
Frontiers in Marine Science

OPEN ACCESS

EDITED BY

Rui Jia,
Chinese Academy of Fishery Sciences
(CAFS), China

REVIEWED BY

Kenneth Prudence Abasubong,
University of South Bohemia, Czechia
Basanta Kumar Das,
Central Inland Fisheries Research Institute
(ICAR), India

*CORRESPONDENCE

Hanchang Sun

sunhanchang199@163.com

RECEIVED 15 April 2024

ACCEPTED 30 July 2024
PUBLISHED 23 August 2024

CITATION

Li F, Sun H, Mei J, Deng Y, Hu G, Zhu C and
Xiang X (2024) Fucoidan changes lipid
accumulation in the liver of common carp
(Cyprinus carpio) by modulating lipid and
glucose metabolism.
Front. Mar. Sci. 11:1415341.
doi: 10.3389/fmars.2024.1415341

COPYRIGHT

© 2024 Li, Sun, Mei, Deng, Hu, Zhu and Xiang.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research

PUBLISHED 23 August 2024

DOI 10.3389/fmars.2024.1415341
Fucoidan changes lipid
accumulation in the liver of
common carp (Cyprinus carpio)
by modulating lipid and
glucose metabolism
Fang Li1, Hanchang Sun2*, Jianxi Mei3, Yaxin Deng2,
Guangdi Hu2, Chengke Zhu1 and Xiao Xiang1

1Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City,
Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key
Laboratory of Aquatic Science of Chongqing, College of Fisheries, Southwest University,
Chongqing, China, 2Technology Innovation Center of Ecological Fishery Industrialization, Chongqing
University of Arts and Sciences, Chongqing, China, 3The Agricultural Technology Service Center of
Pengshui Miao and Tujia Autonomous County, Chongqing, China
An 8-week feeding trial was conducted to investigate the effects of dietary

fucoidan levels (0 mg/kg, 500 mg/kg, 1,000 mg/kg, 1,500 mg/kg, and 2,000 mg/

kg) on the hepatic ultrastructure and the transcriptomic landscape within the liver

tissue of common carp. The results revealed that the addition of 1,000 mg/kg

fucoidan to the diet significantly altered the ultrastructure of hepatocytes.

Notably, the quantities of lipid droplets, autolysosomes, enlarged

mitochondria, and endoplasmic reticulum were increased in the hepatocytes.

The liver transcriptome analysis revealed that DEGs were notably abundant in the

1,000-mg/kg fucoidan group in glucolipid metabolism signaling pathways,

including eukaryotes and nicotinate and nicotinamide metabolism, steroid

biosynthesis, and PPAR signaling pathways. The quantitative real-time PCR

(qPCR) results showed an excellent agreement on those of RNA-seq for both

up- and down-regulated genes (a total of 13 genes selected for validation).

Furthermore, fucoidan significantly influenced hepatic glucolipid metabolism of

common carp at the mRNA level. Notably, the inclusion of lower concentrations

of fucoidan in the diet, specifically at 500 mg/kg and 1,000 mg/kg, was found to

significantly enhance the expression of mRNA for genes involved in glycolysis,

including hk, gk, and pk, as well as genes linked to lipogenesis, such as srebf1,

fasn, elovl5, acsl3a, scd, fads2, and cyp24a1. Conversely, higher concentrations

of dietary fucoidan, at 1,500mg/kg and 2,000mg/kg, were observed tomarkedly

upregulate the mRNA expression of genes associated with gluconeogenesis,

including pck1, pck2, gs, gsk3a, gsk3b, and g6pca.1, along with genes related to

lipolysis, such as hadhb, acadl, ecil, acacba, cpt1, fabp1, and fabp3. In summary,

varying levels of fucoidan intake appear to exert differential influences on the

hepatic glucolipid metabolism of common carp, suggesting a complex dose-
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dependent regulatory mechanism. For the first time, this research has established

that fucoidan possesses a pronounced regulatory influence on the hepatic

glucolipid metabolism in fish. This discovery not only underscores its potential

as an immunostimulant but also opens new avenues for its application as a feed

additive, with implications for modulating the nutritional metabolism of

aquatic species.
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Introduction

Recently, a certain amount of lipids or carbohydrates replacing

protein showed the advantages of promoting fish growth and

reducing nitrogen and phosphorus emissions in intensive

aquaculture (Shi et al., 2022; Yan et al., 2024). So far, the

replacement of feed protein with lipids or carbohydrates has been

studied in a variety of fish species, such as Ctenopharyngodon idella

(Wei et al., 2024), Acipenser baerii (Yu et al., 2024), Oreochromis

niloticus (Jia et al., 2024), Cyprinus carpio (Mi et al., 2024), Sparus

aurata (Pecino et al., 2024), Micropterus salmoides (Zhao et al.,

2021; 2024), and Oncorhynchus mykiss (Liu et al., 2017). However,

the appropriate amount of lipids and carbohydrates in different fish

diet is not very clear, and the molecular mechanism of fish

adaptation to high-lipid and high-carbohydrates diets is still

unelucidated, so blindly replacing protein sources with lipids or

carbohydrates may cause adverse effects on fish (Wang et al., 2022b;

Abasubong et al., 2023). Therefore, it is important to explore green

and safe feed additives with the function of regulating glucose and

lipid metabolism for aquatic animals.

Fucoidan is a type of natural active polysaccharide mainly

extracted from marine brown algae containing sufficient L-fucose

and sulfate eater groups. Given the potential of fucoidan in various

biological activity, such as immune regulation (Apostolova et al.,

2020), anticancer (Wang et al., 2022a), radiation protection (Wu

et al., 2020), antiviral (Fitton et al., 2020), antioxidant (Subramanian

et al., 2019), and controlling chronic metabolic diseases (Shan et al.,

2016; Lee et al., 2020), it has been well studied in mammals and even

human beings. However, the research on the application of fucoidan

on aquatic animal is very limited, which has mainly focused on

restricted species, such as Penaeus monodon (Sivagnanavelmurugan

et al., 2014), Marsupenaeus japonicus (Traifalgar et al., 2010),

Litopenaeus vannamei (Setyawan et al., 2018), Pagrus major

(Sony et al., 2019), Oreochromis niloticus (Mahgoub et al., 2020),

Larimichthys crocea (Yin et al., 2022), and Astronotus ocellatus

(Khanzadeh et al., 2024). However, these studies mainly focused on

the growth promotion and immune enhancement of fucoidan, and

whether it has other physiological effects on aquatic animal

is unknown.
02
Cyprinus carpio, as a kind of freshwater economic fish, provides

a high-quality protein source for people all over the world. In order

to better cultivate and exploit this species, many studies have been

carried out on carp, including growth (Khorshidi et al., 2022),

disease resistance (Ahmadifar et al., 2022) and stress resistance (Xue

et al., 2022). Previously, our research has found that fucoidan as a

feed additive (500 mg/kg~1,500 mg/kg) for carp can significantly

improve growth performance and ameliorate hepatic morphology,

but the high dosage (2,000 mg/kg) probably caused damage to the

liver (Li et al., 2023). As we all know, fish liver is an important organ

that controls metabolism. Therefore, we speculated that fucoidan

may regulate the glucolipid metabolism of fish primarily by acting

on liver. Therefore, the present study aimed to investigate how

fucoidan regulated the lipid and glucose metabolism in liver of carp.

The results can provide a new view to reveal the mechanisms of

fucoidan in regulating glucose and lipid metabolism and promote

the further application of fucoidan to aquatic animals.
Materials and methods

Ethics statement

Animal experiments in this study were performed under the

guidelines and approval of the Institutional Animal Care and Use

Committee of Southwest University (No. IACUC-20220225-01).
Diet formulation and preparation

Fucoidan (purity ≥98%, Xi’an Risen Biotechnology Co., Ltd.,

China) was added to a basal diet at five levels (0 mg/kg, 500 mg/kg,

1,000 mg/kg, 1,500 mg/kg, and 2,000 mg/kg) (Li et al., 2023) as diet

1, diet 2, diet 3, diet 4, and diet 5. The dietary formulation and

composition of five isonitrogenous (38%) and isolipidic (6.6%)

experimental diets is listed in Supplementary Table S1. All feed

ingredients were ground and passed through a 60-mesh sieve and

then mixed by stepwise expansion method to make pellet feed with

a diameter of 1 mm, which was dried naturally and stored at −20°C

until feeding (Li et al., 2023).
frontiersin.org

https://doi.org/10.3389/fmars.2024.1415341
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Li et al. 10.3389/fmars.2024.1415341
Experimental fish and feeding management

Before the feeding trail, juvenile Cyprinus carpio were

acclimated in a cement pond (6 m × 6 m × 0.8 m) with

commercial feed. After 14-day acclimation, a total of 450 healthy

fish with an average initial weight of (35.83 ± 0.24 g) were randomly

assigned to 15 outdoors cement ponds (2.1 m × 1.2 m × 0.8 m) at

the aquaculture base of Southwest university (Chongqing, China),

each with 30 fish species. Fish in triplicate groups were fed with

apparent satiations at 8:00 and 17:00 artificially. The culture

conditions during feeding trial were set as follows: dissolved

oxygen, <6.5 mg/L; water temperature, 25°C–28°C; total ammonia

nitrogen and nitrites, <0.05 mg/L and pH, 7.4–8.2, which were

tested by multiparameter water quality analyzer (HYDROLAB

HL7). Meanwhile, the natural photoperiod was applied.
Sampling collection

After the feeding trial, carps were fasted for 24 h before

sampling. There were 12 fish that were caught randomly from

each group (30 fish per pond, 90 fish per group) and anesthetized by

100 mg/L tricaine methane sulfonate (MS-222, Sigma, USA).

Among them, nine fish per group were selected to collect the liver

for freezing in liquid nitrogenin and then stored in an ultra-low

temperature refrigerator for analysis of transcriptome (diets 1 and

3) and gene expression (diets 1–5). Moreover, three fish per group

from diets 1 and 3 were washed with precooled phosphate buffer

and then fixed in 4% glutaraldehyde solution (4°C) for transmission

electron microscope observation.
Hepatic transmission electron
microscope analysis

Following a previous method (Li et al., 2021a), liver specimens

were fixed in 1% osmic tetroxide for 2 h, dehydrated in alcohol and

acetone, and then embedded in resin. The tissue was cut into 60-nm

slices and stained with lead citrate and uranyl acetate. Finally, the

stained sections were examined and photographed using

transmission electron microscopy (TEM) (Hitachi 7500) and

Gatan 780 CCD.
Total RNA extraction, cDNA library
construction, and sequencing

Total RNA from common carp liver in diet 1 and diet 3 was

isolated using TRIzol reagent (Invitrogen, Carlsbad, CA, USA)

for RNA-seq analysis. The RNA integrity was visualized by

agarose gel and then evaluated by 2100 Bioanalyzer (Agilent

Technologies). An aliquot of 6 mg RNA was used for constructing

cDNA library. Three separate biological replicates were

performed in each dietary treatment. The cDNA libraries were

then sequenced using an Illumina HiSeq platform by Novogene

Bioinformatics Technology Co., Ltd.
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Bioinformatic analysis of RNA-seq data

Firstly, the raw reads were filtered to remove the adaptor

sequences. Low-quality reads (Q < 20) and >10% of N-containing

reads were trimmed from both ends of the reads and filtered with

Phred quality score (Q ≥ 20) and read length (≥25 bp). Next, these

preprocessed reads were designed as clean reads which were

uploaded to NCBI (https://www.ncbi .nlm.nih.gov/sra/

PRJNA1139972) and aligned to common carp reference genome

(https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/018/340/385/

GCF_018340385.1_ASM1834038v1/) using HISAT2 software (Li

et al., 2020). Transcriptome assembly was completed by Trinity

(Grabherr et al., 2011) with the min_kmer_cov value set to 2 by

default. Gene transcription levels were expressed as FPKM (Lu et al.,

2019). Significantly DEGs relative to the control group were

identified with P value <0.05 and |log2 (fold change)| > 1. Gene

functions were annotated based on GO terminology (http://

www.geneontology.org/). KEGG enrichment analysis was

performed to identify associated pathways of the DEGs.
Quantitative real-time PCR

In order to validate the DEGs, 13 candidate DEGs were selected

for qPCR analysis, including kcnk1a (potassium two pore domain

channel subfamily k member 1), elfn1b (extracellular leucine-rich

repeat and fibronectin type III domain containing 1), heatr1 (heat

repeat containing 1), stox1 (storkhead box 1), wdr6 (WD repeat

domain 6), lrch1 (leucine-rich repeats and calponin homology

domain containing 1), klf15 (KLF transcription factor 15), fdps

(farnesyl diphosphate synthase), fam20cb (FAM20C golgi

associated secretory pathway kinase), DVL1 (disheveled segment

polarity protein 1), greb1l (GREB1-like retinoic acid receptor

coactivator), cyb5r2 (cytochrome b5 reductase 2), and cd9 (CD9

molecule). In addition, 24 genes involved in glucose and lipid

metabolism, including glycolysis genes (hk (hexokinase),

gk (glucokinase), and pk (pyruvate kinase)), gluconeogenesis

genes (pck1 (phosphoenolpyruvate carboxykinase 1), pck2

(phosphoenolpyruvate carboxykinase 2), gs (glycogen synthase),

gsk3a (glycogen synthase kinase 3 alpha), gsk3b (glycogen

synthase kinase 3 beta), and g6pca.1 (glucose-6-phosphatase

catalytic subunit 1)), lipolysis-related genes (hadhb (hydroxyacyl-

coa dehydrogenase trifunctional multienzyme complex subunit

beta), acadl (acyl-coa dehydrogenase), ecil (enoyl-coa delta

isomerase 1), acacb (acetyl-coa aarboxylase beta), cpt1 (carnitine

almitoyltransferase 1), fabp1 (fatty acid binding protein 1), fabp3

(fatty acid binding protein 3)), and lipogenesis-associated genes

(srebf1 (sterol regulatory element binding transcription factor 1),

fasn (fatty acid synthase), elovl5 (ELOVL fatty acid elongase 5),

acsl3a (acyl-coa synthetase long chain family member 3), scd (acyl-

coa desaturase), fads2 (fatty acid desaturase 2), and cyp24a1 (1,25-

dihydroxyvitamin d (3) 24-hydroxylase)) were selected to detect the

mRNA expression level.

The qPCR experiment was performed as described in the

previous study (Li et al., 2021b). Total RNA was prepared from

carps liver of diet 1 to diet 5. cDNA was synthesized utilizing the
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superscript III cDNA synthesis kit (Invitrogen) and then stored at

−20°C until used. A 20-mL qPCR reaction containing 0.4 mL of PCR

forward/reverse primers, 1 mL of cDNA template, and 10 mL of 2×

SYBR® Green Premix Ex Taq™ II (Tli RNase H Plus) was

prepared. The thermocycling conditions were as follows: 95°C for

5 min, followed by 40 cycles consisting of 95°C for 15 s and 60°C for

30 s. The expression level of target genes was normalized to

housekeeping gene b-actin and calculated using the 2−DDCt

method (Li et al., 2021b). The primer sequences for these genes

are listed in Supplementary Table S2.
Statistical analysis

All of the data were expressed as the mean ± SEM. The data

were analyzed through one-way analysis of variance and Tukey’s

multiple range test using SPSS 19.0 (SPSS Inc., Chicago, IL, USA).

Differences were considered significant at P < 0.05. The histograms

were drawn using Origin 8 (Electronic Arts Inc., California, USA).
Results

Ultrastructural observations

The ultrastructure of liver of common carp exhibited regular

nucleus, normal bile canaliculus, mitochondria, moderate amounts

of glycogen, degradative lipid droplets, rough endoplasmic
Frontiers in Marine Science 04
reticulum, autophagic vacuole, and autolysosome (Figure 1A).

Obviously, the amount of lipid droplets (Figure 1B), expansive

and vacuolated mitochondria (Figure 1C), and rough endoplasmic

reticulum and autolysosome (Figure 1D) was increased in the

hepatocyte of common carp feeding with 1,000 mg/kg fucoidan

in diet.
RNA sequencing data

As shown in Supplementary Table S3, the total number of raw

reads ranged from 43.19 to 46.44 million and obtained over 96.52%

of clean reads. 73.51%–77.30% of clean reads were mapped to the

common carp reference genome, and 60.60%–65.52% of the

alignment was unique in the genome.

The differentially expressed genes (DEGs) between diet 1 and

diet 3 were displayed in Figure 2. The number of up- and down-

regulated genes were 307 and 154, respectively. Genes such asmgst2

(microsomal glutathione s-transferase 2), kcnk1a (potassium two

pore domain channel subfamily k member 1), elfn1b (extracellular

leucine rich repeat and fibronectin type III domain containing 1),

zbtb16a (zinc finger and btb domain containing 16), and usp28

(ubiquitin-specific peptidase 28) were significantly highly up-

regulated under dietary fucoidan treatment. While per1b (period

circadian regulator 1), rock1 (rho associated coiled-coil containing

protein kinase 1), esyt1a (extended synaptotagmin 1), dhcr24 (24-

dehydrocholesterol reductase) , hmgcs1 (3-hydroxy-3-

methylglutaryl-coa synthase 1), and apc (apc regulator of the wnt
FIGURE 1

Ultrastructure of the liver of juvenile Cyprinus carpio in diet 1 and diet 3. (A) Liver of juvenile Cyprinus carpio in diet 1, showing bile canaliculus (BC),
mitochondria (M), autophagic vacuole (AV), autolysosome (AL), glycogen (G), nucleus (N), degradative lipid droplet (dLD), and rough endoplasmic
reticulum (RER) in hepatocyte. (B–D) Liver of Cyprinus carpio in diet 3, showing increased lipid droplet (LD), vacuolated mitochondria (vM),
autolysosome (AL), and rough endoplasmic reticulum (RER).
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signaling pathway) were representative genes inhibited by dietary

fucoidan. Moreover, all of DEGs that up- and down-regulated are

listed in Supplementary Table S4. Among the DEGs, 59 DEGs (38

up- and 21 down-regulated) were associated with tumor and

disease; 25 DEGs (25 up- and 10 down-regulated) were related to

metabolism; 11 DEGs (8 up- and 3 down-regulated) were relevant

to immunity and stress; 10 DEGs (8 up- and 2 down-regulated)

were assigned to growth and reproduction; 10 DEGs (9 up- and 1
Frontiers in Marine Science 05
down-regulated) were attributable to transcription, translation, and

cell cycle; and 6 DEGs (five up- and one down-regulated) were

belonged to homeostasis (Supplementary Table S5).

GO enrichment analysis was performed to reveal the DEGs in

biological processes. As shown in Supplementary Figure S1 and

Supplementary Table S6, nearly no functional categories were

significantly enriched. Nevertheless, it can be seen that DEGs

were mainly enriched in the following GO terms such as cellular

biosynthetic process, cellular metabolic process, small-molecule

metabolic process, organic substance biosynthetic process, cellular

lipid metabolic process, and biosynthetic process.

All of the DEGs were mapped to the KEGG database

(Supplementary Figure S2; Supplementary Table S7). Pathways

including ribosome biogenesis in eukaryotes and nicotinate and

nicotinamide metabolism were enriched among up-regulated genes.

In contrast, pathways including steroid biosynthesis, terpenoid

backbone biosynthesis, and PPAR signaling pathway were

overrepresented among down-regulated genes. Notably, ribosome

biogenesis in eukaryotes was the top significantly enriched pathway,

in which 12.33% (18/146) of the associated genes were up-regulated.

Steroid biosynthesis was the top significantly enriched pathway, in

which 7.53% (11/146) of the associated genes were down-regulated.
Quantitative real-time PCR validation

To validate the RNA-seq data, 13 genes with different

expression patterns were measured by qPCR. As shown in

Supplementary Figure S3 and Supplementary Table S8, the data

from qPCR and RNA-seq exhibited an excellent agreement on both

up- and down-regulated genes. In addition, the high correlation

between qPCR and RNA-seq was observed (R2 = 0.9154). These

data indicate the reliability of RNA-seq data.
FIGURE 3

Relative expression levels of lipolysis genes in the liver of juvenile Cyprinus carpio fed experimental diets supplemented with different levels of
fucoidan after an 8-week feeding trail. Different letters above the bars show significant difference among the treatments (P < 0.05).
FIGURE 2

Volcano plot of differentially expressed genes between diet 1 and
diet 3. Up- and down-regulated differentially expressed genes are in
red and green, respectively. Genes not regulated by fucoidan
treatment are in blue.
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Expression patterns of lipid metabolism
genes and glucose metabolism genes

As shown in Figure 3, the mRNA expression of lipolysis-related

genes such as hadhb, acacb, cpt1, and fabp1 genes were significantly

up-regulated in diet 4 and Diet 5 (P < 0.05). Similarly, eci1 and

fabp3 genes were only significantly up-regulated in diet 5. In

addition, the acadl gene was significantly up-regulated in diet 3

and diet 4. Meanwhile, the acacb gene was significantly down-

regulated in diet 3 and diet 4. As shown in Figure 4, the mRNA

expression of lipogenesis-associated genes, including srebf1, fasn,

elovl5, acsl3a, scd, and cyp24a1 genes were significantly down-

regulated in diet 4 and diet 5 (P < 0.05). Nevertheless, acsl3a and

scd genes were significantly up-regulated in diet 2 and diet 3 (P <

0.05). In addition, fads2 was only significantly up-regulated in diet 2

and down-regulated in diet 5 (P < 0.05).

As shown in Figure 5, the mRNA expression of glycolysis genes

such as hk, gk, and pk genes were significantly down-regulated in the

liver of fish in diet 4 and diet 5 (P < 0.05). However, gk was
Frontiers in Marine Science 06
significantly up-regulated in diet 3, both gk and pk were

significantly up-regulated in diet 4 (P < 0.05). As shown in

Figure 6, the relative expression levels of gluconeogenesis genes,

including pck1, pck2, g6pca.1, gs, gsk3a, and gsk3b genes were

significantly up-regulated in the liver of common carp in diet 4

and diet 5 (P < 0.05). Nevertheless, gs was significantly down-

regulated in diet 2 and diet 3, and gsk3b was significantly down-

regulated in diet 2 (P < 0.05).
Discussion

The supplementation of fucoidan can effectively promote the

growth, enhance antioxidant capacity, and improve immunity of

aquatic animals (Subramanian et al., 2019; Apostolova et al., 2020;

Li et al., 2023). In addition, the results showed that fucoidan can

significantly change hepatocyte ultrastructural characteristics and

cause the differential expression of many genes especially the

glucose and lipid metabolism genes of liver in the present study.
FIGURE 5

Relative expression levels of glycolysis genes in the liver of juvenile Cyprinus carpio fed experimental diets supplemented with different levels of
fucoidan after an 8-week feeding trail. Different letters above the bars show significant difference among the treatments (P < 0.05).
FIGURE 4

Relative expression levels of lipogenesis genes in the liver of juvenile Cyprinus carpio fed experimental diets supplemented with different levels of
fucoidan after an 8-week feeding trail. Different letters above the bars show significant difference among the treatments (P < 0.05).
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Liver is an important organ for regulating energy metabolism.

Glycogen and lipid droplets in liver can reflect the energy

metabolism of the body to a certain extent (Sharma et al., 2022).

In the present study, more lipid droplets were significantly stored in

hepatocyte, indicating that lipid synthesis is vigorous in the 1,000-

mg/kg fucoidan group. In addition, it was also found that

mitochondria and RER were expand and their numbers increased,

which indicated that hepatocytes were in an active metabolic state

(Hu et al., 2019; Triolo et al., 2023). The orderly progression of

active metabolic activity in the liver depends on hepatic

homeostasis. Therefore, we can see that the number of

autolysosome increased, which means that the liver may maintain

cell homeostasis through autophagy (Kyung et al., 2023).

RNA-seq technology was used to clarify the fucoidan regulated

gene expressions and molecular regulatory networks in common

carp liver between diet 1 and diet 3. Differentially expressed profiles

revealed that 461 DEGs were screened out (307 up-regulated and

154 down-regulated) based on |log2 (fold change)| > 1 and padj <

0.05. Further analysis indicated that GO terms were enriched in

cellular biosynthetic process and cellular metabolic process, KEGG

pathways were mainly enriched in eukaryotes and nicotinate and

nicotinamide metabolism, steroid biosynthesis, and PPAR signaling

pathway. Niacinamide and niacin have better physical stability and

regulation effects on glucose and lipid metabolism than vitamins

(Shi et al., 2020). PPARa can directly regulate the content of protein

required for fatty acid uptake, and PPARg is a key transcriptional

regulator of adipogenesis (Yan et al., 2017; Wang et al., 2020).

Previous studies have shown that the fucoidan can increase the

protein expression of PPARa and PPARg at the same time, and its
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combined effect on PPARs can help to reduce the content of blood

lipid by regulating lipid metabolism of liver (Yin et al., 2019).

Similarly, the expression of genes in eukaryotes and nicotinate and

nicotinamide metabolism and PPAR signaling pathway were

significantly affected by fucoidan in the present study. The results

were similar to the study of acetylferulic paeonol ester (Yu et al.,

2022), bile acids (Li et al., 2024), limonene, and thymol (Aanyu

et al., 2020) as a feed additive applied to aquatic animals. In

addition, the genes in the steroid synthesis signaling pathway

were significantly down-regulated by fucoidan. As we all know,

steroids including cholesterol, bile acids, and steroid hormones, are

also closely related to metabolic regulation (Nishimura, 2020).

Therefore, we speculated that fucoidan may also indirectly

participate in regulation of lipid metabolism by influencing

steroid synthesis, but this needs further study.

Liver plays essential roles in the synthesis and utilization of

lipids in fish, and is a major site where lipolysis and lipogenesis

occur. Lipid metabolism involved many crucial genes, including

fatty acid oxidation-related genes (hadhb, acadl, ecil, and cpt1) (Sun

et al., 2021), fatty acid uptake, transport and metabolism regulation

genes (acacb, fabp1, and fabp3) (Zhang et al., 2023b), and fatty acid

synthase genes (fasn, scd, fads2, and srebf1) (Shrivastav et al., 2022).

In the present study, fucoidan can not only regulate hepatic lipid

metabolism by activating eukaryotes and nicotinate and

nicotinamide metabolism, steroid synthesis, and PPAR signaling

pathways but also alter the expression of lipid metabolism-related

genes, including lipolysis genes (hadhb, acadl, ecil, acacb, cpt1,

fabp1, and fabp3) and lipogenesis genes (srebf1, fasn, elovl5,

acsl3a, scd, fads2, and cyp24a1). Notably, most of the lipogenesis
FIGURE 6

Relative expression levels of gluconeogenesis genes in the liver of juvenile Cyprinus carpio fed experimental diets supplemented with different levels
of fucoidan after an 8-week feeding trail. Different letters above the bars show significant difference among the treatments (P < 0.05).
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genes were significantly overexpressed in the 500-mg/kg and 1,000-

mg/kg fucoidan groups, whereas most of the lipolysis genes were

significantly up-regulated in the 1,500-mg/kg and 2,000-mg/kg

fucoidan groups. Previous studies indicated that the fucoidan

played a crucial part in lipid-lowering activity through reducing

fat cell production or regulating cholesterol reverse transport and

metabolism (Dong, 2021; Sharma and Baskaran, 2021; Chaves et al.,

2022). However, this study found that fucoidan might promote fat

synthesis at a low dose. It suggests that the precise dose of fucoidan

applied to animals is worthy for further study.

The effect of fucoidan on glucose metabolism is also very

significant. Studies have shown that 500 mg of fucoidan orally

taken daily in obese patients can significantly increase insulin

secretion and improve insulin resistance, thus maintaining blood

glucose homeostasis (Vaughan et al., 2022). Gluconeogenesis and

glycolysis are opposing metabolic pathways that regulate glucose

metabolism, and many key genes involved in the two pathways,

including hk, gk, pk, pck1, pck2, g6pca.1, gs, gsk3a, and gsk3b (Sagar

et al., 2019). In the present study, low-dose (5,00 mg/kg–1,000 mg/

kg) fucoidan in the diet promoted the expression of glycolysis gene,

whereas high-dose (1,500 mg/kg–2,000 mg/kg) fucoidan promoted

the expression of gluconeogenesis gene in the liver. Similarly, feed

additives such as acetylferulic paeonal ester (Yu et al., 2022), bile

acids (Wang et al., 2023), nanosized magnesium oxide (Zhang et al.,

2023a), and prebiotics (Chen et al., 2023) can significantly regulate

the expression of glucose metabolism genes of fish liver.
Conclusion

In this study, we discovered that fucoidan significantly

modulates hepatic gene expression associated with glucose and

lipid metabolism in common carp. At lower concentrations,

fucoidan promotes glycolysis and lipogenesis, whereas at elevated

concentrations, it induces gluconeogenesis and lipolysis. These

insights are invaluable for the strategic use of fucoidan to

ameliorate metabolic imbalances in aquatic species. However, a

thorough understanding of the dose–response dynamics and the

intricate molecular pathways through which fucoidan exerts its

regulatory influence on glucose and lipid metabolism remains an

area ripe for future research.
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