficientNet is adopted as the

determination network for target existence in sonar images.

Training and validation datasets are constructed accordingly to

obtain a classification model through training. Target recognition

runs an average of over 5 images per second. Methods for target

shadow segmentation are explored. Within the framework of

filtering, coarse segmentation, and fine segmentation, an

approach is proposed to enhance the accuracy of coarse

segmentation by increasing the number of K-means clustering
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centers. This provides more precise initial contours for

subsequent fine segmentation, thereby reducing the number of

iterations required. After target segmentation, shadow

information is used to calculate the height of the target. In the

validation experiments conducted in the pool, the height

measurement error was found to be 9%. Finally, the effectiveness

of the method is verified through lake experiments.

In future work, under the scenario of AUV navigation along

predetermined routes, target recognition can be achieved

through target perception if the target positions are known.

This aspect can subsequently serve as auxiliary positioning

for AUVs.
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Appendix: target
shadow segmentation

Non-local means filtering and local filtering share some

similarities, both involving calculations based on pixels in the

vicinity of a specified pixel. However, there are differences in how

the weights of neighboring pixels are calculated. Compared to

traditional local filtering, non-local means filtering better

preserves edge details.

The computation process of non-local means filtering can be

summarized as follows, assuming the coordinates of the specified

pixel are (i, j):

a. Selecting the side lengths of the square-shaped similar

window F and the search window S, denoted as f and s, respectively.

b. Calculating the initial weights ws of pixels within the

similar window F sequentially, according to the following formula:

W(x, y)s�s = Kernel(x, y) · (S(x, y) − S(i, j))2

ws(x, y) = sum(W(x, y))

where W(x, y) is the weight matrix at (x, y), Kernel(x, y) is the

Gaussian kernel, and ws(x, y) is the corresponding weight value. In

addition, matrix multiplication and subtraction in the above

formula are corresponding element operations, and sum( · ) is the

sum of all elements in the matrix.

c. Select the Gaussian smoothing parameter h and use the

Gaussian function to smooth the initial weight ws to obtain the final

weight w, as shown below.

w(x, y) = e(− 
ws(x,y)

h2
)

d. Using weights to calculate the weighted average of pixels

within similar windows as the filtering result for the specified pixel,

as shown below.

f 0(i, j) =
1
C o

i+ f−1
2

x=i− f−1
2

o
i+f−1

2

y=i−f−1
2

f (x, y) · w(x, y)

C = o
i+ f−1

2

x=i− f−1
2

o
i+f−1

2

y=i−f−1
2

w(x, y)

Based on the mathematical principles of non-local means

filtering, it can be observed that the parameters f, s, and h

significantly influence the filtering effect. Among them, the

variation of h has a considerable impact on the filtering effect. A

larger Gaussian smoothing parameter, h, implies that the weights of

all pixels within the similar window are relatively close, resulting in

a tendency towards image blurring and a reduction in intensity

differences between pixels. Therefore, it is essential to select an

appropriate Gaussian smoothing parameter, h, based on practical

considerations when coordinating with segmentation methods.

K-means clustering is an unsupervised data analysis method

that can classify data without prior training. Thus, to provide some

initial segmentation results for subsequent precise segmentation,
Frontiers in Marine Science 18
K-means clustering is employed to perform coarse segmentation on

the sonar images filtered beforehand.

The fundamental principle of K-means clustering is to classify

data based on the similarity between data points and cluster centers.

The specific process of using K-means for image clustering is

as follows:

a. Convert the two-dimensional image into a one-

dimensional array.

b. Set a stopping threshold e or iteration limit “miterations“.

c. Randomly initialize n centers, with center values

representing the pixel intensity of selected pixels.

d. Define a loss function J(c,m), as detailed below:

J(c,m) =o
N

i=1
(f (xi) − f (mci ))

2

where N represents the total number of pixels in the image, f ( · )

represents pixel intensity, and mci represents the center point to

which the current pixel belongs.

e. Assign each sample to the center closest to its

pixel intensity;

f. For each class k, recalculate the pixel intensity at its center as

shown below;

f (mt+1
k ) ≤ argmin o

xi∈Wk

(f (xi) − f (m))2

where Wk represents all pixels belonging to Class k.

g. Repeat e and g until the loss function J < e or number of

iterations iteration > miterations.

In the practical segmentation of shadow areas, the consideration

involves distinguishing between shadow and non-shadow regions by

clustering the image according to two sets of centroids. However,

since the objective is to segment only the shadow regions, enhancing

the refinement of shadow segmentation can be achieved by increasing

the number of clustering centroids. After obtaining the segmentation

results, the class with the lowest average pixel intensity is selected as

the shadow region class, while all other classes are designated as non-

shadow region classes. With an increase in clustering centroids, the

effectiveness of coarse segmentation also improves to a certain extent.

However, based on the principles of clustering, as the number of

centroids increases, so does the computational complexity.

Additionally, in certain scenarios, an excessive number of centroids

may lead to partial loss of targets. Thus, selecting appropriate

clustering centroids during usage can enhance the accuracy of

coarse segmentation, thereby providing a better foundation for

subsequent fine segmentation.

Following the filtering and coarse segmentation processes

applied to the effective regions, relevant information regarding

shadow areas is partially obtained. However, for obtaining more

precise shadow area segmentation results, further refinement of the

coarse segmentation is performed using the Region-Scalable Fitting

(RSF) model. Considering the earlier employment of K-means

clustering for initial image segmentation, solely targeting shadow

region segmentation, certain modifications are made to the RSF

model in this context. Compared to randomly initialized contours,

contours initialized through K-means clustering might already be
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largely covered by genuine shadow regions. Moreover, since the

original RSF model includes a contour length term, in some cases, to

minimize the energy function, the segmented contour tends to

progressively shrink away from the shadow region boundaries

during iterations, deviating from the initial intent of achieving

comprehensive shadow region segmentation. To address this

issue, the influence of the length term on the entire energy

function is excluded during shadow region segmentation only.

The modified energy function is as follows:

F(f, f1, f2) =o
2

i=1
li
Z

(
Z

Ks (x − y)jI(y) − fi(x)j2M∈
i (f(y))dy)dx

+ m
Z

1
2
( mf(x)j j − 1)2dx

H∈(x) =
1
2

1 +
2
p
arctan

x
∈

� �� �

where f is the level set function, f1(x) and f2(x) are the pixel

intensities of the two regions that are close to being segmented, m is

a normal number, li is a normal number, Ks is a Gaussian kernel

function, I( · ) represents the original image, M∈
1 (f) = H∈(f), M∈

2

(f) = 1 −H∈(f).
Minimize the above energy using gradient descent method. In

the case of a fixed level set function f, the energy function takes the

derivative of x and obtains fi(x) by setting the derivative to 0;

Furthermore, under the gradient of minimizing the energy function

with a fixed fi(x), the gradient during the descent process can be

calculated as follow:

∂ f
∂ t

= −d∈(f)(l1e1 − l2e2) + m(m2 f − div(
mf
mfj j ))

d∈(f) =
1
p

1
∈2 +x2

ei(x) =
Z

Ks (y − x)jI(x) − fi(y)j2dy, i = 1, 2

The modified energy function, on the one hand, is more suitable

for shadow region segmentation, and on the other hand, it reduces

computational complexity to some extent by not calculating the

length term.
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