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Introduction: This work presents an unsupervised learning-based methodology

to identify and count uniquemanatees using underwater vocalization recordings.

Methods: The proposed approach uses Scattering Wavelet Transform (SWT) to

represent individual manatee vocalizations. A Manifold Learning approach, known

as PacMAP, is employed for dimensionality reduction. A density-based algorithm,

known as Hierarchical Density-Based Spatial Clustering of Applications with Noise

(HDBSCAN), is used to count and identify clusters of individual manatee

vocalizations. The proposed methodology is compared with a previous method

developed by our group, based on classical clustering methods (K-Means and

Hierarchical clustering) using Short-Time Fourier Transform (STFT)-based

spectrograms for representing vocalizations. The performance of both

approaches is contrasted by using a novel vocalization data set consisting of 23

temporally captured Greater Caribbean manatees from San San River, Bocas del

Toro, in western Panama as input.

Results: The proposed methodology reaches a mean percentage of error of the

number of individuals (i.e., number of clusters) estimation of 14.05% and success

of correctly grouping a manatee in a cluster of 83.75%.

Discussion: Thus having a better performances than our previous analysis

methodology, for the same data set. The value of this work lies in providing a way

to estimate the manatee population while only relying on underwater bioacoustics.
KEYWORDS

Greater Caribbean manatee, bioacoustics, scattering wavelet transform, Manifold
Learning, density-based clustering
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1 Introduction

The Greater Caribbean manatee, Trichechus manatus manatus,

is an herbivore mammal that inhabits wetlands and rivers from

northern Mexico to northeastern Brazil. It can also be found around

the islands of the Greater Antilles. For instance, in western Panama,

wetland and rivers with abundant aquatic vegetation attracts

manatees searching for food and sheltered breeding grounds. The

Manatee is considered an endangered species by the International

Union for Conservation of Nature (IUCN) and its population is

predicted to decrease in 20 percent within two generations (Deutsch

et al., 2003; Aragones et al., 2012; Dıáz-Ferguson et al., 2017). This is

the result of several threats, including natural causes such as low

genetic variability (Dıáz-Ferguson et al., 2017) and external causes

such as environmental degradation, hunting, and boat collisions,

among others (Dıáz-Ferguson et al., 2017; Guzman and Condit,

2017). In Panama, the local government has decreed legal

protection for the species since 1967.

To establish effective policies to restore the Greater Caribbean

manatee populations, it is essential to have tools to estimate

population changes and comprehend how they use their habitat.

This is a difficult task for manatee populations in Bocas del Toro,

Panama, since manatee occur in turbid brackish waters. Also,

wetlands and rivers are partially covered by thick aquatic

vegetation. In these conditions, traditional sonar and aerial visual

approaches are ineffective (Mou Sue et al., 1990; Guzman and

Condit, 2017).

Nonetheless, these methods present significant logistic and

cost-efficiency challenges. To overcome the limitations of these

methods, our group previously proposed a scheme based on passive

acoustic monitoring (PAM) and cluster analysis, an unsupervised

learning technique, to detect and count manatees using underwater

recordings (Merchan et al., 2019).

This approach takes advantage of manatees produce frequent

underwater vocalizations that can be characterized by frequency

spectrum. They consist of single note calls with non-linear properties

such as multiple harmonics frequency modulations, with harmonics

extending up to 20 kHz. Moreover, the acoustic properties of

individuals are distinctive (O’Shea and Poché, 2006). Using such

acoustic signals to detect manatees opened the possibility of using of

their patterns and features employing Digital Signal Processing (DSP)

techniques and Machine Learning (ML) algorithms. The scheme

comprises four stages: detection, denoising, classification and

manatee counting and identification by vocalization clustering

(Merchan et al., 2019). Unsupervised identification of individual

manatees was carried out using algorithms such as K-Means

Clustering (KMC) and Agglomerative Hierarchical Clustering (HC)

on a large dataset of wild manatee vocalizations. This work featured

processing vocalizations as Short-Time Fourier Transfom (STFT)

spectrograms which were represented in terms of principal

component analysis (PCA) coefficients to reduce data dimensionality

and computational cost (Turk and Pentland, 1991).

Cluster analysis or clustering, a technique within unsupervised

learning, involves algorithms that categorize unlabeled data into

groups based on their similarities. The number of these groups can

either be predetermined or determined automatically by the
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algorithm. In contrast to supervised learning methods like

classification, where models are trained using labeled data across

multiple classes to predict the class of new data, unsupervised

learning operates without predefined categories or labels.

In the context of manatee population estimation, unsupervised

learning algorithms such as clustering offer a valuable tool. They

enable the estimation and tracking of manatee numbers in the wild

without the necessity of prior individual recordings or known

quantities, which are typically required in supervised learning

approaches. This method is particularly crucial in wild

environments where data distribution and characteristics are not

known beforehand.

However, the clustering methods used in (Merchan et al., 2019)

were constrained by their reliance on linear data representation via

principal component analysis. Manatee vocalizations exhibit a

complex structure where individuals, especially those within the

same demographics (such as same sex and age range), often present

close fundamental frequencies and similar time-frequency contour

properties. Despite these similarities, individual manatees can

display variations in their vocal patterns. These complexities pose

challenges for accurately estimating the number of manatees and

effectively grouping their vocalizations, potentially leading to errors

in both tasks.

Previous work, analyzing the manatee’s vocal characteristics led

to an understanding of its unique properties related to demographical

characteristics. This is detailed in studies conducted by Sousa-Lima

et al (Sousa-Lima et al., 2002, 2008), which explored the relationship

between individual age, sex and size associated with vocal pitch (also

referred to as fundamental frequency) and duration, employing

recorded vocalizations from 15 individual manatees. Furthermore,

Umeed et al. (2018) analyzed the structure of the different classes of

vocalizations and their features related to sex and age. Additionally, it

is worth mentioning the recent works of Brady et al. (2022) where the

acoustic contour (time-frequency variations) of two subspecies of the

West Indianmanatee (Trichechus inunguis and Trichechusmanatus)

were investigated regarding to age and size.

Recently, Machine Learning (ML) based works in this subject

have been oriented towards the automatic detection and classification

of manatee vocalizations. Classification involves using models

previously trained with positive manatee vocalization samples and

other negative samples such as underwater background noise and

other species like pistol shrimps. These models can determine

whether new data samples correspond to manatee vocalizations or

not (supervised learning). These works mainly trend towards the use

of Deep Neural Networks (DNN) and its various architecture depths.

This is due to their inherent ability to learn complex data patterns in

visual and acoustic data (Stowell, 2022). Recent works investigated

the effectiveness of Convolutional Neural Networks (CNN)

architectures to classify vocalizations detected from wild manatees

(Merchan et al., 2020; Rycyk et al., 2022). Another study proposed

using Autoregressive models coupled with a Multilayer Perceptron

(otherwise known as Artificial Neural Networks) to extract and

classify features related to the signals’ harmonic components (Rıós

et al., 2021).

Moreover, there has been work from our research group on

implementing of a CNN-based classification approach on
frontiersin.org
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microcontrollers for real-time on site detection (Rıós et al., 2023).

This is followed by the construction of a data analysis platform

incorporating some of the previously introduced work in the form

of an acoustic CNN-based detection and classification system and

computer vision system for the visual recognition of manatees in

drone footage (Contreras et al., 2023).

Considering the advances in bioacoustical research herein

discussed, this work attempts to further explore the automatic

identification of individual and counting of manatees using

unsupervised learning. In a previous work, the authors explored

unsupervised learning approaches such K-means and hierarchical

methods for clustering for manatee identification and counting

(Merchan et al., 2019).

The main contribution of this work is to propose an alternative

the previous clustering and vocalizations representation approach

presented in (Merchan et al., 2019) to overcome its limitations

regarding the complex task of grouping manatee vocalizations given

its in-class and inter-class properties mentioned earlier. In

particular, we propose the use of a non-linear dimensionality

reduction approach, named PacMAP (Wang et al., 2020) and a

new density-based clustering approach, known as Hierarchical

Density-Based Spatial Clustering of Applications with Noise

(HDBSCAN) (Campello et al., 2013). Furthermore, we propose

leveraging the Scattering Wavelet Transform (SWT) to improve the

representation of timefrequency features, offering an alternative to

traditional STFT-based spectrograms.

The proposed and previous (wandering animals) approaches

are compared in several experimental setups using a novel

vocalization data set of 23 captured manatees that were recorded

in their natural habitat.

This clustering-based methodology is a tool for the estimation

of the number of individual manatees within populations from

underwater recordings. Obtained results in the new vocalization

data set, provide the performance of this methodology in terms of

its accuracy to estimate the number of individuals and the

effectiveness of grouping correctly the vocalizations of individuals.
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2 Materials and methods

2.1 Data collection

Manatees were captured individually in a custom-made 4 x 4 m

floating cage made of 20 cm diameter HDPE pipes, enclosing an 8 cm

mesh size fishing net up to 2.5 m deep (Figure 1). The cage was secured

with ropes to trees and centered along at 3-5 m depth along a 40 m

width upstream channel of the San San River in Bocas del Toro,

Panama (9°27.979′ N; 82°32.964′ W). Manatees were attracted to the

cage (not fed) using a wire-suspended bucket filled with fresh banana

pulp and banana leaves (See Figure 1 insert). The manatees entered the

cage through a manually operated 1.5 x 1.8 m stainless steel door from

the riverbank. Once inside, the door was closed, and the manatees were

kept there for 6 to 8 hours. Once the animals were captured, their

vocalizations were obtained using a micro-RUDAR®(Cetacean

Research, Seattle, Washington) stand-alone recorder operating an

SQ26-08 hydrophone connected to an H1 Zoom®digital recorder

programmed for continuous recording (6-10 hours) at 24-bit and 96

kHz. In addition, each animal was measured using a tape measure

(error ±10 cm) on the floating tubes as a reference scale and sexed

while swimming and rotating inside the cage. Photos of scars or marks

were taken of the face and upper/lower body for identification before

releasing the animals 6-8 hours later. All procedures were approved by

the Smithsonian Tropical Research Institute Animal Care and Use

Committee (IACUC).

The recordings of the 23 manatees in captivity yielded 1446

vocalizations (See Table 1). In the following section, we present the

scheme used to obtain the vocalizations from the recordings.
2.2 Overview of manatee vocalization
detection and identification

A data set was prepared by first extracting and then analyzing

recorded manatee vocalization files using a detection scheme based
FIGURE 1

Floating cage where manatees where temporarily captured for recording (San San River, Bocas del Toro, Panama). Bucket filled with banana pulp
and banana leaves used to attract the manatees (image insert).
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on the works of Merchan et al (Merchan et al., 2019, 2020). The

applied scheme (shown in Figure 2) consisted of a signal detection

stage based on the analysis of the autocorrelation function (ACF)

(Merchan et al., 2019), a denoising stage with the Smoothed Signal
Frontiers in Marine Science 04
Subspace Denoising algorithm (Jensen et al., 2005) to eliminate

noise, and a vocalization classification stage based on CNN

(Merchan et al., 2020). During this classification stage, candidate

signals identified in the detection stage are assessed using a CNN
FIGURE 2

General description of the process of detection and identification of individual manatees. In the detection stage candidate manatee signals are
extracted from recordings. Denoising stage enhances signal. In the classification stage, a trained model distinguishes between manatee vocalizations
and other ambient noises. In the clustering stage, vocalizations exhibiting similar spectral properties are grouped together based on their
acoustic features.
TABLE 1 Biological information and average acoustic features for each individual manatee.

ID Date Vocalization Mean F0 (Hz) STD F0 (Hz) VAR F0 Sex-Age Group-Size (m)

M01 09-Dec-20 29 2726.172 586.268 343710.291 unknown, adult, 2.50

M02 20-Jan-21 52 2920.750 210.368 44254.583 unknown, juvenile, 1.80

M03 22-Jan-21 55 2788.927 100.801 10160.809 female, juvenile, 2.50

M04 24-Jan-21 31 3990.000 428.990 184032.200 female, adult, 2.70

M05 21-Apr-21 54 2997.630 1756.519 3085357.407 female, adult, 2.90

M06 19-May-21 54 3425.704 264.374 69893.609 female, adult, 2.50

M07 21-May-21 63 3698.413 189.091 35755.246 female, adult, 2.40

M08 02-Jul-21 80 2935.863 696.894 485660.576 unknown, adult, 2.80

M09 04-Jul-21 61 2742.164 248.005 61506.306 female, adult, 2.90

M10 06-Jul-21 78 3716.372 434.200 188530.055 male, juvenile, 2.20

M11 23-Aug-21 70 3964.643 212.144 45005.218 female, adult, 2.30

M12 23-Oct-21 88 3829.432 277.214 76847.834 male, adult, 2.20

M13 24-Oct-21 76 2598.684 146.311 21407.046 female, adult, 2.80

M14 25-Oct-21 60 2394.267 161.517 26087.690 female, adult, 2.70

M15 26-Oct-21 72 3674.722 1657.426 2747060.767 male, juvenile, 1.70

M16 09-Mar-22 52 2883.404 429.643 184593.265 female, adult, 2.80

M17 19-Jun-22 68 2786.779 495.234 245256.742 female, adult, 2.50

M18 20-Jun-22 63 3204.841 683.494 467163.749 male, juvenile, 1.80

M19 21-Jun-22 63 3367.762 1197.198 1433281.926 female, adult, 2.80

M20 08-Aug-22 57 2797.158 1061.593 1126979.814 female, adult, 2.10

M21 09-Aug-22 54 2373.426 519.666 270052.362 female, adult, 3.00

M22 09-Jan-23 78 3445.487 1420.933 2019050.565 female, adult, 2.35

M23 05-May-23 88 3272.886 760.066 577700.355 male, juvenile, 1.95
It is also worth noting the presence of unknown subjects, for which the sex was not determined during the data collection process.
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model that has been pre-trained to distinguishes between manatee

vocalizations and other ambient noises. These steps correspond to

the three first stages of the scheme presented in (Figure 2).

In Merchan et al. (2019), to estimate the number of individuals,

the authors presented a “clustering stage” based on “classical

clustering methods” such as K-means and hierarchical clustering.

This approach used a STFT-based spectrograms and PCA for signal

representation and dimensionality reduction, respectively. This

approach will be called Workflow #1 throughout the text.

This workflow presented limitations that stemmed from its use of

linear data representation through PCA and the clustering methods it

employed, which posed challenges when handling data with nuanced

similarities found in manatee vocalizations. Manatee vocalizations

exhibit complexity, where individuals within similar demographics

(such as same sex and age range) often present close fundamental

frequencies and similar time-frequency contour properties. This

affected the accuracy in the estimation of the number of manatees

and the effective grouping of their vocalizations.

Taking advantages of a non-linear dimensionality reduction

method and a density-based clustering methods to deal with this

kind of data, we propose the Workflow #2, as an alternative for the

Workflow #1 (see section 2.4).
2.3 Previous workflow

2.3.1 Overview of Workflow #1
The previous unsupervised learning framework, used as

clustering stage, that is described in detail in Merchan et al.

(2019) is depicted in Figure 3.

It starts by generating STFT spectrograms and applying post-

processing techniques (see Figure 4). Then, it uses PCA to reduce

dimensionality for later grouping the data using two clustering

methods (KM and HC). Finally, it evaluates the results employing

internal validation metrics to find the optimal number of clusters.

2.3.2 Limitations of the STFT
signal representation

We have found that the STFT Signal Representation have a few

limitations when representing manatee vocalizations. The first one

related to Heisenberg’s Uncertainty Principle. This principle

indicates limitations between the frequency and time resolution of
Frontiers in Marine Science 05
the representation, e.g. when the frequency resolution is increased,

time resolution decreases and vice-versa.

Moreover, due to fixed window length and basis functions, the

STFT does not entirely capture events with different duration or

when the signal contains sharp sounds, diminishing resolution at

higher frequencies (Beecher, 1988; Rajoub, 2020).

To find an optimal time-frequency trade-off, the Wavelet

Transform utilizes special basis functions called “mother

wavelets” that are not restricted to a single type of function (e.g.,

periodic functions as in STFT) and have both time and frequency

components. This will generate a series of functions with different

sizes and time-frequency spectrum (Rajoub, 2020).

2.3.3 Feature post-processing
Treating the spectrogram as a binary image allows to eliminate

residual noise and highlight high energy harmonics. First, the values

of input spectrogram are modified according to the binarization

threshold, which will reduce to zero anything below n = 2 times the

average value of the 2D array. Afterwards, morphological operators

are applied to remove noise remnants using erosion with kernel size

of (1,2) and then dilation to connect nearby regions and make them

more contiguous with a kernel of size (1,4). Figure 4 provides a

visual representation how STFT spectrograms are calculated.

2.3.4 Linear dimensionality reduction
According to Bellman and Kalaba (1965), “the curse of

dimensionality” describes the rapid increase of computational

complexity due to high volumes of numerical variables. In ML

tasks, this is related to the scaling number of features used to train a

model and its associated level of space and time complexity. In

bioacoustics, a dataset of unprocessed feature-rich audio signals like

animal vocalizations would not be immediately suitable for

modelling, as perceptually similar sounds would not be located in

a close neighborhood due to high dimensionality (Stowell and

Plumbley, 2014).

To alleviate this problem, Dimensionality Reduction (DR)

algorithms have been developed using mathematical tools to

compress or reduce latent information without losing important

features. Linear DR algorithms such as PCA (Turk and Pentland,

1991) have been used for this type of reduction due to their low

computational complexity regarding bioacoustic analysis tasks

(Odom et al., 2021). PCA attempts to linearly transform data into
FIGURE 3

Diagram for Workflow #1. It comprises a signal representation stage using STFT spectrograms, a spectrogram post-processing stage, a dimensionality
reduction stage by PCA, a clustering stage using classical methods (K-means or Hierarchical Clustering) and an Evaluation metrics stage.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1416247
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Merchan et al. 10.3389/fmars.2024.1416247
an orthogonal space where new features (named principal

components) contain a percentage of the original data variance,

and since the highest amount of variance is usually contained

within the first few components, low variance features can be

discarded. Nonetheless, despite having high efficiency for data

compression, PCA and other linear algorithms are not able to

capture complex nonlinear structure (Wang et al., 2020).

2.3.5 Internal clustering validation
In workflow #1 after, the dimensionality reduction, clusters are

evaluated by different metrics. These metrics were chosen to

evaluate different aspects of clusters in terms of inter-intra

distance, this is, how individuals might differentiate one from

another and how much vocalizations from one individual might

differ. Each metric has its own set of thresholds that define whether

a clustering result is optimal or not.
Fron
• Silhouette Index (SIL): It weights the inter-cluster and intra-

cluster distance to calculate the score, ranging between -1.00

and 1.00. Higher scores indicate separated and well-defined

clusters (Rousseeuw, 1987).

• Calinski-Harabasz Index (CAL): The score is higher when

clusters are dense and well separated. For evaluation, it is

computed in a heuristic manner. It measures data point

dispersion at various degrees of freedom (i.e., by evaluating

different centroids) (Caliński and Harabasz, 1974).

• Davies-Bouldin Index (DBI): The minimum score is zero,

with lower values indicating better clustering. It uses the

same heuristic approach as CH. The score is defined as the

average similarity measure of each cluster with its most

similar cluster, where similarity is the ratio of within-cluster

distances to between-cluster distances (Davies and

Bouldin, 1979).
The following subsection will present Proposed Workflow #2,

which supersedes Workflow #1, by addressing methodologically

some of the limitations described in this subsection.
tiers in Marine Science 06
2.4 Proposed workflow

2.4.1 Overview of Workflow #2
This new methodology starts by applying the Scattering

Wavelet Transform (SWT) (Mallat, 2012). SWT is a time-

frequency signal representation that provides superior time-

frequency resolution compared to spectrograms based on the

Short-Time Fourier Transform (STFT).

Then, a non-linear dimensionality reduction algorithm (also

known as Manifold Learning) referred as PaCMAP (Pairwise

Controlled Manifold Approximation) and described in (Wang

et al., 2020), is used. It provides a better data representation in

lower dimensions by capturing the complex data patterns inherent to

manatee vocalizations without losing significant information in the

process. Furthermore, to better distinguish the acoustic features of

different individuals, we utilized a density-based clustering algorithm

named HDBSCAN for Hierarchical Density-Based Spatial Clustering

of Applications with Noise (Campello et al., 2013).

The proposed workflow for the clustering stage, is shown in

Figure 5. First, instead of STFT, SWT coefficients are calculated to test

different post-processing techniques (Figure 6). Then, dimensionality

reduction is done using PaCMAP and finally HDBSCANwill attempt

to find the best cluster number using the CDBw metric (noise and

outliers are removed). Cluster quality is assessed using the same

ground-truth metrics from workflow #1 (Figure 3).

2.4.2 Improving feature extraction with
Scattering Wavelet Transform

Considering the aforementioned requirements and limitations, we

seek to test an approach that combines both the flexibility of wavelet

functions and the effectiveness of neural networks to extract complex

patterns, namely the Scattering Wavelet Transform. Proposed by

Mallat (2012), it follows the concept of convolutional filters and non-

linear activation functions, i.e., calculate a set of feature maps with

prominent information and then find complex patterns.

Although the SWT behaves red similarly to CNNs, it provides

an additional advantage, which entails minimal effort is spent in
FIGURE 4

Spectrogram postprocessing. The signal spectrogram is denoised, binarized and subject to morphological operators of erosion and dilation.
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training and optimization. For further context, in situations where

CNNs have been used for feature extraction, the neural network

requires significant training data and computational processes

(Rycyk et al., 2022). In the case of SWT, filter parameters that

calculate optimal features are predefined by the characteristics of

mother wavelet functions instead of being randomly initialized and

learned from input data, making the SWT suitable for ML tasks

(Oyallon et al., 2018).

In this work we used the implementation built by Andreux et al.

(2020b). For this the SWT or SJx (Equation 1) is illustrated as a 3-

layer cascade network of wavelet filters. The transform of input

signal x(t) is defined as:

SJx = S(0)J x, S(1)J x, S(2)J x
h i

(1)

S(0)J x = x⋆ fJ(t) (2)

S(1)J x(t, l) = x⋆y (1)
l

���
���⋆ fJ (3)

S(2)J x(t, l, m) =
����x⋆y (1)

l

��⋆y (2)
m

��⋆ fJ (4)

In the above equations, the ⋆ operator denotes the convolution

operation and || the non-complex modulus. While y (1)
l , y (2)

m and fJ
correspond to Morlet wavelet filters (with center frequencies at l
and µ) and a low-pass filter centered at the zero frequency. These

parameters are controlled by two implemented parameters named
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Q and J, whereQ controls the time-frequency resolution (number of

wavelets per octave) and J the log-scale decomposition of the

scattering transform, i.e., the number of times the signal is dilated

and translated.

The SWT starts by computing S(0)J x (zeroth-order coefficients,

described in Equation 2). The local average of the signal which

preserves most of the low frequency information, is then used to

recover high frequency information, S(1)J x and S(2)J x as can be seen in

(Equations 3, 4). They are also used to compute the first and

second-order scattering coefficients, as depicted in Figure 7.

The modulus between layers acts like activation functions in

neural networks, extracting non-linear patterns from convolved

features. In addition, to the better preservation of high frequency

components, other significant benefits of the SWT (in comparison

to the STFT) are the reduction of variance and stability to additive

noise and the deformation of the original signal (Mallat, 2012;

Andén and Mallat, 2014).
2.4.3 Post-processing techniques
Similar to our previous work with STFT spectrograms

(Merchan et al., 2019), described in section 2.3.3, it is necessary

to normalize features for improved and consistent performance.

Applying threshold binarization combined with morphological

operators provided a suitable method to normalize Fourier

coefficient values and remove noise artifacts. Nonetheless, this

approach initially did not perform as well with SWT coefficients

due to higher time-frequency resolution. Therefore, exploring
FIGURE 6

Feature post-processing methods and their intermediary stages.
FIGURE 5

Diagram of the Workflow #2. It consist of a signal representation stage using SWT, a postprocessing stage, a dimensionality reduction stage using
PacMAP, a clustering stage using HDBSCAN and an evaluation metrics stage.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1416247
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Merchan et al. 10.3389/fmars.2024.1416247
additional combinations of image processing techniques produced a

more fine-tuned representation of SWT coefficients. Three distinct

techniques are sought to be tested, namely:
Fron
• The Canny Operator: Defined as an edge detection operator

that employs a multi-stage algorithm to detect a wide range

of edges in images (Canny, 1986), outperforms common

operators and has been tested in conjunction with the

Discrete Wavelet Transform for image filtering and noise

reduction (Bachofer et al., 2016). In this work, it is used to

find the edges of the spectral components of the SWT

coefficients, and together with dilation and erosion

operators, modify the shape and control the amount

of resolution.

• Medial Axis Transform: An additional method to control

and modify the SWT frequency components. The algorithm

attempts to find a shape’s central “skeleton” or core of a

shape, preserving its essential features (Lee, 1982).

• Medial Axis Transform with Canny Operator (MedCan): a

combination of both methods designed to control both size

and width of frequency components using the Medial Axis

to find the bare minimum and Canny to increase resolution.
Using these techniques, combined with our previous

binarization approach (section 2.3.3), the following feature

transformation scheme was tested:
1. Generate a binary mask from the thresholded SWT

coefficients (M times the mean value times, where M is

pre-defined by the user).

2. Calculate the medial axis transform of the binary mask.

This process can be repeated multiple times to achieve

different levels of shape preservation, making frequency

components thicker.

3. Create masked features by element-wise multiplication.

Normalize features using min-max scaling, then re-adjust

to 8-bit integer values.

4. Apply Gaussian Blurring to smooth features with a kernel

size of (3,3). Blurring helps to reduce false positives by

preventing the detection of small, noisy edges that may not

be part of the actual structures in the image.
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5. Calculate upper and lower hysteresis thresholds for the

Canny algorithm. These parameters control which edges

are considered true or not. After exploring more

sophisticated methods (Liu et al., 2017) to determine

these key parameters, the median value (md) of the input

features and an arbitrary parameter s (Equations 5, 6) were

chosen to compute them automatically after experimenting

with our dataset.

Thlower = max  (0, (1:0 − s ) ·md) (5)

Thupper = min  (255, (1:0 + s ) ·md) (6)

6. Apply dilation to connect nearby regions and make them

more contiguous with a kernel of size (1,4).

7. Apply erosion to remove noise remnants with kernel size

of (1,2).
For post-processing, different variations of the proposed

method were tested (Figure 6), a visual representation of some of

the key post-processing stages is included in this section (Figure 8).

2.4.4 Non-linear dimensionality reduction
These methods classified as Manifold Learning, work in a holistic

way by translating complex data onto a manifold (multidimensional

geometric structure) in lower dimensions, while preserving intrinsic

structure (original features) (Cayton, 2005). This has been achieved

with different algorithmic approaches, where one of themost popular is

t-SNE (t-distributed Stochastic Neighbor Embedding) (Van der

Maaten and Hinton, 2008). This algorithm calculates a similarity

measure between pairs of data points in both high and low

dimensional space, then attempts to optimize them using a cost

function to minimize the error rate. However, its performance is

heavily reliant on proper parameter tuning to correctly model both

local (observations very similar to each other) and global (observations

very dissimilar to each other) structure, making it computationally

expensive and unreliable for complex data analysis (Wang et al., 2020).

We experimented with PaCMAP, a Manifold Learning

algorithm designed to capture global and local structure as

accurately as possible with low computational complexity

(requiring minimum parameter optimization). It effectively

overcomes the limitations of preceding algorithms such as t-SNE
FIGURE 7

Stages of the scattering wavelet transform.
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(Wang et al., 2020). A simplified definition of the inner workings of

the algorithm is as follows:
Fron
• Compute the weighted K-Nearest Neighbors graph (K-NN)

(Eppstein et al., 1997) a data representation in high

dimensions where each node represents similar

observations (data points) and each edge represents the

similarity between the data points. The algorithm can be

initialized using PCA to reduce computational complexity

without losing dimensionality reduction accuracy (Wang

et al., 2020).

• Select smaller groups of data points by measuring similarity

in terms of Euclidean distance. Then, three types of

observation pairs (neighbor, mid-near and further pairs)

will be considered to capture the global structure and then

refine the local structure.

• Obtain a data embedding or representation in lower

dimensions using of a cost function designed to minimize

the error and preserve important latent features defined by

the weighting scheme. This is done using the Adam

optimizer, a popular algorithm in Deep Learning tasks

(Kingma and Ba, 2014).
For this project, the PaCMAP software implementation

developed by Wang et al. (2020) is used. It offers minimum

parameter configuration to achieve optimal results. Empirical

testing was done to find the best configuration between number

of K-neighbors to consider for the K-NN graph initialization and

the target dimensions of the resulting embedding.

2.4.5 Density-based clustering
Despite being computationally efficient and easily implemented,

K-means and hierarchical clustering algorithms do not perform

adequately when data points form clusters of variable size (i.e.,

varying degrees of similarity or density) nor with the presence of

several outliers (Ahmed et al., 2020; Karim et al., 2021). In this work

we tested the performance of HDBSCAN, a hierarchical density-

based clustering algorithm that attempts to solve the previously
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mentioned limitations (Campello et al., 2013). It was developed as

an extension of DBSCAN (Density-Based Spatial Clustering of

Applications with Noise) presented by Martin et al. (1996).

DBSCAN clusters neighboring data points using a density

threshold e, to dictate how close they should be located to be

considered part of a cluster with a predefined minimum size (a

parameter defined as minPts), searching for the highest density

regions to find suitable clusters. On the other hand, HDBSCAN will

perform a cluster selection process when building a density-based

hierarchy of various e thresholds to account for clusters with

different densities and shapes. This process will also eliminate

noise data points and possible outliers by pruning data points and

their neighbors that do not comply with the density criteria,

established by how many neighboring points exists and how close

they are.

We chose to use the HDBSCAN algorithm as McInnes et al.

(2017) implemented. This algorithm will search for the best cluster

configurations based on two key parameters: min_samples and

min_cluster_size. The first one, similar to minPts in DBSCAN,

determines the minimum number of samples required for a data

point to be considered a core point, this is, a data point that has a

certain minimum number of neighbors within its vicinity based on

a specified distance measure such as Euclidean Distance. On the

other hand, min_cluster_size sets the minimum size of clusters that

the algorithm will identify.

2.4.6 Outlier detection
It is pertinent to include tools to refine clusters by eliminating

data points with higher dissimilarity compared to their neighboring

points within a specific region (local outliers) and global data points

that fall outside the similarity range of the entire dataset

(global outliers).

As part of the original HDBSCAN algorithm (Campello et al.,

2013), Global-Local Outlier Score from Hierarchies (GLOSH) was

implemented by Campello et al. (2015). Classified as a density-

based outlier detection technique, it operates on the basis that non-

outliers, are more likely to be discovered in densely populated areas

while outliers can be found in low-density areas. When a data point
FIGURE 8

Post-processing techniques of SWT coefficients.
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deviates significantly from its closest neighbors (when it occurs far

from its closest neighbors) it is marked and handled as an outlier

(Wang et al., 2019). Hence, GLOSH is capable of simultaneously

detecting both global and local outlier types based on a complete

statistical interpretation.

The algorithm outputs an outlier score during the construction

of the density-based hierarchy. It works by keeping track of

parameters related to each data point, such as the first (last)

cluster to which it belongs bottom-up (top-down) through the

hierarchy, the lowest radius at which it still belongs to this cluster

(and below which is labeled as noise), and the lowest radius at which

this cluster or any of its sub-clusters still exist (and below which all

its objects are labeled as noise) before being pruned during the

cluster selection. The higher the score, the more likely the data point

is to be an outlier (Campello et al., 2015). Therefore, pulling the

upper quantiles from the outlier score distribution allows to identify

and isolate data points in the higher range of the distribution.

2.4.7 Internal validation metrics for density-
based models

For evaluating density-based clustering models, CDBw is a

metric that indicates better performance when the index outputs

high scores in a heuristic approach similar to CAL and DBI. It

attempts to find the best cluster partition by measuring

compactness in terms of density, which is, how close data points

are to each other. Moreover, it can be tuned to use different distance

metrics (Euclidean, Cosine, Correlation, among others) and uses an

interval validation algorithm to handle noise data points (e.g.,

filtering, separate, combine, etc.) (Halkidi and Vazirgiannis, 2008).
2.5 Experimental setup

2.5.1 Data samples selection
To evaluate and compare the performance of each of the

Workflows, the following experiments were design using

randomly sampled subsets of the main dataset (Table 1):
Fron
• Experiment No. 1A - Random number of cluster test: In this

experiment 100 datasets were generated by randomly

keeping a range from 10 to 20 manatees of the global data

set, selecting a random quantity of vocalizations for each

individual with a range from 10 to 50 vocalizations. The

purpose of this experiment is to measure the performance

of each method in conditions where the ground truth is

made of clusters of different sizes attempting to simulate a

situation close to real life. Classical methods (i.e., KMC and

HC) and density-based clustering approaches were

compared with this dataset.

• Experiment No. 1B - Random number of cluster tests using

mixed approaches: We interchange the representation

methods of both workflows in this experiment. We tests

the density-based clustering method and the dimensionality

reduction (i.e, PacMAP) method of Workflow #2 with the

Spectrogram STFT-based representation of Workflow #1.
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Also, we test the classical clustering methods and the

dimensionality reduction method (i.e., PCA) of Workflow

#1 with the SWT-based representation of Workflow #2. The

purpose of this experiment is to determine the impact of the

type of signal representation on the global performance of

the workflows with respect the impact of the clustering and

dimensionality reduction methods. In this experiment, we

used the same datasets used in experiment No. 1A.

• Experiment No. 2 - Fixed number of clusters test: Following

a similar protocol to the previous experiment, the best

performing methods were subjected to further testing. In

this case, 100 datasets were generated keeping a constant

number of manatees (10 and 20) while varying the quantity

of vocalizations between 30 to 50. For this experiment, only

the density-based approach, HBDSCAN was considered.

• Experiment No. 3 - Full dataset test: In this test, we carry

out clustering of the whole dataset with the Workflow #2.
2.5.2 Clustering methods settings
and configuration

We present the settings and configurations of the compared

clustering methods of both workflows:
• Classical clustering methods presented in Merchan et al.

(2019), K-Means Clustering (KMC) and Hierarchical

Clustering (HC): For these methods, the dimensionality

reduction was done using PCA.

• For all experiments, classical clustering methods were

evaluated for 10 to 20 clusters iterating between 3 PCA

configurations (accounting for 70, 80 and 90% of cumulative

variance) and the aforementioned internal validation metrics

(SIL, DBI and CAL) to select the optimal clustering.

• Density-based method, HBDSCAN: For this method, the

dimensionality reduction was done using the Manifold

Learning algori thm, PaCMAP. The HBDSCAN

implementation had the following specifications:

• Embedding dimensions: From 5 to 9. It is worth

mentioning that above 9 dimensions, the algorithms start

outputting diminishing returns in terms of clustering

quality in relation to scaling computational complexity.

• KNN-graph: The K parameter related to the number of k-

nearest neighbors used to build the graph representation in

higher dimensions was iterated from 4 to 6.

• Minimum samples and cluster: Fixed size of 10 and 15.

• For CDBw evaluation: Manual experimentation showed

that the cosine distance was the best compared to the

standard Euclidean distance. Moreover, the internal

validation algorithm was set to filter noise data points

(i.e., vocalizations that were labeled numerically as −1 by

HDBSCAN) before evaluation.

• Outlier detection: All experiments were set to pull the 80th

percentile of outlier scores, this is, identify the top 20% of

data points with the highest scores and classify them

as outliers.
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2.5.3 Signal representation parameters
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• Binary spectrograms: They were generated using 2048

NFFT bins with 50% overlap and Hanning Window

function, resulting in 1024x150 zero-padded spectrograms

after binarization (with a threshold equals to 2 times the

mean value of each vocalization) with kernel sizes of 2 and 4

(for erosion and dilation operators respectively).

• SWT second-order coefficients: They were generated with

J=10 and Q=100 resulting in 2D arrays of 3049x200

features. The binarization threshold was kept at 20 times

the mean array value for all experiments.
In this work, the impact of different post-processing methods in

clustering performance was evaluated by comparing the previous

STFT (Merchan et al., 2019) against the proposed SWT, using

different variations to find the best signal representation.
2.5.4 External validation metrics
According to Liu et al. (2010), clustering results can be

evaluated using two different sets of metrics: unsupervised

without ground truth (internal validation) or with the supports of

ground truth labels (external validation).

Since manually annotated labels were available in this work, the

V-Measure (Rosenberg and Hirschberg, 2007) (VM) external

validation metric was utilized to measure how many manatees can

be identified with unsupervised methods. Using two criteria, this

metric compares the ground truth against generated cluster labels to

determine the clustering quality. Homogeneity (hereafter, H) which

measures data point similarity within a cluster, and completeness

(hereafter, C) which calculates how many similar data points are

clustered by the algorithm. The VM score is the harmonic mean

between C and H scores (Rosenberg and Hirschberg, 2007).

Additionally, the Fowlks-Mallows Index (hereafter, FMS)

quantifies the similarity between two sets of cluster labels,

providing insights into how many samples are being clustered

correctly and is defined as the geometric mean of the pairwise

precision and recall (Fowlkes and Mallows, 1983). All these metrics

output values between 0 and 1.00, where 1.00 indicates perfect

cluster composition between 2 sets of labels (VM Score) and perfect

accuracy (FMS).

Furthermore, it is necessary to evaluate not only the quality of

the clusters but also the quantity of estimated clusters compared to

assigned individuals (ground truth). For this task, the following

proposed metrics by are the Mean Absolute Error Clusters Number

Estimation (MAECNE) and Mean Percentage Error Cluster

Number Estimation (MPECNE%) that were calculated as follows

(Equations 7, 8):

MPECNE% =
Estimated Number of Clusters − True Number of Clusters

True Number of Clusters
� 100

����
����

(7)

MAECNE = Estimated Number of Clusters − True Number of Clustersj j
(8)
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These metrics described in Equations 7, 8 are obtained by

averaging over a fixed number of experiments in a particular setting.

Finally, we introduce another performance metric defined as

Percentage Cluster Quality (PCQ%). This metric is used to evaluate

the composition of each cluster and determine how many manatees

have been successfully identified, it follows this set of steps:
1. Calculate the composition of each cluster in terms of

percentage per individual.

2. Find the dominant individual with the highest percentage

of vocalizations for each cluster.

3. Average the percentage of all dominant individuals in each

obtained cluster.
After computing all clustering iterations, the resulting labels were

evaluated using external validation (H, C, V and FMS) and performance

metrics (MAECNE, MPECNE% and PCQ%) to determine the cluster

quality using the ground truth as reference (See Tables 2–5).

2.5.5 Cluster quality analysis
The experiment No.3 was conducted using the entire dataset

(Table 1) to study cluster quality and identify biological features

that could impact identification performance. The analysis consist

of the following aspects:
• Acoustic analysis: Fundamental frequency, also known as

pitch, is the key parameter that has been showed to be

related to demographic features of interest such as sex or

age (Sousa-Lima et al., 2002, 2008; Umeed et al., 2018;

Brady et al., 2022). In this work, the Probabilistic YIN

algorithm (PYIN) provided a reliable way to calculate the

fundamental frequency of each vocalization. Developed

from the original YIN algorithm (De Cheveigné and

Kawahara, 2002), is a pitch estimation method that

computes the difference between the signal and delayed

versions of itself (in a similar fashion to a window analysis

using the ACF function) to find the most probable

frequency (F0) among a set of candidates.

• Unlike the original algorithm, it does not require a threshold

parameter to filter out noise frequencies and is more suited to

analyze complex harmonic signals such as the manatee

vocalizations (Mauch and Dixon, 2014). To obtain better

results and filter noise artifacts, the algorithm’s parameters

were configured to analyze frequencies located between the

seventh and eight octave of the musical chromatic scale

(between 2.093 and 7.902 kHz), corresponding to the

manatee’s vocal pitch (Brady et al., 2022).

• Cluster embedding analysis: We consider that the more

compact a cluster is depicted in the embedding space, the

more similar its features should be. We used the Convex

Hull (CH) to verify this idea (Preparata et al., 1985).In

computational geometry, CH is defined as the outer

boundary of a set of data points and can be used to

characterize a cluster by encapsulating the extent of its

points in Euclidean space.
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TABLE 2 Results for Experiment No.1A: Comparison of Workflow #1 and Workflow #2 using all the variants of internal validation metrics and
signal representation.

Clustering Method Post-processing MPECNE% MAECNE H C V FMS PCQ%

Workflow #1

HC-DAV Binary 34.684 4.43 0.6614 0.7041 0.6807 0.4950 71.256

HC-CAL Binary 31.985 5.44 0.7248 0.6111 0.6620 0.5093 60.062

HC-SIL Binary 33.348 4.64 0.6747 0.6799 0.6746 0.4968 68.134

KM-DAV Binary 29.118 3.70 0.6514 0.6294 0.6390 0.4731 71.644

KM-CAL Binary 31.549 5.37 0.6887 0.5772 0.6270 0.4777 58.011

KM-SIL Binary 27.617 4.17 0.6581 0.6182 0.6356 0.4706 63.576

Workflow #2

HDBSCAN-CDBw Canny 19.268 3.10 0.7300 0.8002 0.7620 0.6255 76.732

HDBSCAN-CDBw Medial 24.354 3.83 0.6998 0.7964 0.7430 0.6107 73.839

HDBSCAN-CDBw MedCan 18.479 2.91 0.7437 0.7989 0.7691 0.6387 77.282
F
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Each metric is evaluated on the average over 100 datasets generated randomly keeping a range from 10 to 20 manatees of the global dataset (Table 1), selecting a random quantity of vocalizations
for each individual with range from 10 to 50. MPECNE, MAECNE, H, C, V, FMS and PCQ, stands for Mean Absolute Error Clusters Number Estimation, Mean Percentage Error Cluster Number
Estimation, Homogeneity, Completeness, V-Measure, Fowlks-Mallows Index, and Percentage Cluster Quality, respectively.
TABLE 3 Results for Experiment No.1B of mixed approaches.

Clustering Method Post-processing MPECNE% MAECNE H C V FMS PCQ%

Classical clustering methods with SWT Coefficients

HC-DAV MedCan 34.299 4.52 0.6793 0.7026 0.6885 0.4969 72.153

HC-SIL MedCan 26.163 4.08 0.7190 0.6588 0.6847 0.5066 68.170

HC-CAL MedCan 31.985 5.44 0.7451 0.6138 0.6717 0.5040 63.099

KM-DAV MedCan 27.669 3.63 0.6524 0.6551 0.6522 0.4691 68.862

KM-SIL MedCan 24.617 4.04 0.6916 0.6156 0.6497 0.4861 63.318

KM-CAL MedCan 31.842 5.42 0.6957 0.5824 0.6328 0.4779 58.535

Density-based models STFT Spectrograms

HDBSCAN-CDBw Binary 16.620 2.60 0.7268 0.7859 0.7535 0.6197 75.573
Classical clustering methods (K-means and Hierarchical Clustering) using SWT is compared with HDBSCAN using STFT-based spectrograms. Each metric is evaluated on the average over 100
datasets generated randomly keeping a range of 10 to 20 manatees of the global dataset (Table 1), selecting a random quantity of vocalizations for each individual. MPECNE, MAECNE, H, C, V,
FMS and PCQ, stands for Mean Absolute Error Clusters Number Estimation, Mean Percentage Error Cluster Number Estimation, Homogeneity, Completeness, V-Measure, Fowlks-Mallows
Index, and Percentage Cluster Quality, respectively.
TABLE 4 Results of Experiment No. 2 - Evaluation of HDNSCAN clustering method three signal representation options: SWT with Canny, SWT with
MedCan and STFT.

Representation Estimated True MPECNE% MAECNE H C VM FMS PCQ%

SWT w/Canny 10.78 10.00 17.400 1.74 0.7728 0.7802 0.7749 0.6810 83.747

SWT w/MedCan 10.57 10.00 15.100 1.51 0.7811 0.7915 0.7849 0.7013 83.680

STFT 10.32 10.00 15.600 1.56 0.7715 0.7952 0.7814 0.7030 82.624

SWT w/Canny 19.34 20.00 14.800 2.96 0.7482 0.7827 0.7639 0.5923 76.111

SWT w/MedCan 18.99 20.00 14.050 2.81 0.7458 0.7831 0.7631 0.5924 74.978

STFT 19.11 20.00 16.450 3.29 0.7369 0.7772 0.7556 0.5939 72.4059
Each metric is evaluated on the average over 100 datasets generated randomly keeping a constant number of manatees of 10 and 20 of the global dataset (Table 1), selecting a random quantity of
vocalizations for each individual, while varying the quantity of vocalizations between 30 to 50. MPECNE, MAECNE, H, C, V, FMS and PCQ, stands for Mean Absolute Error Clusters Number
Estimation, Mean Percentage Error Cluster Number Estimation, Homogeneity, Completeness, V-Measure, Fowlks-Mallows Index, and Percentage Cluster Quality, respectively.
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After obtaining a set of post-processed clusters (without noise

samples and outliers), the CH of each cluster was computed, and its

volume was computed. By using this parameter as a reference, clusters

can be arranged from higher to lower volume and then. It can be

observed which individuals are identified in homogeneous clusters and

which tend to be mixed. This parameter, together with other acoustic

and biological features such as F0, animal size, and sex, could provide

insights regarding the strengths and weaknesses of our current

methods to cluster vocalizations of manatees.

2.5.6 Computational hardware and software
All experiments were performed using a custom PC with AMD

Ryzen 9 5950X CPU processor and 64GB of RAM running on

Ubuntu 22.04 kernel. This includes Python libraries such as

Numpy, Scikit-learn, Librosa, OpenCV and Scipy. For the core

algorithms of the new methodology we utilized the following

repositories made by Wang et al. (2021) (https://github.com/

YingfanWang/PaCMAP), Leland McInnes and Astels (2017)

(https://github.com/scikit-learn-contrib/hdbscan), and Andreux

et al. (2020a) (https://github.com/kymatio/kymatio).
3 Results

3.1 Clustering performance

As mentioned, different experiments were devised to assess the

behavior of both workflows. Tables 2, 3 show the results regarding

the Experiment No.1A and 1B using a random number of clusters,

with each column corresponding to the average best scores and

metrics after fitting all models for all 100 datasets. We emphasize

that each model was evaluated with the same randomly generated

hundred data sets (n=100).

One can observe that, in general, the density-based clustering

approach, HBDSCAN, presented the best metrics in all the categories.

Indeed, when using the STFT Spectrogram representation, it obtained

a Mean Percentage Error of Cluster Number Estimation (MPECNE)

of 16.620% (Table 3), followed closely by the results for the SWT

Canny and MedCan variants, with 19.268% and 18.479%,

respectively (Table 2). Both classical clustering methods (KM and

HC) obtained values above 27.617% for MPECNE.

Also, the best external evaluation metrics were obtained for

HBDSCAN, with values reaching 0.7437 for Homogeneity (H),

0.8002 for Completeness (C), 0.7691 for V-Measure and 0.6387 for

FMS. On the other hand, these metrics for the classical clustering

approaches (KMC and HC) were below the scores. Also,

HBDSCAN obtained the highest value for the Percentage Cluster

Quality (PCQ), which measures the percentage of the dominant
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manatee in a cluster on average, reaching 77.282% for the SWT

MedCan variant (Table 2).

Table 3 shows the results of Experiment No.1B. One can conclude

that the choice of clustering methods and the dimensionality reduction

method play a larger role in the results, than the type of representation

signal since the HDBSCAN clustering using STFT spectrogram

provides a better results that HC and KM methods using SWT.

Moreover, Table 4 shows the result of Experiment No. 2, with a

fixed number of clusters (10 and 20 clusters) using a density-based

clustering approach, HDBSCAN for the variants with best metrics

scores of Experiment No.1., SWT Canny and MedCan and the STFT

Spectrogram. Scores for these variants are very close for most metrics,

with a slightly best score for Mean Percentage Error Cluster Number

Estimation for MedCan with 15.100% for 10 clusters and 14.050 for 20

clusters, while the best scores of Percentage Cluster Quality were

obtained by the Canny variant, reaching 83.747% for 10 clusters and

76.111% for 20 clusters.
3.2 Cluster quality analysis of the full
dataset (Experiment No.3)

Results of Experiment No. 3 are shown in Table 5. Here, the

complete dataset was analyzed using HDBSCAN with the Canny

variant. The Canny variant was chosen due to its higher

performance compared to Medial and very similar performance

compared to MedCan in Experiment No.1A and No.2.

For the 23 true clusters, the estimated number of clusters was 24

(MPECNE of 4.34%) and the Percentage Cluster Quality reached

78.453%. V-Measure reached 0.8457 and the FMS reached 0.7852.

After computing dimensionality reduction and clustering stages

with PaCMAP and HDBSCAN, the cluster labels were used to

generate Tables 6, 7, which showed the results when compared

against the observed cluster conformation (ground truth). For both

Tables 6, 7, rows were organized in ascending order according to

each cluster Convex Hull volume, which was automatically

calculated in an earlier step. In Figure 9 the composition of

clusters presented in Table 6 are illustrated using stacked bars.

To further explain this comparison, Figure 10 shows the

embedding with just ground truth labels. Figure 11 shows the

obtained clusters from HDBSCAN. For contrast, the clusters

found are shown in color, and while noise is shown in black.

Furthermore, Figure 12 shows the top five (5) clusters with

minimum convex hull coverage obtained using the HDBSCAN, that

is, clusters with high cohesion. While Figure 13 shows the bottom

five (5) clusters with maximum coverage, thus a higher spread.

Finally, Table 7 shows the biological information reorganized from

Table 1 and the average vocalization F0 per individual on each cluster.
TABLE 5 Results of Experiment No.3 - Clustering performance Workflow #2 over the full data set (Table 1).

Post-
processing

Estimated True MPECNE% MAECNE H C VM FMS PCQ%

Canny 24.00 23.00 4.340 1.00 0.8479 0.8436 0.8457 0.7852 78.453
fro
MPECNE, MAECNE, H, C, V, FMS and PCQ, stands for Mean Absolute Error Clusters Number Estimation, Mean Percentage Error Cluster Number Estimation, Homogeneity, Completeness,
V-Measure, Fowlks-Mallows Index, and Percentage Cluster Quality, respectively.
ntiersin.org
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TABLE 6 Composition of the obtained clusters of the Experiment #3 in terms of the ground truth labels of manatee vocalizations.

Label Volume Vocalizations Cluster Composition

0 1.80548E-23 20 M23 (100.00%)

10 1.15096E-22 10 M10 (20.00%), M12 (80.00%)

6 3.63694E-22 19 M10 (73.68%), M12 (26.32%)

14 1.88184E-21 10 M02 (70.00%), M19 (30.00%)

4 1.50718E-20 20 M20 (100.00%)

12 1.74779E-20 11 M14 (18.18%), M21 (81.82%)

1 3.26853E-20 26 M18 (100.00%)

5 3.92012E-20 23 M06 (95.65%), M10 (4.35%)

7 1.85054E-19 16 M13 (100.00%)

2 2.64695E-19 22 M04 (100.00%)

8 7.76993E-19 16 M09 (6.25%), M14 (93.75%)

23 4.35622E-18 11 M03 (9.09%), M08 (9.09%), M16 (18.18%), M17 (63.64%)

3 6.07643E-18 33 M07 (93.94%), M11 (6.06%)

9 8.34745E-18 38 M10 (2.63%), M11 (71.05%), M12 (26.32%)

13 8.81395E-18 16 M14 (68.75%), M21 (31.25%)

16 7.45501E-17 14 M08 (42.86%), M09 (35.71%), M16 (7.14%), M17 (14.29%)

19 1.39207E-16 17 M19 (82.35%), M22 (17.65%)

15 3.58722E-16 20 M08 (20.00%), M16 (35.00%), M17 (45.00%)

20 6.82587E-16 17 M15 (11.76%), M22 (88.24%)

22 1.40628E-15 24 M03 (20.83%), M08 (20.83%), M16 (25.00%), M17 (33.33%)

21 4.27724E-15 14 M03 (35.71%), M08 (28.57%), M16 (28.57%), M17 (7.14%)

11 8.67189E-15 22 M15 (100.00%)

17 1.07701E-14 28 M05 (96.43%), M17 (3.57%)

18 4.53553E-13 30 M01 (10.00%), M03 (6.67%), M09 (13.33%), M13 (66.67%), M17 (3.33%)
F
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Clustering using Workflow #2 was applied over the full dataset (Table 1). Clusters are ordered in increasing order of convex hull volume.
TABLE 7 Biological features organized per individual for each cluster in Experiment No.3 - Full dataset.

Label Biological Features per Cluster
Dominant
Individual

0 (3370.1, male, juvenile, 1.95) M23 (100.00%)

10 (3917.0, male, juvenile, 2.2). (3903.0, male, adult, 2.2) M12 (80.00%)

6 (3581.64, male, juvenile, 2.2). (3479.4. male. adult, 2.2) M10 (73.68%)

14 (3089.86, unknown, juvenile, 1.8). (3106.33, female, adult. 2.8) M02 (70.00%)

4 (2784.3, female, adult, 2.1) M20 (100.00%)

12 (2432.0, female, adult, 2.8). (2292.67, female, adult, 3.0) M21 (81.82%)

I (3302.69, male, juvenile, 1.8) M18 (100.00%)

5 (3459.32, female, adult, 2.5). (3419.0, male, juvenile, 2.2) M06 (95.65%)

(Continued)
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TABLE 7 Continued

Label Biological Features per Cluster
Dominant
Individual

7 (2478.75, female, adult, 2.8) M13 (100.00%)

2 (3948.82, female, adult, 2.7) M04 (100.00%)

8 (2460.0, female, adult, 2.9). (2443.8, female, adult, 2.8) M14 (93.75%)

23 (2826.0, female, juvenile, 2.5). (2826.0. unknown, adult. 2.8) (2850.5, female, adult, 2.8). (2812.14, female, adult, 2.5) M17 (63.64%)

3 (3668.9, female, adult, 2.7). (3783.5, female. adult. 2.3) M07 (93.94%)

9 (3996.0, male, juvenile, 2.2). (3963.56, female, adult, 2.3) (3983.1, male, adult. 2.2) M11 (71.05%)

13 (2322.0, female, adult, 2.8). (3134.8, female. adult, 3.0) M14 (68.75%)

16 (3344.5, unknown, adult, 2.8). (2905.6. female. adult, 2.9). (2826.0. female, adult, 2.8). (2875.5, female, adult, 2.5) M08 (42.86%)

19 (3682.71, female, adult, 2.8). (4555.67. female, adult, 2.35) M19 (82.35%)

15 (2863.5, unknown, adult, 2.8). (2856.57. female, adult, 2.8) (2790.33, female, adult, 2.5) M17 (45.00%)

20 (5259.5, male, juvenile, 1.7), (3282.73, female, adult, 2.35) M22 (88.24%)

22 (2800.0, female, juvenile, 2.5). (2660.2. unknown, adult, 2.8), (2723.5, female, adult, 2.8), (2595.25, female, adult, 2.5) M17 (33.33%)

21 (2819.6, female, juvenile, 2.5). (2790.5, unknown, adult, 2.8), (2830.0, female, adult, 2.8), (2842.0, female, adult, 2.5) M03 (35.71%)

11 (3463.55, male, juvenile, 1.7) M15 (100.00%)

17 (3133.48, female, adult, 2.9). (2532.0, female, adult, 2.5) M05 (96.43%)

18
(3104.33, unknown, adult, 2.5), (2745.0, female, juvenile, 2.5), (2721.75, female, adult, 2.9), 2696.45, female, adult, 2.8).
(2810.0, female, adult, 2.5) M13 (66.67%)
F
rontiers in Mari
ne Science 15
Each row element consists in four parts (average vocalizations F0, sex, age group and estimated size in meters).
FIGURE 9

Graphical representation of the percentage composition of individual manatees in each cluster as per Table 6. Clusters are arranged in the order of
Table 6 (ascending order based on their convex hull). Each manatee is represented by a specific color (refer to the legend at the bottom), with the
number of vocalizations per individual displayed for each bar.
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4 Discussion

This work compares two clustering methods for identifying the

Greater Caribbean manatee. This continues the group’s work and builds

upon previous works (Merchan et al., 2019) oriented towards

unsupervised learning of manatee vocalizations. The newly proposed

method is based on density clustering (HDBSCAN), and outperforms

previously used clustering methods (KM and HC). It does so by

providing an increased performance, between 10 and 20%, in most

evaluation metrics according to external validation (Table 2). It is

important to remark that more than half of the post-processing

variants (SWT and STFT spectrogram representations) had close

performance metrics across the board. Hence, later results are only

presented with the Canny variant for the cluster quality test.

According to results in Experiment No.2, HDBSCAN using SWT

presented a better performance in terms of both MPECNE and PCQ.
Frontiers in Marine Science 16
This is probably due to the improved feature extraction capability granted

by the SWT. Indeed, as mentioned earlier, SWT, by incorporating

principles related to neural networks, such as the hierarchical feature

scheme (denoted by the 2 layers of wavelet filters), work similarly. This

without implementing a complex neural network training schema with

learned features (pre-computed wavelet filter frequencies). This approach

allows to obtain more fine-grained time-frequency resolution with less

information loss in the high frequencies due to the versatility of wavelet

filters (see Figure 7). Basically, the same vocalization is presented with

additional harmonics in the upper frequencies in the post-processed SWT

coefficients, when compared to STFT binary spectrograms.

Regarding the capability of identifying the number of clusters and

its closeness to the ground truth (number of individuals manatee in a
FIGURE 10

Full embedding with ground truth labels showing the vocalizations
of the 23 manatee individuals (Experiment No.3). Each point of the
diagram corresponds to a vocalization of the dataset. manatee. Each
manatee is assigned a different color as indicated in the legend at
the right, from M01 to M23.
FIGURE 11

Full embedding of the clusters obtained by the HDBSCAN clustering algorithm in Experiment No.3. Each cluster corresponds to the estimated group
of vocalizations of an individual manatee. For each of the obtained 24 clusters, a color is assigned as indicated in the legend at the bottom, from C0
to C23. The left panel shows the clusters in color and noise in black. The right panel shows filtered embedding (no noise or outliers).
FIGURE 12

Filtered embedding for the 5 obtained clusters with minimum
Convex Hull (CH) volume (top 5 clusters in Table 6, Clusters: 0, 4, 6,
10, and 14). For each of the 5 clusters, colored line is assigned as
indicated in the legend at the top right (same colors used in
Figure 11). Vocalizations of manatees in these clusters are presented
as points with different colors as indicated in the legend at bottom
right (same colors used in 9).
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dataset), we observe the lowest error rate is achieved in Experiment

No.1 with, HBDSCAN as the clustering method, with 16.620%, while

the classical clustering methods (KM and HC) reached 27.617%, a

difference of almost 10%. These results can be translated into the

rounded capability of identifying ±3 or ±5 clusters depending on the

method MAECNE scoring. Moreover, the homogeneity of such

clusters can get as high as 0.7437 (HBDSCAN) compared to with

0.7451 using classical clustering methods with SWT. In terms of %

PCQ, the average quality of such clusters can reach 77.282% with

HBDSCAN (using MedCan post-processing) compared to 72.153%

from HC using SWT with DAV evaluation metric (Table 2).

In general, the results of experiments No.1 and No.2 provide

insights into the minimum expected performance in pseudo-random

circumstances and the order of magnitude of error in relation to the

number of vocalizations per cluster. This is confirmed when one looks

at the resulting number of vocalizations per cluster, 10-50 and 30-50 for

Experiment No.1, and No. 2, respectively.

Regarding the anticipated performance of our approach across

various natural sound environments, selecting appropriate denoising

methods and settings is crucial. Depending on the specific acoustic

conditions present in each location, we employ techniques such as signal

subspace, spectral subtraction, or Wiener filters (Ephraim and Trees,

1995). In general, when selecting the appropriate denoising approach

and settings, the proposed approach obtained expected performance.

For the case of Experiment No. 2, where the number of possible

manatees is kept constant and the number of vocalizations per cluster is

in the 30 to 50 range, a decreased error rate of between 17.4 and 14.05%

can be observed (%MPECNE in Table 4). This is further improved in

Experiment No. 3 with the full dataset test (Table 5) where the error rate

decreases even further, to 4.3%. Moreover, regarding of absolute error

(MAECNE), the rounded identification capability stands between ±2

and ±3with reduced ground truth clusters. This includes a homogeneity

ranging between 0.7482 and 0.7811 (when analyzing datasets of 10 and

20 individuals) and as high as 0.8479 with the full dataset (Table 5).
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Regarding the cluster quality analysis from Experiment No. 3,

when organizing rows in ascendant order showed that most of the

clusters with high quality are located in the upper rows, while the

opposite happens for lower quality clusters. This occurrence can be

observed in the convex hull plot, where very compact clusters are

presented in Figure 12 and spread clusters in Figure 13.

However, four clusters of high quality are located in the lower rows,

these correspond to the individual manatees with highest F0 variance

(M05, M15, M19 and in Table 1). This could indicate that the Convex
FIGURE 13

Filtered embedding for the 5 obtained clusters with maximum
Convex Hull (CH) volume (bottom 5 clusters in Table 6, Clusters: 11,
17, 18, 21 and 22). For each of the 5 clusters, the colored line is
assigned as indicated in the legend at top right (same colors used in
Figure 11). Vocalizations of manatees in these clusters are presented
as points with different colors as indicated in legend at bottom right
(same colors used in 9).
FIGURE 14

Examples of vocalizations from juvenile, male and female individuals.
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Hull volume could be used as a tool to evaluate cluster homogeneity in

conjunction with additional tools to confirm that, although with a high

volume, a cluster might belong to individuals with higher pitch variance.

In Figure 14 we can observe several vocalizations of a male juvenile

(M15), a male adult (M12) and a female adult (M20). For instance, the

male juvenile (M15) presents a high F0 variance. However, high F0

variance in also found in three female adults (M05, M19, M22). In the

Supplementary Materials, spectrograms for each manatee in the

database are presented.

Furthermore, examining the cluster composition reveals that most

clusters share common sexes and ages across individuals (e.g., clusters

with only female adults or clusters with onlymale juveniles). However, in

some cases we observed that some vocalizations of juvenile males are

found in clusters where the dominant individual is a female, but both

have a very similar F0 (M06 in Cluster 5), and another similar case where

the dominant individual is a female (M11 in Cluster 9) while the rest of

vocalizations belong to high pitch males, one of them being a juvenile.

5 Conclusions

In this paper, we proposed a new methodology for manatee

identification and counting using vocalizations of underwater

recordings through a clustering algorithm. This methodology serves

as a tool for estimating of manatee populations acoustically. The

methodology uses Scattering Wavelet Transform for signal

representation, a non-linear dimensionality reduction algorithm,

PaCMAP and a density-based clustering approach called

HBDSCAN. This methodology obtained better results than a

previous methodology presented by the authors using STFT

spectrograms, PCA (a linear dimensionality reduction method) and

classical clustering algorithms (K-means and Hierarchical clustering).

The proposed methodology a reaches mean percentage of error

estimating the number of individuals in a dataset of 14.05% and a

success of correctly grouping the vocalizations manatee in a cluster of

83.75%. Further modeling should refine the interpretation of age and

gender vocalizations classes for demographic studies.
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(2021). “Manatee vocalization detection method based on the autoregressive model and
neural networks,” in 2021 IEEE Latin-American Conference on Communications
(LATINCOM). (Santo Domingo, Dominican Republic: IEEE), 1–6.

Rıós, E., Merchan, F., Poveda, H., Sanchez-Galan, J. E., Guzman, H. M., and Ferré, G.
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