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The sediment biogeochemistry of phosphorus (P) and biogenic silica (BSi) in the

southern South China Sea shelf (SSCS) is inadequate understood. Here, we

examine the spatial distributions of P species and BSi in surface sediments

across the Sunda Shelf and explore their relationships with satellite data of sea

surface chlorophyll-a (Chla), suspended particulate matter (SPM), particulate

organic carbon, particulate inorganic carbon, primary production (PP), and

phytoplankton functional types. The total sediment P (TSP), in the range from

283.94 to 579.94 mg/g dry sediment, was dominated by inorganic P with higher

levels in stations outside the Lupar and Saribas estuaries. The TSP was composed

of seven different P species including Ca-IP and Ca-OP (58%), Detr-P (15%),

Exch-P (11%), Fe-IP (10%), Ref-P (4%) and Ads-IP (2%) based on a sequential

extraction method. The concentrations of various sediment P species were

found significantly correlated with satellite climatological SPM, diatom

biomass, and monthly climatological pico-PP revealing the importance of

biological production for the sediment P storage, whereas the sediment BSi

concentration showed no correlations with any of the above satellite products.

An elevated R2 value in the regression of BSi with the in-situ depth-integrated

Chla points to the need of developing satellite algorithms with vertical profiles

from space. Finally, we argue that future studies of the SSCS sediment

biogeochemistry may be benefited from data of hyperspectral and

geostationary satellites.
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1 Introduction

The biogeochemistry of phosphorus (P) and silicon (Si) are

integral parts of the oceanic carbon cycle. P, as a key macronutrient,

limits phytoplankton growth in oligotrophic oceans and plays an

important role in the productivity of the oceans over geological time

(Hecky and Kilham, 1988; Filippelli and Delaney, 1996; Paytan and

McLaughlin, 2007). Si is required for the growth of diatoms and

some sponges, and is closely linked to processes such as surface

primary production, vertical carbon export, and sediment carbon

storage (Ann Brewster, 1980; Conley, 1997; Rabouille et al., 1997;

Ragueneau et al., 2006; Chou et al., 2012; Tréguer and de la

Rocha, 2013).

Rivers and dust deposition are two important pathways for the

delivery of P and Si from the land to the ocean (Baturin, 2003). In

coastal waters, P can attach to particles or form minerals such as

apatite, leading to P scavenge and settle on the seafloor

(Goldhammer et al., 2010). Much of the P cycling takes place in

coastal and shelf areas, which are critical zones for P deposition and

transformation (Filippelli, 1997; Ruttenberg and Berner, 1993). The

speciation of P in sediments is critical for understanding its cycling

and bioavailability, which are influenced by the transformation and

partitioning of reactive P species during the burial processes and

upon the change of seawater physiochemistry (Ruttenberg, 1992).

For instance, detrital apatite P characterized by slow formation

kinetics, directly buried and slowly regenerating, influencing long-

term phosphorus cycling. Besides, dissolved organic P released from

sediments could support phytoplankton primary production

(Andrieux and Aminot, 1997). In contrast, biogenic silica (BSi) in

the coastal sediments is largely influenced by the opal production

from siliceous plankton such as diatoms (Loucaides et al., 2012).

The South China Sea (SCS), one of the world’s largest marginal

seas with a maximal depth of ~5000 m, is flanked by wide

continental shelves to the north and south (Liu et al., 2010). This

semi-enclosed sea is subject to a number of physical influences,

including seasonal monsoons, river discharges, coastal upwelling,

atmospheric deposition, mesoscale eddies, and Kuroshio intrusion

(Gan et al., 2006; Hu and Wang, 2016; Liu et al., 2001b; Xue et al.,

2004). Previous studies have reported spatial change in the

sediment P speciation in the eastern coast of Hainan Island (B

Yang et al., 2016) and in the northern Beibu Gulf (Dan et al., 2020),

as well as the seasonal variability of P speciation in sedimentation

particles in the Xisha region (Dong et al., 2016). However, our

knowledge of sediment P variability is very sparse in the southern

SCS, particularly in the Sunda Shelf. As far as the sediment Si

is concerned, it has been suggested that the BSi in the Sunda

Shelf sediment can be contributed by sponge spicules (Chou

et al., 2012), while its spatial variability and influencing factors

remain unexplored.

Satellite measurement remains the only means of quantifying

chlorophyll-a concentration (Chla) at large scales with long-term

records, due to the advantage of a synoptic view of the ocean surface

from space over large scales (Hu et al., 2012). There are various

ocean color algorithms developed to estimate the total primary
Frontiers in Marine Science 02
production (PP) (Behrenfeld and Falkowsk, 1997) and the size-

fractionated PP (Uitz et al., 2010; Brewin et al., 2017; Deng et al.,

2023), as well as phytoplankton community structure

(IOCCGSathyendranath, 2014) including both functional types

and size classes (Uitz et al., 2006; Mouw et al., 2019). Here, we

report the spatial variability in sediment BSi and various P species

across the shelf-slope of the southern SCS from the inner Sunda

Shelf to the deep basin region. We further explore the relationships

of the cross-shelf change in sediment biogeochemistry with the

varying satellite products such as PP, suspended particulate matter

(SPM), the bulk Chla, and phytoplankton function types. The main

purposes are to examine the sediment biogeochemistry of P and Si

in the Sunda shelf of the southern SCS.
2 Materials and methods

2.1 Sample collection

Surface sediment and water samples were collected from 13

stations along a shelf-slope transect from the inner shelf to the deep

basin by the R/V Shiyan-II in March-April 2021 in the southern

region of the SCS (Figure 1). At each station, the discrete seawater

samples in water column were collected using Niskin bottles

mounted on the CTD. Surface sediments were collected using a

stainless-steel grab sampler, sealed in polyethylene bags and stored

frozen (-20°C) for future analysis. The stations of E12, E13 and E14

were in the slope, and the stations from C01 to C10 were in the

shelf, with the southernmost station location near the Natuna

Islands. Our sample depths ranged from 86 m to 600 m. These

stations covered very different sediment zones with the

predominance of silty sand and sandy mud over the shelf but the

prevailing of silty clay and clay mud on the shelf-slope (Wang

et al., 2016).
2.2 Phosphorus fractionation

Sequential P extractions have been developed and utilized by a

number of investigators to chemically separate different pools of P

in soil and sediments (Ruttenberg, 1992; Zhang et al., 2004). In this

study, a modified five-step sequential extraction (SEDEX) method

(Dong et al., 2016) was used to operationally separates five different

pools of P in sediments, including (1) exchangeable P (Exch-P),

consist of the loosely adsorbed inorganic P (Ads-IP) and the

exchangeable organic P (Exch-OP), (2) iron-bound inorganic P

(Fe-IP), (3) calcium-associated P (Ca-P), which were the calcium

phosphate minerals of the apatite group including Ca-bound

inorganic P (Ca-IP) and Ca-bound organic P (Ca-OP), (4)

detrital apatite P (Detr-P), and (5) refractory organic P (Ref-OP).

Soluble reactive P (SRP) was accurately quantified at each step of

the procedure. Total dissolved P (TDP) and dissolved organic P

(DOP) were measured by determining TDP and then subtracting

SRP from TDP prior to digestion. Sediment samples (0.5 g) were
frontiersin.org
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analyzed in polypropylene tubes, using 1 M MgCl2 for inorganic P

extraction and different solutions for different phosphorus fractions

over time. The TDP in the extracts was determined using a

persulfate digestion method (Huang and Zhang, 2009), with a

phosphomolybdenum blue method for final SRP measurement,

achieving a P recovery rate of over 98%. Phosphate standards and

reagents were of analytical grade and sample neutralization was

performed only when necessary. The detection limit of P by the

SEDEX method is 0.01 mM. Total sedimentary P (TSP) was

determined by the same method as TDP after digestion.

Particulate inorganic P (PIP) was derived from the sum of Ads-

IP, Fe-IP, Ca-IP and Detr-P, whereas particulate organic P (POP)

was calculated from the sum of Exch-OP, Ca-OP and Ref-OP.
2.3 Determination of biological silica

The BSi in the sediment was extracted with an alkaline solution

of Na2CO3 and measured using silicon-molybdenum-blue

colorimetric method (Dong et al., 2016). Approximately 150 mg

of dried sediment was pre-treated with peroxide and hydrochloric

acid to remove carbonates and organics, followed by centrifugation

and filtration to remove residues. After drying overnight at 60°C,

the sample was incubated in 40 ml of 2 mol L-1 Na2CO3 at 85°C for

5 hours, then centrifuged to collect supernatants for silicate analysis

by UV-visible spectrophotometry at 812 nm. Rapid processing

minimized the loss of dissolved silica. Working standards,

prepared from fused silica standards diluted in Na2CO3 and

Milli-Q water, were measured after the reduction of the silicon-

molybdate complex for a minimum of 12 hours. Fresh reagents

were used to ensure accuracy.
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2.4 Satellite and hydrodynamic data

The climatology and monthly climatological satellite products

of sea surface Chla, SPM, particulate organic carbon (POC), and

particulate inorganic carbon (PIC) were obtained from the

Moderate Resolution Imaging Spectroradiometer (MODIS) on

board the Aqua satellite via https://oceancolor.gsfc.nasa.gov/l3/.

Chl a data are derived from remotely sensed reflectance (Rrs)

using the OCx/CI Chl a algorithm that takes into account the

ratio between Rrs(blue) and Rrs(green) (O'Reilly and Werdell, 2019)

or by exploits exploiting the difference between Rrs(Green) and a

reference formed in a linear fashion between Rrs(blue) and Rrs(red)

(Hu et al., 2019). POC are derived from a power-law algorithm

applied to a blue/green band ratio (Stramski et al., 2008). The PIC

are derived from normalized water-leaving radiances in two bands

near 443 and 555 nm (Balch et al., 2005) or the spectral reflectance

of the top of the atmosphere at three wavelengths near 670, 750 and

870 nm (Gordon et al., 2001). In addition, the data of monthly size-

fractionated Chla and phytoplankton functional type-fractionated

Chla were from the satellite products of the Copernicus Marine

Service (CMEMS) via https://data.marine.copernicus.eu/ products,

in which the size-fractionated Chla were derived for the pico-,

nano- and micro phytoplankton while the phytoplankton

functional type-fractionated Chla were for diatoms, dinophytes,

green algae, haptophytes, prochlorophytes and prokaryotes from Xi

et al. (2020) algorithm. Monthly climatological PP and size-

fractionated PP (sfPP) were estimated from an SCS-tuned size-

fractionated PP model (Deng et al., 2024). All of the above datasets

had spatial resolutions of 4 km. The modelled eastward and

northward water velocities (m/s) during the cruise sampling were

also obtained from the CMEMS, which provides a gridded daily
FIGURE 1

Schematic showing the geographical location of the southern South China Sea and map of the general study area and sampling stations
(Brown circle).
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reanalysis product with a horizontal resolution of 0.083° and 50

standard levels. The annual mean sea surface temperature from

1991 and 2020 were estimated from NOAA OI SST dataset via

https://psl.noaa.gov/data/gridded/data.noaa.oisst.v2.highres.html.
2.5 Statistical analyses

Correlations between surface sediment P and BSi with satellite

measurements were assessed by the coefficient of determination

(R2), mean bias deviation (MBD), the absolute percentage difference

(MAPD), root mean-square deviation (RMSE), and median ratio of

estimated to measured values (Fmed).
3 Results

3.1 Hydrography

The hydrographic characteristics derived from the vertical

profiles of the CTD measurements showed similar vertical

structures, but clear significant differences in characteristics

between locations and sampling depths. There was much lower

sea surface temperature for station E13 (18.98 ± 4.80°C) than the

station C10 in the shallower coastal area (25.70 ± 1.21°C). A well-

developed mixed layer was found from the sea surface to a depth of

about ~20 m before a rapid dropdown of seawater temperature

(Figure 2A). In contrast, salinity generally increased with depth at

each station (Figure 2B). Surface salinity was slightly lower (0.4

PSU) for stations near the coast than the offshore, likely reflecting

the impacts of the Lupar River. Consistent with temperature profile,

there were distinct salinity variations at depths of about 25 m and

depths between 80 and 140 m. The profiles of dissolved oxygen

(DO) were similar to that of temperature (Figure 2C), decreasing

with depth. The higher DO near the surface may be related to

photosynthesis, as phytoplankton photosynthesis occurred and
Frontiers in Marine Science 04
released oxygen in the sunlit surface water. With increasing

depth, dissolved oxygen decreases, possibly due to reduced

sunlight, reduced phytoplankton photosynthesis and relatively

higher oxygen demand in deeper waters.
3.2 Patterns of sedimentary phosphorus
speciation and biological silica
along transection

Sedimentary P speciation and BSi showed large spatial

variations in the Sunda Shelf (Figure 3). Significant differences

were observed between the coastal stations (C04 - C10) and the

offshore stations (E12 - C04) when station C04 is used as a

boundary. The mean percentage of BSi in the sediments was

4.69% in the offshore stations, which is higher than in the coastal

stations of 4.54%. A similar trend was observed for Ads-IP, with

mean concentrations of 6.73 mg/g at offshore stations and 6.24 mg/g
at coastal stations. Certain parameters were significantly lower at

offshore stations compared to coastal stations, including Fe-IP from

44.25 mg/g nearshore to 36.97 mg/g offshore, Ca-OP from 163.97 mg/
g to 114.71 mg/g, Ca-IP from 129.36 mg/g to 80. 01 mg/g, Detr-P
from 75.61 mg/g to 53.1 5mg/g, PIP from 290.06 mg/g to 211.55 mg/g,
POP from 191.67 mg/g to 141.68 mg/g and TSP from 481.73 mg/g to
353.23 mg/g. However, Exch-OP and Ref-P showed no significant

variations between coastal and offshore stations. The most offshore

station (E12) was characterized by a higher percentage of BSi

(7.16%). The most coastal station was characterized by high

concentrations of TSP and PIP (463.25 mg/g and 274.87 mg/g).
3.3 Spatial variation of sedimentary
phosphorus speciation and biological silica

The spatial patterns of the TSP were the highest near 4°N and

decreased towards the north, which could be attributed to the input
FIGURE 2

Vertical profiles of (A) temperature, (B) salinity, (C) dissolved oxygen for the stations o in the SSCS measured by CTD.
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of P from continental sources (Figures 4A-C). The distributions of

POP and PIP were quite similar, suggesting a close connection

between organic and inorganic P in particulate matter. All three

parameters were characterized by a slight elevation at the

northernmost station (E12), possibly indicating a distinction

between deep water sediment deposition and shelf sources. Ads-

IP was higher in the offshore stations (E12 to C04) than coastal

stations (C04 to C10). Fe-IP and Ref-P were characterized by low

values in the central region and high values at stations in the north

and south. Ca-OP, Ca-IP, and Detr-P showed similar spatial

distributions, with high concentrations near the southern coastal

stations, lower concentrations in the central region, and slightly

elevated concentrations at the northernmost offshore stations.

Exch-OP did not show significant differences in mean values

between coastal and offshore stations, but its spatial distribution

showed that its highest values occurred at the northernmost station

E12 (Figure 4J). The BSi was pronounced at the northernmost

station, with a low value in the central area and a slightly elevated

value at the coastal station.
3.4 Spatial variations of
satellite observations

Satellite-based monthly climatological Chla in the Sunda Shelf

showed high values (>1.0 mg m-3) in the coastal region and low

values (≤0.1 mg m-3) in the offshore region (Figure 5A). For

example, Chla was 0.1 mg m-3 at station E12, and was 0.29 mg

m-3 at station C10. The climatology of PP was high (>800 mgC m-2

day-1) near the coast, and gradually decreased offshore to 355 mgC

m-2 day-1 at E12 (Figure 5B). The PP along the section in the Sunda

Shelf ranged from 355 to 397 mgC m-2 day-1, with the highest value

of 397 mgC m-2 day-1 at station C10. Similar to PP, POC was high

(>300 mg m-3) in the coastal region, and were low (<100 mg m-3) in

the offshore region. The southern end of our station C10 was exactly

in the transition zone with 200 mg m-3, while the northernmost
Frontiers in Marine Science 05
station E12 was in low POC regions at less than 100 mg m-3. The

SPM did not show significant variation along the transect, ranging

from 0.32 g m-3 at station C10 to 0.35 g m-3 at station E12.
3.5 Correlation between satellite products
and sediments

Figure 6 showed the correlations between satellite products and

sedimentary P speciation and BSi. It was observed that for coarsely

classified sedimentary P such as TSP, PIP and POP, certain satellite

products such as SPM, PP, pico-PP and diatoms showed higher

correlations (Figures 6A-F). TSP showed high correlations with

climatological SPM, monthly climatological diatoms, PP and pico

PP with R2 of 0.73, 0.69, 0.65 and 0.70 respectively. For the rough

classification of P, some satellite products such as monthly

climatological pico-PP and climatological SPM also showed high

correlations with POP and PIP, with R2 values of 0.66 and 0.73

respectively. For more refined separations of sedimentary P, such as

Ca-IP, Detr-P and Ca-OP, there were also significant correlations

with satellite products such as monthly climatological pico PP,

micro Chla and monthly climatological PP, with R2 values of 0.78,

0.58 and 0.65, respectively.

We also examined all satellite products and sedimentary P

speciation and BSi to calculate their linear regression R2 values

and p-values (Table 1). Satellite products showed significant

correlations with TSP, POP, and PIP, except for monthly

climatological SPM and certain algal categories such as

dinophytes, green algae and haptophytes, which did not

demonstrate significant correlations (p<0.05). The three most

correlated satellite products were climatological SPM (0.73),

monthly climatological pico PP (0.70) and monthly climatological

diatoms (0.69). In addition, it was observed that the R2 values for

the correlations with TSP and PIP were higher than those with POP.

The top three satellite products correlated with POP were

climatological SPM (0.66), monthly climatological pico PP (0.66)
FIGURE 3

Variations of sedimentary P speciation and BSi along transection.
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and diatoms (0.62). The top three satellite products correlated with

PIP were climatological SPM (0.72), diatoms (0.69) and micro

Chla (0.68).

For the seven types of sedimentary P speciation, the most

promising for satellite retrieval were Ca-IP, Detr-P and Ca-OP,

followed by Fe-IP, while Ads-IP, Exch-OP, and Ref-P showed no

significant correlations with any satellite product. The top three

satellite products correlating with Ca-IP were climatological SPM

(0.8), monthly climatological pico PP (0.78) and monthly

climatological PP (0.75). The top three satellite products

correlating with Ca-OP were climatological SPM (0.70), monthly

climatological pico PP (0.69) and monthly climatological PP (0.65).

The top three satellite products correlated with Detr-P were

diatoms (0.60), micro Chla (0.58) and monthly climatological PP

(0.49). The satellite products most correlated with Fe-IP, Ads-IP,

Exch-OP and Ref-P were monthly climatological diatoms (0.34),

monthly climatological POC (0.08), climatological PIC (0.04) and

climatological SPM (0.15). Furthermore, R2 values between satellite

products and BSi were extremely low, with only green algae and

haptophytes showing weak correlations with BSi, with R2 values of

0.04 and 0.07 respectively.
Frontiers in Marine Science 06
Certain satellite products showed a high sensitivity to

sediments , such as cl imatological SPM and monthly

climatological pico PP. Other products such as Chla, nano-PP

and micro-PP also showed significant relationships with

sediments, although with lower R2 values. It was found that

climatological SPM performed better than monthly climatological

PP, PP performed better than Chla, and size-fractionated PP and

Chla were more effective than total PP and Chla, suggesting a

relationship between sediments and phytoplankton size.
4 Discussion

4.1 Physical background

The water column was well mixed in the upper 20 m, consistent

with previous researches showing that the mixed layer depth in this

area is about 25 m, mainly due to tidal mixing processes near the

coastal area of Sarawak (Daryabor et al., 2016). Strong stratification

was observed in the 20-40 m layer and in the 90-180 m layer

(Figure 2), consistent with previous observations of a double
B C

D E F

G H I

J K

A

FIGURE 4

Spatial variations of sedimentary P speciation (mg/g) and BSi (%) along transection (A–F).
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thermocline structure in the SCS during spring (Liu et al., 2001a).

The lower thermocline was an old one formed in winter and

maintained by an anticyclonic eddy corresponding to negative

geostrophic vorticity, as indicated by the currents around 110 m

(see Figure 7C). The profiles of temperature, salinity and DO shown

in Figure 2 were in agreement with Lu et al. (2021) and Ning et al.

(2004). We attempted to examine the correlation between these

physical parameters (temperature and salinity) and sedimentary P

speciation or BSi, but unfortunately the correlations between them

were not significant (p > 0.05). This may be due to the fact that

sedimentation is a long-term process while the CTD (Conductivity,

Temperature, Depth) measurements were instantaneous and

cannot match the changes in the sediments (Yang et al., 2016).

To examine this hypothesis, we compared the 30-year mean SST

with sedimentary P and BSi and found that the R2 values were

significantly higher than those obtained from CTD-measured SST

(Supplementary Figure 1A). Another reason may be that the limited

number of sampling locations (with only 7 data matches) limits the

ability to robustly conclude from these observations.

Driven by currents and bioturbation, the deposition,

resuspension and redistribution of sediments are crucial to the

distributions of sedimentary P speciation and BSi [J. Hu et al.,

2006). The SCS is dominated by the East Asian Monsoon, which is

southwesterly winds in summer, and then transit to northeasterly

winds in winter (Shaw and Chao, 1994). Correspondingly, the

upper level circulation of the SCS was cyclonic in winter and
Frontiers in Marine Science 07
anticyclonic in summer (Qu, 2000). Our sampling measurements

were carried out in March with southwestward currents near the

coast, which is confirmed by the 5 m velocity shown in Figure 7A. A

cyclonic circulation existed in the northwest of the observed section,

which may be related to the cyclonic circulation along the Borneo

slope in the southern region of the South China Sea (Xue et al.,

2004). The velocity at 55 m showed that the northern stations (E12-

E14) of the section were influenced by an anticyclonic eddy and had

southwestward currents. For the southernmost station C10, 55 m is

close to the bottom and was controlled by southeastward currents

(Figure 7B). In deeper waters, at 110 m, which corresponds

approximately to the bottom of the mid-section stations (C01-

C07), there were very weak southwestward currents, while the

northern stations (E12-E14) were under the influence of an

anticyclonic eddy, which was stronger than that at 55 m. At a

depth of 266 m, only the northernmost station (E12) was affected,

which was dominated by southeastward currents. The complex

circulations of the deeper waters may be related to the cyclonic and

anticyclonic eddies intersecting in the upper 300 m (Yang

et al., 2002).

Anticyclonic eddies promote the convergence and downward

movement of near-surface seawater, facilitating the delivery of

particulate matter to the seafloor (Zhang et al., 2014). This may

be the reason why some parameters (TSP, Fe-IP, Ref-P, and Detr-P)

showed higher values at the northernmost stations (E12), although

the concentration of these parameters had already decreased
FIGURE 5

Spatial patterns of (A) monthly climatology Chla, (B) climatology PP, (C) monthly climatology POC and (D) monthly climatology SPM derived from
satellite data.
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FIGURE 6

Scatter plots of satellite products and sedimentary P speciation (A–I). The grey circle is the data points and the blue line is the regression line. The
legends show the R2, p-value and also the linear regression function.
TABLE 1 R2 values of linear regression between satellite products and sedimentary P speciation and BSi.

TSP POP PIP Ad-IP Ex-OP Fe-IP Ca-IP Ca-OP De-P Re-P BSi

C-PP 0.46 0.42 0.46 0.04 0 0.1 0.57 0.45 0.31 0.06 0

MC-PP 0.65* 0.61* 0.64* 0.05 0 0.2 0.75** 0.65* 0.45 0.09 0

MC PP pico 0.7** 0.66* 0.68* 0.05 0 0.24 0.78** 0.69** 0.49 0.1 0

MC PP nano 0.62* 0.59* 0.61* 0.05 0 0.18 0.73** 0.62* 0.43 0.08 0

MC PP micro 0.61* 0.57* 0.6* 0.05 0 0.17 0.72** 0.61* 0.42 0.08 0

C-Chla 0.47 0.41 0.48 0.03 0 0.16 0.56* 0.42 0.36 0.08 0

MC-Chla 0.57* 0.55 0.55 0.07 0 0.13 0.68** 0.58* 0.39 0.07 0

C-SPM 0.73** 0.66* 0.72** 0 0.01 0.33 0.8 0.7 0.49 0.15 0

MC-SPM 0.02 0.03 0.01 0 0.03 0 0.06 0.06 0 0.04 0.1

(Continued)
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significantly in the middle of the section (Figure 4). The

southeastern part of our section was close to the northwestern

estuary of Borneo, fed by the Lupar and Saribas rivers, which

discharge up to 5 g L-1 of SPM into the ocean, with POC values

ranging from 51 to 4114 mmol L-1 (Müller et al., 2016). The

substantial load of organic and inorganic particulate matter from

the rivers was then transported into the ocean by westward currents

(Figure 7A), resulting in high concentrations of SPM, POC and

Chla in the adjacent waters of the estuary (Figure 5). Over time, the
Frontiers in Marine Science 09
deposition resulted in higher values of sediments at the southern

stations of the section (Figure 4).
4.2 Phosphorus species and biological
silica in surface sediments

The distribution and speciation of sedimentary P can vary

significantly between different marine environments, reflecting the
FIGURE 7

The simulated circulations from Copernicus Marine global reanalysis product at (A) 5 m; (B) 55 m; (C) 110 and (D) 266 m.
TABLE 1 Continued

TSP POP PIP Ad-IP Ex-OP Fe-IP Ca-IP Ca-OP De-P Re-P BSi

C-POC 0.39 0.35 0.39 0.02 0 0.12 0.46 0.35 0.28 0.09 0.02

MC-POC 0.58* 0.56* 0.55 0.08 0.01 0.14 0.67* 0.58* 0.41 0.09 0

C-PIC 0.62* 0.58* 0.61* 0 0.04 0.24 0.67* 0.64* 0.43 0.12 0

MC-PIC 0.22 0.17 0.24 0.03 0 0.11 0.27 0.19 0.17 0 0

Micro-Chla 0.68* 0.6* 0.68** 0.07 0 0.3 0.69** 0.61* 0.58* 0.21 0

DIATO 0.69** 0.62* 0.69** 0.07 0 0.34 0.66* 0.62* 0.6* 0.26 0

DINO 0.53 0.47 0.54 0.07 0 0.2 0.59* 0.48 0.43 0.11 0

GREEN 0.17 0.13 0.18 0.07 0 0.1 0.19 0.14 0.16 0.02 0.04

HAPTO 0.34 0.26 0.37 0.06 0 0.19 0.34 0.26 0.35 0.09 0.07
fro
* p-value < 0.05; ** p-value<0.01
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complex interplay of biological, chemical, and physical processes. A

detailed analysis of the patterns of sedimentary P speciation and BSi

that we measured in the SSCS was attempted.

Depending on sedimentation conditions and PP in specific

regions, average TSP concentrations in sediments from different

oceanic environments generally varied between 200 and 1300 mg/g
(Fang et al., 2007b; Ni et al., 2015; Ruttenberg and Goñi, 1997;

Zhang et al., 2004; Zhang et al., 2010). The TSP contents observed in

this study of SSCS, ranging between 283.94 and 579.94 (average of

427.76) mg/g dry sediment, appeared to be within the ranges

reported in some previous studies (Figure 3). Based on our

observations, the proportion of PIP ranged from 57.33% to

66.05%, consistently exceeding the proportion of POP, indicating

a generally higher proportion of inorganic matter in this area

(Table 2), following observations in the Chukchi Sea and central

Pacific Ocean, where inorganic phosphorus dominates all

phosphorus pools with an average of 87% and 90% of total

phosphorus in sediments, respectively (Ni et al., 2015; Zhang

et al., 2010). TSP, POP and PIP showed patterns of higher

concentrations near the coast and decreasing concentrations

offshore, with an increasing concentration of P at the

northernmost station (Figure 4), which is consistent with results

from studies in the Yellow Sea and East China Sea, highlighting the

influence of both terrestrials and marine contributions on these

distributions (Meng et al., 2014; Song and Liu, 2015). This high TSP

condition near the coastal area also corresponds to the case at the

mouth of the Mississippi River, which showed a decrease in TSP

from the estuary to the open sea (Kang et al., 2017). In our case, the

ratio of PIP was consistently elevated at coastal stations compared

to offshore stations, indicating a predominant influence of

terrestrial inorganic matter originating from the Lupar and

Saribas Rivers. Conversely, the sedimentation of biomass from the
Frontiers in Marine Science 10
SCS basin at offshore stations could lead to a higher proportion of

POPs in the sediments.

In general, in the SSCS, we observed the following relative

proportions of different P forms Ca-IP > Ca-OP > Detr-P > Exch-

OP > Fe-IP > Ref-P > Ads-IP (Table 2). Our investigations showed

that Ca-IP and Ca-OP are the most important types of sedimentary

P in the study area, together accounting for about 58% of the total P

in the sediments (Figure 3). These results are consistent with

observations in the equatorial Pacific, where organic matter

degradation and Fe reduction rates were relatively high and

occurred deep within the sediment, creating the conditions

necessary for the accumulation of P concentrations and the

formation of authigenic P (authigenic carbonate fluorapatite and

biogenic apatite, also known as CaCO3-associated P), which

accounts for 61% to over 86% of total phosphorus (Filippelli and

Delaney, 1996). However, our observations are quite different from

those in the more northerly coastal areas, which showed a much

lower proportion of Ca-P, such as the mouth of the Yangtze river

(5.5%) (Meng et al., 2014), the delta-front estuaries of the Yangtze

River (6.3%) (Hou et al., 2009), and the middle shelf of the East

China Sea (Fang et al., 2007a). A possible explanation for this

discrepancy is that the biomass of siliceous organisms exceeds that

of calcareous organisms in the East China Sea, resulting in a lack of

calcium carbonate sediments (Meng et al., 2014).

The Detr-P pool is the second largest fraction, accounting for

approximately 15% of TSP. This proportion is lower than

observations in the eastern coastal region of Hainan Island in the

SCS, where Detr-P was identified as the primary fraction of

sedimentary P, accounting for over 30% and mainly derived from

terrigenous inputs. It is also significantly lower than that observed

in the Mackenzie River Delta, the Chukchi Sea and the Bering Sea

(Zhang et al., 2010), where the fraction is 43%, and even lower
TABLE 2 Percentages of the various forms of P in the surface sediment at each station.

POP% PIP% Ads-IP%
Exch-
OP%

Fe-IP% Ca-IP% Ca-OP% Detr-P% Ref-P%

E12 40.66 59.34 0.70 10.96 11.88 31.47 25.64 15.29 4.06

E13 33.95 66.05 2.54 12.20 13.22 27.25 15.85 23.04 5.90

E14 40.94 59.06 1.44 14.43 9.42 32.95 20.85 15.25 5.66

C01 41.24 58.76 2.44 12.99 9.54 31.84 23.80 14.94 4.46

C02 41.42 58.58 1.84 12.62 9.68 34.24 23.44 12.81 5.36

C03 41.00 59.00 1.74 13.92 8.90 35.09 24.10 13.26 2.98

C04 41.58 58.42 3.33 14.05 10.05 35.17 24.19 9.87 3.35

C05 42.67 57.33 1.44 10.72 9.06 34.07 28.54 12.75 3.42

C06 40.80 59.20 0.84 10.13 7.55 34.10 28.03 16.72 2.64

C07 36.11 63.89 1.73 6.86 11.90 32.42 24.57 17.85 4.67

C08 39.64 60.36 0.34 8.51 8.31 33.32 27.84 18.40 3.29

C09 40.16 59.84 1.17 8.53 9.20 33.96 27.91 15.50 3.73

C10 39.27 60.73 1.16 9.76 8.16 36.19 26.09 15.22 3.41
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compared to 55% in the East China Sea (Song and Liu, 2015). Detr-

P originates primarily from magmatic, igneous or metamorphic

rocks, combined with marine sediments influenced by significant

riverine deposition of land-derived material (Berner and Rao,

1994). The low proportion of Detr-P may be due to its lower

content in the river near our study area compared to other types of

phosphorus in river/estuarine sediments, including the Yangtze,

Yellow, Yalujiang, Luanhe and Liaohe rivers (Müller et al., 2016).

The proportions of Exch-OP and Fe-IP are comparable at 11% and

10%, respectively. The exchangeable fraction of TSP is generally

considered to be bioavailable, mainly through the desorption

process. Consequently, phytoplankton PP plays an important role

in the accumulation of exchangeable organic phosphorus in surface

sediments (Zhang et al., 2010). However, our observations indicate

that the proportion of Exch-OP is higher at offshore stations than at

coastal stations (Table 2), but PP is higher at coastal stations than at

offshore stations. This is mainly because Exch-OP reflects the water

column integrated PP, and the offshore region has a deeper

euphotic zone depth compared to coastal stations, which provides

more area available for phytoplankton to perform photosynthesis

(Figure 8A), resulting in a higher accumulation of PP in offshore

stations than in coastal stations. The proportion of Fe-IP is higher at

offshore stations, probably due to hydrothermal activity enriching

iron in the pelagic region (Linsy et al., 2018). In our observations,

the fraction of Ref-P and Ads-IP is rather low, not exceeding 6% of

the total, similar to the situation observed in the central Pacific (Ni

et al., 2015).

The distribution of the fraction of BSi in the total sediments

showed the highest fraction at the most offshore stations, with a

decreasing trend towards the coastal region, with ranges between 4%

and 7%. This is similar to the case in the subtropical western Pacific,
Frontiers in Marine Science 11
where the content of biological silica is less than 5% (Shibamoto and

Harada, 2010). Existing studies have shown that phytoplankton PP

was the main source of biogenic particles in sediments and is

associated with the magnitude of particulate fluxes in the water

(Zabel et al., 1998). However, our study was not consistent with

sediment trap experiments, but in situ POC measurements indirectly

indicated a higher surface POC content at offshore stations compared

to coastal stations (Figure 8B), which may contribute to the higher

proportion of BSi at offshore stations. This is consistent with

observations from the Southern Ocean indicating a covariant

relationship between POC and BSi flux (Buesseler et al., 2001).
4.3 The possibility of satellite-based
retrieval of sediments P and BSi

The P species and BSi in sediments in the Sunda shelf were

significantly correlated with satellite-based SPM, PP, POC and Chla

as shown in Table 1 and Figure 6. The in-situmeasurements and the

monthly climatological satellite products of Chla and POC were

compared and did not show good correlations, with R2 values of

0.16 and 0.17 and MAPE values of 39.16% and 70.34%, respectively.

Obviously, the satellite retrievals overestimated the in-situ

measurements of Chla and POC, with regression line slopes

higher than 1 and MBD values of 25.62% and 46.38%,

respectively (Figure 9). Although the correlation between the

satellite products and the in-situ measurements was poor (not

significant, p>0.05), this was to be expected as the satellite

products are monthly climatological means while the in-situ

measurements are instantaneous and their time scales are not

strictly matched. In addition, the surface sediments are in
B

A

FIGURE 8

Vertical profile of (A) Chla and (B) POC along with the transect.
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principle a manifestation of long-term deposition of suspended

particles in water, but some monthly climatological products, such

as PP and SPM, correlate better with sediments than their

climatological means (Table 1). In addition, it is important to

choose the appropriate resolution for the retrieval of surface

sediments from satellite data, as we have found that the use of

different resolutions (4 km and 12 km for Chla and SPM) in the

same analysis does indeed lead to variations in the results

(Supplementary Table 1A).

Furthermore, satellites can only provide surface data such as Chla,

POC and SPM used in this study. However, a depth-resolved PP

algorithm was used to obtain PP and size-fractionated PP from
Frontiers in Marine Science 12
satellites, so that PP in this study was integrated over 1.5 times the

depth of the euphotic zone. However, the real ocean is a three-

dimensional space, as demonstrated by our in-situ measurements of

Chla, which show the presence of a deep chlorophyll maximum

(DCM) layer (Figure 10A) and POC varying in-depth (Figure 10B).

We further compared the profile-integrated in-situ Chla and POCwith

sediments (Table 3) and found that the depth-integrated in-situ

measurements showed better correlation with sediments than the

monthly climatological products, e.g. the Ex-OP showed no

correlation with the monthly climatological satellite Chla and POC,

but had an R2 of 0.37 with the euphotic zone integrated Chla. In

addition, BSi showed no correlation with any satellite product, but had
FIGURE 10

Vertical distribution of in-situ (A) Chla and (B) POC.
BA

FIGURE 9

Comparison between in situ measured and satellite estimated monthly climatological (A) Chla and (B) POC.
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an R2 of 0.27 with euphotic zone integrated Chla. With the launch of

the next generation of hyperspectral (NASA’s Plankton, Aerosol,

Cloud, Ocean Ecosystem Mission, PACE) and geostationary satellites

(Geostationary Ocean Color Imager, GOCI), more accurate algorithms

and higher temporal resolution of remotely sensed data may increase

the potential utility of satellite products in sediment research.
Frontiers in Marine Science 13
Previous studies of BSi in Southern Ocean sediments have

shown that BSi flux peaks are closely associated with diatom

blooms (Buesseler et al., 2001). The BSi content of surface

sediments in the SSCS includes sponge spicules, radiolarians, and

diatoms (Chou et al., 2012). Therefore, phytoplankton types could

play an important role in the distribution of sediment P species and

BSi. Our correlation analysis supports this perspective, showing that

diatoms had a significant correlation with P species (Table 1).

Unfortunately, there was no evidence of a significant correlation

with BSi. Considerable efforts have been made to obtain

phytoplankton functional types from space (Alvain et al., 2005,

Alvain et al., 2008; Pan et al., 2013; Shang et al., 2014). However, as

shown by the proportions of relative contributions for

phytoplankton functional groups along the transect in Figure 11,

it’s clear that the variability in algal composition is less pronounced

than that of sediment components. The next-generation PACE and

GOCI satellites, which will provide high spectral and temporal

resolution data, will significantly improve the ability of remote

sensing algorithms to capture the spectral variations caused by

changes in phytoplankton composition, as well as the temporal

dynamics of phytoplankton.
5 Conclusions

Concentrations and spatial distributions of P fractions in

surface sediments of the southern region of the SCS reflected

differences in sources and preservation status of different forms of
FIGURE 11

Relative contributions to phytoplankton function groups along the transect.
TABLE 3 R2 values of linear regression between in-situ Chla and POC
and sedimentary P speciation and BSi.

Satellite
Chla

Satellite
POC

Zeu
Integral
Chla

Zeu
Integral
POC

TSP 0.57* 0.58* 0 0.22

POP 0.55 0.56* 0.65 0

PIP 0.55 0.55 0.08 0.37

Ads-IP 0.07 0.08 0.01 0.14

Exch-OP 0 0.01 0.37 0.09

Fe-IP 0.13 0.14 0.3 0.17

Ca-IP 0.68** 0.67* 0.2 0

Ca-OP 0.58* 0.58* 0.08 0.4

Detr-P 0.39 0.41 0.11 0.4

Ref-P 0.07 0.09 0.07 0

BSi 0 0 0.27 0
* p-value < 0.05; ** p-value<0.01.
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P. Ca-P (Ca-IP and Ca-OP, 58%) was the major P form forms in

surface sediments, followed by Detr-P (15%) and Exch-OP (11%)

and Fe-IP (10%), and these four P forms accounted for 94% of the

TSP. TSP ranged from 283.94 to 579.94 (mean 427.76) mg/g dry

sediment and PIP is the major component of TSP ranging from

57.33% to 66.05%. TSP, POP and PIP showed a trend of higher

concentrations near the coast and decreasing concentrations

offshore. Most forms of P follow this trend, except Exch-OP and

Ref-P which showed no significant change along the transect.

However, BSi showed an opposite trend, being highest at the

offshore station. For the seven types of sedimentary P speciation,

the sediments most correlated with the satellite product were Ca-IP,

Detr-P and Ca-OP, followed by Fe-IP, while Ads-IP, Exch-OP and

Ref-P, and also BSi showed no significant correlations with any

satellite product. The top three satellite products correlated with

sediments were climatological SPM, diatom and monthly

climatological pico PP. In the future, improving the modelling of

vertical information from space and the accuracy of the algorithms,

as well as using hyperspectral and geostationary satellites, would

provide a potential solution for sediment retrieval from space.
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