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and Hydrography and Cartography, Dalian Naval Academy, Dalian, China
Mesoscale eddies are phenomena that widely exist in the ocean and have a

significant impact on the ocean’s temperature and salt structure, as well as on

acoustic propagation effects. Currently, utilizing the limited data on mesoscale

eddy environments for refined acoustic field reconstruction in offshore

conditions at mid-to-far-ocean distances is an urgent problem that needs to

be addressed. In this paper, we propose a mesoscale eddy reconstruction

method (EddyGAN) based on the generative adversarial network (GAN) model

which is inspired by the concept of global localization. We adopt a hybrid

algorithm for eddy identification using JCOPE2M high-resolution reanalysis

data and Archiving, Validation, and Interpretation of Satellite Oceanographic

(AVISO) satellite altimeter data to extract mesoscale eddy sound speed profile

(SSP) sample data, and then apply the EddyGAN model to train this dataset and

perform mesoscale eddy acoustic field reconstruction. We also propose an

evaluation method for mesoscale eddy acoustic field reconstruction that uses

RMSE, SSIM, and convergence zone (CZ) accuracy based on World Ocean Atlas

(WOA) climate state data completion as indicators. The reconstruction result of

this model achieves an RMSE of 1.7 m/s, an SSIM of 0.77, and an average CZ

accuracy of over 70%. This method better characterizes the mesoscale eddy

sound field than the native GAN and other reconstruction methods, improves the

accuracy of mesoscale eddy acoustic field reconstruction, and provides superior

performance, offering significant reference value for mesoscale eddy

reconstruction technology and subsequent ocean acoustic research.
KEYWORDS

GAN, mesoscale eddy, convergence zone, JCOPE2M, reconstruction
1 Introduction

Mesoscale eddies are oceanic phenomena with spatial scales ranging from tens to

hundreds of kilometers and lifetimes spanning from tens to hundreds of days (Chelton

et al., 2011). They are widely distributed across the global oceans. Depending on the

rotation direction, eddies can be categorized into cyclonic eddies (CEs) and anticyclonic
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eddies (AEs). In the Northern Hemisphere, CEs rotate

counterclockwise and AEs rotate clockwise, while in the Southern

Hemisphere, the opposite is true. Mesoscale eddies significantly

influence local water masses, leading to pronounced differences in

temperature and salinity characteristics inside and outside the

eddies (Qiu and Chen, 2005). They also play a crucial role in

ocean circulation, material exchange, energy transfer, and marine

environmental variability (Dong et al., 2014). The Kuroshio, a

strong western boundary current originating from the equatorial

Pacific Ocean, is located in the region between 30°N to 40°N and

140°E to 170°E, an area often referred to as the Kuroshio Extension

(KE) (Scharffenberg and Stammer, 2010) demonstrated that this

region has a high density of mesoscale eddies and possesses one of

the highest levels of Eddy Kinetic Energy (EKE) in the Pacific

Ocean, which is also the primary research area of this paper. Itoh

et al. (Itoh and Yasuda, 2010) provided a detailed account of the

basic characteristics of eddies in the KE region, noting that there are

more AEs with longer lifetimes to the north of the KE, and more

CEs with stronger intensities to the south and near the flow axis.

Overall, under the conclusion of the global observations, many

composite analyses have shown that CEs usually have cold eddy

centers and AEs associated with warm eddy centers (Chaigneau

et al., 2011; Zhang et al., 2013, 2014). Furthermore, based on years

of satellite altimeter data, the EKE of mesoscale eddies in this region

exhibits strong seasonal variation, with stronger activity in summer

and weaker activity in winter.

Mesoscale eddies’ characteristics induce variations in

temperature and salinity within and around the eddies,

significantly influencing acoustic propagation. Numerous scholars

have utilized acoustic propagation models to study the effects of

mesoscale eddies on acoustic transmission. Jian et al. (Jian et al.,

2009) employed an analytical eddy model and two-dimensional

parabolic equations to analyze acoustic transmission within the

South China Sea’s anticyclonic warm-core eddies. Their theoretical

calculations revealed notable acoustic field variations corresponding

to shifts in the SOFAR axis’s position due to the presence of either

an AE or a cyclonic eddy. Liu et al. (Liu et al., 2021) examined sound

energy distributions in eddies with varying intensities through

modeling and empirical data, deducing that the CZ’s position is

more distant or nearer to the sound source when sound travels

through cyclonic or AEs, respectively, compared to its propagation

in the background current. Further, experimental studies conducted

at sea have corroborated these theoretical findings. Sun et al. (Sun

et al., 2023) integrated temperature and salinity measurements with

concurrent acoustic field experiments within a mesoscale CE in the

Northwest Pacific Ocean. They observed that cold-core eddies

displace the irradiation zone toward the eddy’s perimeter, with

the displacement diminishing as the sound source depth increases.

Akulichev et al. (Akulichev et al., 2012) noted that the irradiation

zone’s proximity to the sound source in cyclonic and AEs is closer

than in the background current, highlighting mesoscale eddies’

substantial influence on horizontal sound propagation from a

towed source at 100 meters depth.

Advancements in computer technology have propelled machine

learning to the forefront of mesoscale eddy identification with

notable successes. DuoZ et al. (Duo et al., 2019) devised a deep
Frontiers in Marine Science 02
learning model integrating a target detection network, which, by

enhancing small-sample data, yielded impressive identification

outcomes. Ashkezari et al. (Ashkezari et al., 2016) explored

mesoscale eddies in Peruvian waters using daily maps of

geostrophic velocity anomalies along with latitudinal and

longitudinal phase angle components. Lguensat et al. (Lguensat

et al., 2018). leveraged deep neural networks to establish an eddy

identification model founded on ‘EddyNet’, boasting a U-shaped

architecture that surpassed conventional algorithms in categorical

cross-entropy tests. Xu et al. (Xu et al., 2019 developed an AI

algorithm for detecting oceanic eddies, employing PSPNet and

vector geometry (VG)-based algorithms to refine the detection of

small-scale eddies. Satellite measurements, now more prevalent

than ever, provide researchers with extensive data, including sea

surface height anomalies and temperatures, enabling studies on

mesoscale eddy surface characteristics and their 3D reconstruction.

Zhang et al. (Zhang et al., 2013) introduced a unified 3D mesoscale

eddy structure by applying normalization techniques to satellite

altimeter and Argo float data. Isern‐Fontanet et al. (Isern-Fontanet

et al., 2008) utilized sea surface temperature anomalies to

reconstruct the North Atlantic’s ocean circulation during winter,

achieving accurate data of the velocity and vorticity fields above

500 meters.

However, the above mesoscale eddy reconstruction methods are

all based on multiple sources and a large amount of in situmeasured

data, and how to utilize a small amount of critical in-situ data for

reconstruction is another very meaningful challenge. Relevant

studies have been carried out by scholars. Yu et al. (Yu et al.,

2021) proposed an ECN model based on a convolutional neural

network to reconstruct the temperature of mesoscale eddies in the

Northwest Pacific Ocean and achieved more than 87% accuracy in

comparison with Argo data; Liu et al. (Liu et al., 2022) used the

ResNN network and utilized satellite altimetry data to carry out the

inversion of mesoscale eddies’ underwater temperature, and

similarly achieved better results; The 3D-EddyNet proposed by

Liu et al. (Liu et al., 2024) performs the reconstruction of the

mesoscale eddy temperature and salt fields in the KE and OC

(Oyashio Current) regions based on the use of satellite remote

sensing and Argo data, and achieves encouraging results in the

ARMOR3D dataset. Despite notable advances, there remains a

research gap in the machine learning domain concerning

mesoscale eddy acoustic reconstruction. On one hand, the

machine learning process requires a substantial number of raw

samples to enhance its training accuracy and robustness. However,

the scant availability of mesoscale eddy cruise survey data from

open sources cannot sufficiently support the development of robust

machine-learning models. Furthermore, the practical application

value of performing high-accuracy reconstruction with limited

measured data still needs to be addressed, along with the impact

of parameters and hyperparameters on the model. On the other

hand, mesoscale eddies significantly affect acoustic propagation in

the ocean, and current research is mostly focused on the structural

reconstruction of mesoscale eddy temperature-salt flow fields, with

less expansion to acoustic applications. In this paper, we initially

apply a mesoscale eddy identification algorithm to determine the

location of eddies. We then extract a sample dataset of the SSP
frontiersin.org
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based on prior research. Subsequently, we optimize the GAN to

adapt to the conditions, thereby enhancing the reconstruction effect.

We analyze evaluation indices to refine the model and ultimately

propose a highly accurate mesoscale eddy model. Lastly, we

introduce a method to evaluate mesoscale eddy reconstruction,

which tests the effectiveness of the EddyGAN model presented in

this paper.
2 Data and method

In this paper, we first employ the mesoscale eddy identification

algorithm based on flow field geometry proposed by Nencioli et al.

(Nencioli et al., 2010) and the closed profile method suggested by

SadarJone et al. (Sadarjoen and Post, 2000) to perform hybrid

identification. We then combine the high-resolution reanalysis data

of the KE region, JCOPE2M, with the resulting eddy positional

information to extract the sample dataset for the mesoscale eddy

SSPs. Building on the basic model of the GAN, we propose the

EddyGAN model, which is adapted to the application scenario of

mesoscale eddy reconstruction. This is achieved by adding a mask

layer to simulate the measured Argo SSP, altering the two-

dimensional deep-sea slow-varying Gaussian eddy model for a

priori generation, and modifying the global-local discrimination

mechanism. Finally, we propose a mesoscale eddy reconstruction

evaluation method that util izes SSIM, RMSE, and CZ

reconstruction accuracy as assessment indices. The overall

flowchart of this paper is shown in Figure 1.
Frontiers in Marine Science 03
2.1 Data

2.1.1 Satellite altimeter data (AVISO)
The Sea Level Anomaly (SLA) and geostrophic data utilized in this

paper are gridded products from the CNES organization (Archiving,

Validation, and Interpretation of Satellite Oceanographic Data,

AVISO). These data are merged from multiple satellite altimetry

sources and interpolated to a 1/4° x 1/4° grid based on the Mercator

projection, with a temporal resolution of 7 days, and further

interpolated to a daily resolution. Since this data has been quality

controlled at the time of release, this paper uses local averages to fill in

the small amount of missing gridded data during data preprocessing.

2.1.2 JCOPE2M reanalysis data and WOA climate
state data

The JCOPE2M (Japan Coastal Ocean Predictability Experiment 2

Modified) data is high-resolution reanalysis data released by the

Japan Coastal Ocean Agency (JCOA). It focuses on the Northwest

Pacific Ocean, with a temporal resolution of one day, a grid resolution

of 1/12°, and a division into 46 layers at full depth. The JCOPE2M

data incorporate the assimilated sea surface temperature field, sea

surface height anomaly data, and part of the Argo data. This dataset

has been applied by numerous scholars to mesoscale eddy studies

concerning temperature, salinity, and flow field and is known for its

high accuracy (Miyazawa, 2003). Uchimoto et al. (Uchimoto et al.,

2007) simulated the AE phenomenon in the Okhotsk Sea by using the

sub-model of the JCOPE model (Ocean General Circulation Model,

OGCM), and while exploring the causes of its formation, they
FIGURE 1

The entire technical process of this paper.
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obtained the same or similar location, evolution and vertical structure

as in the study of Wakatsuchi and Martin et al (Wakatsuchi and

Martin, 1991). Endoh et al (Endoh and Hibiya, 2001). used JCOPE

data to study the transition from a non-major meander path to a

major meander path for the Kuroshio that occurred in 2004, and

obtained results that agreed well with the modeling results of Hibiya.

The specific data used in this paper encompass the sea surface height

and thermohaline reanalysis data in the region of 30°N-40°N, 130°E-

170°E during the period from January 1, 2007, to December 31, 2020.

The World Ocean Atlas (WOA) is a compilation of climate-

averaged, gridded fields of ocean variables based on actual

measurements from various sources. It provides interdecadal

averages of global temperature, salinity, oxygen, and nutrients on

monthly, seasonal, and annual cycles at 102 standard depth levels,

ranging from the surface to 5500m. The data are available at 0.25°

horizontal resolution for temperature and salinity and at 1°for all

variables. These fields are extensively utilized for ocean model

initialization, validation, climate research, and operational

forecasting (Itoh and Yasuda, 2010).
2.1.3 Argo data
The Argo program (Array for Real-time Geostrophic

Oceanography) has established the first global array for observing

underwater oceanic information. It has been operational in

localized areas since 1999 and achieved global coverage by 2004,

with the number of buoys reaching 3,000 by 2007. This network

serves as an effective tool for studying the marine underwater

environment, and its working procedure is to achieve the purpose

of floating or diving to collect data by inflating and deflating the

buoys regularly or artificially controlled, during which the Argo

buoys can collect data such as temperature and salt currents

distributed in the path according to certain intervals, which are

exactly the data used in this paper. Then, we utilize data from 16,351

buoys provided by the China Argo Real-Time Data Center (RTDC)

in the region of 30°N-40°N, 130°E-170°E during the period from

January 1, 2007, to December 31, 2020. Among these buoys, 7,754

have met quality control standards and have been captured within

AEs, while 5,531 have been captured within CEs, Schematic

diagram of Argo mass screening as Figure 2. The following

quality control criteria are adopted in this paper:
Fron
(1) The shallowest and deepest measuring point data are located

at depths of 10m and more than 1000m, respectively;

(2) The number of measurement points within 1000m should

not be less than 50, and the maximum interval between

measurement points should not exceed 20m;

(3) The distance from the sea area must be no less than 100km.
2.1.4 Terrain data
This paper utilizes the ETOPO (ETOPO Global Relief Model)

seafloor topography data provided by NCEI (National Centers for

Environmental Information). This data set references a multitude of

relevant models and regional measurements, incorporating global

land topography and ocean bathymetry. Initially at a resolution of 1
tiers in Marine Science 04
arc-minute, it is interpolated to match the 1/12° grid resolution of

the JCOPE2M data for the CZ test described in this paper (Amante

and Eakins, 2009).
2.2 Methods

2.2.1 Mesoscale eddy identification methods
Given the extensive study area, we first divided it into the KE

main body area (Area I) and the OC extension body area (Area II).

Then, we applied the flow field geometry method and the closed

curve method to identify sea surface temperature and salinity

patterns, respectively.

The flow field geometry method is based on the geometric profile

of the mesoscale eddies, which intuitively defines the mesoscale

eddies as a region that meets certain constraints. If the velocity

vector field in this region is a rotating flow, and the center of the

mesoscale eddies are the extreme point of velocity, and the direction

of the velocity vector around the point presents a symmetric

structure, That is, the region is characterized by a clockwise or

counterclockwise rotation of the velocity vector around a center,

and such a structure is defined as an eddy structure.

The SLA closed curve method is directly based on detecting the

closed curve of the sea surface height around a single local extreme

value, with major advantages: they only use the SLA data, which

significantly reduces the probability of non-closed eddies in the flow

field geometry method. But the closed curve method also has its

limitations: it needs to set the threshold of sea surface height difference

to define the eddy boundary, which results in the subjective threshold

will greatly affect the recognition result. In order to take into account

the recognition effect of eddies and the sensitivity to the subjective

threshold, we adopt a hybrid algorithm of the two.

The two identification methods above are used to identify the sea

surface flow field and SLA data, respectively, to find the eddy pair with

the largest intersection of the boundaries of the two methods at the same

time (since the two methods have different parameter settings between

different characteristic eddies, this paper defines a custom threshold: the

intersecting area is greater than 50% of the respective area of each

method, and the distance between the eddy centers is not more than 1/

12°), and if the conditions are met then, the identification results of both

methods are considered valid and the eddy is treated as an actual existing

eddy with the eddy center identified by the flow field geometry method

as the actual center. Figure 3 plots the identification of mesoscale eddies

using the hybrid algorithm in the 30°N-40°N, 130°E-170°E region over

the time span from January 1, 2007, toDecember 31, 2020. because of the

large number of eddies, we represent the eddies as a single eddy center.

Finally, in order to verify the reliability of the hybrid recognition

algorithm, we use the algorithm and the two original algorithms to

identify the results on a random day each year between 2007 and

2020, taking the hit rate of manually identifying the vortex center

position falling within the vortex edge obtained by the three

algorithms as an indicator, and repeating the 10-group averaging to

obtain the overall recognition results. The correct matching rate of

the hybrid algorithm is 91.5%, the closed contour method is 89.1%,

and the flow field geometry method is 90.2%, proving that the hybrid

algorithm is slightly better than the two original algorithms.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1411779
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Ma et al. 10.3389/fmars.2024.1411779
Additionally, we project the resulting eddy-identified location

information onto the JCOPE2M grid point at the minimum

distance from that grid point, thus enabling the connection

between the two datasets.

2.2.2 Hydroacoustic calculation methods
In this paper, we first convert the JCOPE2M reanalysis temperature

and salt data into sound speed data by utilizing the sound speed

empirical formula. After statistical analysis, the temperature-salinity

depth characteristics of the KE region are all consistent with the set

threshold of the Chen-Millero sound speed empirical formula, so this

paper adopts this formula to transform the temperature-salinity field

data in the JCOPE2M data into the sound speed field data (Equation 1).

v = CW(t, p) + A(t, p)S + B(t, p)S
3

2= + D(t, p)S2

CW(t, p) =o
5

i=0
C0it

i +o
4

j=0
C1jt

jp

A(t, p) =o
5

i=0
A0it

i +o
4

j=0
A1jt

jp +o
3

j=0
A2jt

jp2 +o
2

j=0
A3jt

jp3

B(t, p) = B00 + B01t + (B10 + B11t)p
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D(t, p) = D00 + B01p (1)

where t is the temperature in °C, S is the salinity in ppt,   p is the

pressure in bar. Ai,j,Bi,j,Ci,j,Di,j   is the setup parameter, please refer

to the paper (Chen and Millero, 1977) for detailed values (Table 1).

Bellhop is a model based on a Gaussian beam-tracking algorithm to

compute the sound field in a uniform or non-uniform environment

(Porter and Bucker, 1987). The model associates each acoustic ray

with a Gaussian intensity as the central acoustic ray of the Gaussian

beam, and the propagation process of the simulated acoustic ray

is more consistent with the results of the full-wave model and

has been widely used in the field of acoustic computation (Gul

et al., 2017). The evolution of the sound beam in this model is

determined by the beam width p(s) and the beam curvature q(s),

with p and q being controlled by the following differential equations

(Equations 2–7):

dq
ds = c(s)p(s)

dp
ds =

cm
c2(s) q(s)

(2)
where cm is the speed of sound and c(r, s) is the second

derivative with respect to the path direction, as shown in the

following equation:
FIGURE 3

Schematic diagram of eddy identification (eddy centers) assembly in the region 30°N-40°N, 130°E-170°E from January 1, 2007, to December 31,
2020. (The orange point is the center position of the AE identification result for the time period, while the blue point is the CE).
FIGURE 2

Distribution of Argo buoys after mass screening in the KE area (30°N-40°N, 130°E-170°E) in 2010.
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cm = crr
dr
dn

� �2

+2crz
dr
dn

� �
dz
dn

� �
+ czz

dz
dn

� �2

(3)

    cm = crr(N(r))
2 + 2crz(N(r))(N(z)) + czz(N(z))

2 (4)

where (N(r))(N(z)) is the unit normal in both directions and can

satisfy:

(N(r))(N(z)) =
dz
ds

,−
dr
ds

� �
= c(s)½z (s),−r(s)� (5)

In summary, the beam can be defined as:

u(s, n) = A

ffiffiffiffiffiffiffiffiffiffi
c(s)
rq(s)

s
e(−iw t(s)+0:5½p(s)=q(s)�n2f g) (6)

where A is a constant determined by the properties of the sound

source; n is the vertical distance from the acoustic ray to the sound

source; w is the angular frequency of the sound source. Finally, we

apply weighting to the sound beam:

A(s) = da
1
c0

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q(s)w cosa

2p

r
e(

ip
4 ) (7)

where da is the angle between the beams. In this paper, the

main parameters of the sedimentary layers in the study area when

using the Bellhop ray theory model are listed in Table 2, and we

choose Abyssal  Clay as an example to be studied in this paper.
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The CZ is a concentrated area of strong acoustic energy that

occurs when a sound source is in the surface and subsurface layers

of the ocean and, due to the refraction and propagation of sound

waves over a wide range of areas, converges again near the sea

surface several tens of kilometers away. Typical changes in the

marine environment can cause changes in the structure of the

sound velocity and thus have an impact on sound propagation in

the CZ. Based on synthetic eddy data and Bellhopmodel, the Marine

environment with warm eddy, cold eddy and no eddy is analyzed

respectively. The acoustic propagation was simulated, and the

acoustic propagation loss field of 0m-1,000m was obtained, as

shown in the figure, which was obvious on the offshore surface.

The CZ is the area where the sound propagation loss is

small (Figure 4).
FIGURE 4

Schematic representation of acoustic propagation loss and CZ assessment metrics for the Bellhop model applied to the Munk example sound
speed profile.
TABLE 1 Scope of application of the Chen-Millero sound speed empirical formula.

Serial number Formulator Temp range (°C)
Salinity

range(ppt)
Depth range(m) standard error

A Chen-Millero 0-40 5-40 0-10000 0.19
TABLE 2 Acoustic parameters of the three main types of sedimentary
layers in the study area.

Type
Abyssal
Clay

Calcareous
Ooze

Siliceous
Ooze

Density (g/m3) 1.389 1.512 1.172

Compressed wave
velocity (m/s)

1511 1550 1500

Attenuation
coefficient (dB)

0.08 0.13 0.08
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2.2.3 Sample set of mesoscale eddy sound
speed profile

Using the eddy center and profile information obtained from the

mesoscale eddy mixing identification algorithm, we differentiate between

cold and warm eddies. To generate the SSP dataset, we employ a method

that creates multi-angle vertical sections through the eddy center.

Specifically, in order to avoid confusing other eddy structures during the

extraction of individual profiles, it has been concluded through extensive

experiments that lines are drawn along both sides at a distance of 1.2 times

the eddy radius in the longitudinal and latitudinal directions, respectively,

and the profiles are extracted vertically downwards, as shown schematically

in the black rectangular box in Figure 5. Along this line, we create vertical

SSPs from0 to 1000m (Sandalyuk et al., 2020). Repeating the process at 30°

intervals (or less) which is depending on how many SSP samples the

researchers want to extract from a single eddy. A closed contour screening

method is used to exclude poor data. From this method, we have obtained

a total of 51,552 SSPs forwarm eddies and 37,801 for CEs. Additionally, we

use the two-dimensional deep-ocean Gaussian eddy model to produce a

dataset comprising 20% of these profiles.
3 Modeling and evaluation criteria

3.1 Two-dimensional slow-variable
deep-sea Gaussian eddy modeling

The mesoscale eddy ideal model is constructed based on the

feature information extracted from sea surface observations, and

the sound speed expression of the model is (Equations 8–10):
Frontiers in Marine Science 07
c(r, z) = c0(z) + dc(r, z) (8)

c0(z) = C1 1 + 0:00741½e−h − (1 − h)�f g (9)

dc(r, z) = DC � e
−( r−Re

DR2 z−Ze
DZ2

)
(10)

Where r is the horizontal distance to the eddy center, and z is the

vertical distance to the eddy center. For the Munk profile model

(Munk, 1950), h = 2(z − z1)=1300, is the sound speed at the sound

channel axis and is the depth at the sound channel axis.DC is the eddy

strength, which takes a negative value for CEs and a positive value for

AEs.DR is the horizontal radius of the eddy,DZ is the vertical radius of

the eddy, Re is the horizontal position of the eddy center, and Ze is the

vertical position of the eddy center. The eddy strength is calculated

from the sea surface height anomaly, and the horizontal radius of the

eddy is determined as 1.2 times themaximum radius of a single eddy in

the eddy identification results in section 2.2.1, and the vertical radius

of the eddy and the vertical position of the eddy center are calculated

from the eddy-centered Argo data captured by a single eddy. The

Gaussian eddy model is schematically shown in Figure 6.
3.2 Advanced generative adversarial
network model (EddyGAN)

The fundamental concept of the native GAN (Goodfellow et al.,

2014) is to engage two neural networks in a continuous minimax

game, where the networks learn the distribution of actual samples
FIGURE 5

Schematic illustration of the extraction method and effect of mesoscale eddy sound speed profile dataset (The top left shows the results of the
mesoscale eddy identification, and the right image shows the SSP extraction results for the example).
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over time. The training is typically deemed complete when both

networks reach a Nash Equilibrium.

In Figure 7, the generator network (denoted as G) receives a

random variable (denoted as z) from the hidden space (denoted as

pz) as input, and the output is a generated sample. The goal of

training the generator is to enhance the similarity between the

generated sample and the real sample to the point where the

discriminator (denoted as D) network cannot differentiate

between them. This aims to make the distribution of the

generated sample (denoted as pg) as close as possible to

the distribution of the real sample (denoted as pdata). The

discriminator’s input is either real samples (denoted as x) or
Frontiers in Marine Science 08
generated samples (denoted as x 0), with the output being the

discrimination result. The discriminator’s training objective is to

accurately distinguish real samples from generated samples. This

result is used to calculate the loss function and update the network

weights through backpropagation. During adversarial training, the

discriminator’s ability to identify real versus fake samples improves,

while the generator strives to produce samples that are increasingly

indistinguishable from actual samples, thereby deceiving the

discriminator. Ultimately, the model generates higher-quality new

data. The training objective of the native GAN network can be

summarized as follows: to minimize the distance between x and x0  
and to maximize the accuracy rate of the discriminator’s sample
FIGURE 7

Schematic of the basic model of a native GAN network.
FIGURE 6

Schematic of a two-dimensional slow-varying Gaussian eddy model. In the case of the AE, for example, the parameters are set to AE :DC =
50cm,DR = 20km,DZ = 300m  ;CE :DC = −30cm,DR = 20km,DZ = 300m.
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classification, where the value for real samples tends to be 1 and for

fake samples tends to be 0. From this, we derive the native GAN

network objective function (Equation 11).

min
G

max
D

Exe pdata(x)
½logD(x)� + Eze pz(x)

½log(1 − D(G(z)))� (11)

Building on the native GAN, this paper introduces a generative

adversarial network model adapted for mesoscale eddy

reconstruction applications named EddyGAN. This model is

inspired by the concept of global and local context codecs from

Iizuka et al (Iizuka et al., 2017), featuring a generator and two

context discriminators.
3.2.1 Generator
In order to improve the generation efficiency of the generator

and make the adversarial network converge quickly, we utilize the

Two-dimensional slow-variable deep-sea Gaussian eddy modeling

in 3.1 as a priori knowledge to replace the Gaussian noise in the

generator, and this achieves a better-expected result in the

experiments. The EddyGAN generator relies on a fully

convolutional network aimed at completing missing data. To

enhance the training effectiveness, we utilize several convolutional

layers with different strides alongside dilation convolutional layers

of matching strides (Yu et al., 2017). After each convolutional layer,

a Rectified Linear Unit (ReLU) is added, and the output layer is

followed by a Sigmoid activation function to normalize the output.

The architecture of the generator network is depicted in Figure 8.

In order to construct the reconstruction environment under

data-poor, we simulate the reconstruction conditions with only the

sea surface sound velocity field and Argo sound velocity contour by

using a large-area mask to mask the data that are not in these two

regions (i.e., assigning 0), and setting the width of the sea surface

data and the Argo data to 1. The generator will not generate the data

of the unmasked region when it is working, and will instead

generate the data of the masked region, so as to achieve the goal
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of not varying the known portion of the data and to be able to

generate the new data. We initially reduced the computational load

by lowering the data resolution before training. Afterward, an

inverse convolutional network is used after the output layer to

restore the image to its original resolution.

Equation 12 details the convolution operation of the dilated

convolutional layer for each pixel. The introduction of the dilated

convolutional layer serves to expand the receptive field without

increasing the parameter count, which experimentally has been

shown to enhance the network’s perception of the eddy’s overall

features, whether local or global. Here, kw   and   kh represent the

width and height of the convolution kernel, h is the dilation

parameter, xu,v ∈ RC   and yu,v ∈ RC   are the input and output

pixels of the layer, respectively, s is a nonlinear transfer function,

Ws,t   is the convolution kernel matrix, b ∈ RC   is the bias vector for

the convolutional layer, and when h = 1, Equation 12 reverts to the

standard convolution operation.

yu,v = s b + o
k
0
h

i=−k
0
h

o
k
0
w

j=−k
0
w

Wk
0
h+i  ,    k

0
w+j

Xu+hi  ,v+hj

0@ 1A  ,   k
0
h

=
kh − 1
2

 ,   k
0
w =

kw − 1
2

(12)

The network is trained with input-output pairs to minimize the

loss function between them.
3.2.2 Discriminator
We train one global context discriminator and one local context

discriminator to discern whether the output is real. The purpose of

constructing a global context discriminator is to reconstruct the

characteristics of the eddy as a whole, emphasizing to guide the

model to pay more attention to the relationship between sea surface

data and Argo data, while the local context discriminator pays more

attention to local details. Especially for the training of eddy core
FIGURE 8

Schematic model of EddyGAN network.
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position, due to the different characteristics of different vortices, we

set the local context discriminator window within the range of 400-

700 meters, that is, the window is not fixed. The global context

discriminator consists of 5 consecutive convolutional layers, each

with a stride of 2. It processes the input data of size 256×256 into a

single 1024-dimensional vector using a fully connected layer

followed by a sigmoid output layer. The local context

discriminator, comprising 6 consecutive convolutional layers also

with a stride of 2, focuses on a 128×128 patch at the center of the

completed region. It outputs a 1024-dimensional vector that reflects

the local context effects within that region. The outputs of the global

and local discriminators are concatenated to form a single 2048-

dimensional vector, which is then transformed into a continuous

and normalized probability distribution of being real via a fully

connected layer and a sigmoid transfer function.
3.2.3 Training
To address the issues of training stability and acoustic field

reconstruction accuracy in GAN networks, we employ a combined

loss consisting of Mean Squared Error (MSE) and GAN loss

(Goodfellow et al., 2014), a method proven effective in

experiments by Pathak et al (Pathak et al., 2016). Thus, following

the max-min principle of GAN networks, we define the objective

function (Equation 13): whereMd andMc are stochastic masks used

to simulate eddy acoustic field preconditioning, and a represents

weighted hyperparameters.

min
G

max
D E  ½  L(x,Mc) + logD(x,Md) + a   log(1 − D(G(x,Md),Mc)  �

L(x,Mc) = MG ⊙ (G(x,Mc) − x)k k2
(13)

The training process is divided into three phases: initially, the

generator network is trained iteratively A times using MSE loss

alone. After this phase, training of the generator is halted, and the

discriminator network is trained independently B times. Finally, the

generator and the context discriminator networks are trained

synchronously C times. To prevent instability during training, we

balance the gradient of MSE loss for the generator network with the

gradient for the discriminator network (Equation 14) while

applying standard gradient descent.

E  ½ ∇ L(x,Mc) + a  ∇ log(1 − D(C(x,Mc)),Mc)�
E  ½ ∇ logD(x,Md)�

(14)

In network optimization, we utilize the Adam optimization

algorithm (Kingma and Adam, 2015). The hyperparameters of the

Adam optimizer are intuitive and often require minimal or no fine-

tuning. This optimizer is generally considered to perform well by

default, as verified by numerous experiments conducted by scholars

(Zhang, 2018). Regarding the setting of the hyperparameters of

Adam optimizer, in general, the learning rate is set between

0.0001~0.1, too high will make the model training effect poor, too

low will make the model training converge slowly, so through many

adjustments, we determine the learning rate is 0.0002,

corresponding to the appropriate increase in epoch to 400000. b1
and b2 are important hyperparameters in Adam optimizer, usually
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taking values of 0.9 and 0.999. If the dataset is noisy, try to reduce b1
and b2, even though the average coefficients converge faster but are

more susceptible to noise. If the dataset is less noisy, b1 and b2 can
be increased to update the parameters more consistently. In this

paper, b1   = 0.9 and b2 = 0.999 are set.
3.3 Training assessment indicators

In this paper, two metrics, Root Mean Square Error (RMSE)

and Structural Similarity Index (SSIM) (Wang et al., 2004), are used

for evaluating mesoscale eddy reconstruction, with the forecast

accuracy of the CZ serving as an auxiliary metric. For the effect of

mesoscale eddy reconstruction, not only the overall error size

should be considered, but also its structural characteristics should

be taken into account, so we consider it in two aspects: numerical

error index and structural similarity index. There are many

numerical error indicators, after weighing, we choose the RMSE

indicator in L2 paradigm, which is often used in 2D matrix error

analysis. Compared with L1 paradigm indicator, L2 paradigm

indicator is sensitive to the larger outliers in the error, which is

better for the response to the anomalous noise that is likely to

appear in the reconstruction results, and is more helpful for

comparing the reconstruction effect. For the structural similarity

index, we choose the SSIM index, which has the widest application

range and the highest validity.

3.3.1 Root mean square error
RMSE is a common metric for assessing the discrepancy

between model predictions and actual observations; generally, a

lower value indicates a better outcome. The relevance of RMSE to

data size and dimensionality necessitates uniform adjustment of

two-dimensional SSP data in this paper to ensure the validity of

inferences about the dimensionality of the SSP data. The two-

dimensional (Equation 15) between predicted and target data are

calculated as follows:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

H �Wo
H

i=1
o
W

j=1
(X(i, j) − Y(i, j))2

s
  i = 1, 2, 3…H  ; j

= 1, 2, 3…W (15)

Equation 15 represents the two-dimensional RMSE calculation

formula, where H and W denote the length and width of the data,

respectively, and X and Y represent the predicted and original data.

It is important to note that to mitigate the impact of large errors on

the overall evaluation, this paper employs the 3-sigma rule to

exclude outliers from the RMSE calculation (Equation 16), where

s is the standard deviation, and m is the mean value.

P( x − mj j > 3s ) ≤ 0:03 (16)
3.3.2 Structural similarity index
The SSIM is a measure of data’s structural similarity (Hore and

Ziou, 2010). Given two data sets x and y, their structural similarity is

defined by Equations 17 and 18:
frontiersin.org

https://doi.org/10.3389/fmars.2024.1411779
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Ma et al. 10.3389/fmars.2024.1411779
SSIM(x, y) =
(2mxmy + c1)(2sxy + c2)

(m2
x + m2

y + c1)(s 2
x + s 2

y + c2)
(17)

c1 = (k1L)
2    ,   c2 = (k2L)

2     (18)

Where mx is the mean value of x, my is the mean value of y, s 2
x is the

variance of x,s 2
x is the variance of y, andsxy is the covariance of x and y.

L is the dynamic range of the pixel value, which is set to 100, and k1  , k2
are the constants, which k1, k2   are set to 0.01 and 0.03 in this paper.

3.3.3 Accuracy of CZ renconstruction
In this paper, we use acoustic convergence zone reconstruction

accuracy for assisted evaluation. The definition of acoustic

convergence zone is reflected in 2.2.2 of the paper, we will be the

acoustic propagation loss minima on both sides of the range of 3km

for the convergence zone hit zone, if the reconstructed acoustic

convergence zone minima fall within the hit zone of the real

acoustic convergence zone, it will be judged as a successful

reconstruction in this way, and vice versa, it will be a failure. In

this paper, we mainly focus on the first three acoustic convergence

zones as the main research object.

4 Mesoscale eddy sound field
reconstruction effect

4.1 Evaluation of the effect of
numerical errors

In this paper, we first apply the EddyGAN model to reconstruct

the acoustic field of a mesoscale eddy using JCOPE2M reanalysis

data from the Kuroshio Extension (30°N-40°N, 130°E-170°E). The

input conditions for the model include the sea surface sound

velocity field of the complete eddy structure and one to five SSPs:

the sea surface sound speed field is calculated from the sea surface

temperature and salinity by the empirical formula for the sound

speed, and the SSPs are obtained from measurements made by the

Argo or other vertically suspended temperature and salinity depth

measurement instruments (e.g. CTD, XBT, etc.) and calculated

using the empirical formula for the sound velocity.

We artificially constrained the input conditions for the

different cases:
Fron
(1) For the case of a single SSP with a sea surface sound velocity

field input, we set the position of this SSP to be no more

than 10% of the horizontal radius of the eddy body;

(2) For the case of two SSPs with sea surface sound velocity

field inputs, we set the two SSPs to be located on either side

of the eddy center;

(3) For the case of greater than three SSPs with sea surface

sound velocity field inputs, we restricted them to only those

whose positions do not overlap with respect to the

eddy center.
As shown in Figure 9 and Figure 10, regarding eddy

characteristics under single-profile conditions, the SSIM metric
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for AEs averages 0.70, ranging from 0.6 to 0.9, and the RMSE

averages 1.4 m/s, with a distribution between 1.3 m/s and 1.5 m/s. In

contrast, for CEs, the average SSIM metric is 0.61, with a range of

0.50 to 0.70, and the RMSE averages 2.0 m/s. These results indicate

that EddyGAN’s reconstruction similarity or error index for AEs is

significantly better than that for CEs. This may be attributed to two

factors: the larger sample size of AEs compared to CEs, which

allows for more extensive learning within the same epoch, and the

better connectivity of warm eddies with the mixing layer at the sea

surface. Meanwhile, CEs display a larger sound speed gradient near

the sea surface, which is not captured during the swell convolution

process in the model, resulting in the loss of some information and

poorer reconstruction outcomes.

From the reconstruction results of each month, the SSIM index

for June to September is notably lower than for other months, and

the RMSE is slightly higher than the average. This suggests that the

reconstruction quality during these months is inferior in terms of

structural similarity and average error. Possible reasons for these

findings include: firstly, June to September is the period of the

highest direct solar intensity in the Northern Hemisphere, leading

to a strong stirring of the sea surface mixed layer and less distinct

features of sea surface temperature, salinity, and sound speed

fields, therefore diminishing the model’s learning effectiveness;

secondly, the average intensity and lifespan of eddies peak

during these months (Hu et al., 2018), which often leads to the

reduction in the number of valid samples in the sample set, and the

reason for this is that because of the higher strengths and lifetimes

of the vortices in these months, the methodology that we used to

extract the samples does not constrain the process of repeated

extractions of the same eddy, which results in the long-lived and

strong eddies in the sample set being extracted in that time period.

This leads to a relative reduction in the effective sample data

since eddies with long lifetimes and high intensities are repeatedly

extracted during the extraction of the sample set and have

similar characteristics.

To investigate the impact of different numbers of SSPs on the

reconstruction effect, we randomly selected 1000 SSPs and applied

the EddyGANmodel to reconstruct them. The results were assessed

using the average SSIM and RMSE indices within the group.

Considering practical application, the number of SSPs in the

control experimental group for this paper is set at a maximum of

5. The maximum value of 5 SSPS is set because this paper mainly

uses Argo buoy data for reconstruction in combining theory with

practice. Combined with the pre-processing of Argo data in 2.1.3,

we found that most (almost all) of the eddy-captured Argos that

meet the reconstruction conditions (see Section 5.2) are less than 5.

Therefore, considering the actual application scenario of the model

in this paper, we only conducted experiments on SSPS within 5. As

shown in Figure 11, the median SSIM and RMSE for AEs are

maintained at approximately 0.72-0.85 and 1.0-1.5 m/s,

respectively, while those for CEs range from 0.65-0.75 and 1.0-2.0

m/s. Overall, the SSIM and RMSE indices for AEs are significantly

better than those for CEs, consistent with prior experimental

outcomes. The reasons for this have been delineated in previous

sections and will not be reiterated here. From the perspective of

each control group, the median SSIM index shows a positive
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correlation with the number of SSPs for both warm eddies and CEs,

whereas the median RMSE index exhibits a negative correlation.

The first and third quartiles demonstrate similar trends to the

median, suggesting that as the number of SSPs increases, the

reconstruction effect of EddyGAN also improves, particularly

from 1 to 3 SSPs. The improvement then decelerates and

becomes more variable at 5 SSPs. This indicates that the

reconstruction effect tends to stabilize when using 5 SSPs.
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We also compare the SSIM and RMSE metrics of several

commonly used reconstruction methods with the reanalyzed data,

considering the distinction between AEs and CEs. The test data

were grouped based on mesoscale eddy characteristics (AE, CE),

and to avoid uncontrollable errors due to variance in the number of

SSPs across different months during random sampling, the test

samples for each group are equally drawn from different months

and varying numbers of SSPs. The results are then averaged within
FIGURE 10

Schematic diagram of the effect of EddyGAN acoustic field reconstruction (as an example under a single SSP).
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FIGURE 9

Schematic diagram of the effect of EddyGAN acoustic field reconstruction (as an example under One to Multiple SSPs of different quantities).
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each group and are presented in Table 3. To demonstrate the

improvement of the reconstruction effect of the EddyGAN model

by using deep-sea slowly changing Gaussian vortex prior, we

conducted an additional set of controlled experiments, and the

experimental results were also marked * in Table 3.

From the table data, it is evident that the reconstruction effect of

EddyGAN under different input conditions is significantly superior

to that of several other traditional reconstruction methods. Both

RMSE and SSIM indices achieve higher levels of improvement

compared to the other methods. The SSIM indices, in particular, are

also markedly higher, indicating that the data error with the

EddyGAN method is considerably lower, and it more accurately

describes the structural characteristics of the eddy acoustic field.
4.2 Convergence zone-based
calibration assessment

Since the numerical error evaluation index in section 4.1 can

mostly reflect the reconstructed data’s effect at an overall level, for

specific acoustic effects such as the CZ that we are concerned with, it

is necessary to use a theoretical model to perform secondary

calculations based on the reconstructed acoustic field. Therefore,

the purpose of this subsection is to provide an additional assessment
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of the EddyGAN reconstruction effect using the acoustic CZ

reconstruction results (Xu et al., 2024).

The properties of the CZ play an important role in underwater

applications. For example, in underwater communication and sonar

detection, the properties of the CZ can be utilized to enhance the

strength and clarity of signals and improve the efficiency and

accuracy of communication and detection. In addition, the study

of CZ also helps us to better understand and utilize the propagation

law of underwater acoustics, which provides more reliable technical

support for underwater operations, environmental monitoring,

resource exploration and other fields. Therefore, based on the

underwater application scenario of CZ, this paper proposes to use

the CZ reconstruction effect to assist the evaluation of EddyGAN

model. This subsection employs the Bellhop ray theory model to

reconstruct the CZ for the test sets in the four cardinal and

intercardinal directions: East-West (E-W), North-South (N-S),

Northeast-Southwest (NE-SW), and Northwest-Southeast (NW-

SE). The experiments are designed to minimize the influence of

seasonality and the number of different SSPs on the reconstruction

results from subsection 4.1 and to emphasize the representativeness

of the model’s forecasting ability. To achieve this, we created five

control groups, each with 1000 samples extracted from different

months and with varying numbers of SSPs. The calculation results

were averaged within each group for presentation in Table 4.
TABLE 3 Indicators for evaluating the effectiveness of multiple mesoscale eddy acoustic field reconstruction methods.

Assessment
of

indicators

Gauss eddy model
Normalized method

(Zhang, Zhang
et al., 2013)

Native GAN
EddyGAN
(ours)

AE CE AE CE AE CE AE CE

RMSE(m/s) 3.15 3.96 2.88 3.14 2.37 2.89 1.45/1.48* 1.97/2.01*

SSIM 0.47 0.44 0.66 0.57 0.70 0.65 0.81/0.75* 0.73/0.69*
FIGURE 11

Boxplots of SSIM, RMSE metrics for EddyGAN acoustic field reconstruction with different numbers of SSP.
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In the table, the Accuracy index is the percentage of the number

of reconstructed distance errors within 3km (Figure 5) of the CZ in

the overall number of reconstructed profiles. The model parameters

are set as shown in Table 2, with the seafloor topography updated to

ETOPO data and the rest of the parameters set as default.

From the comparison results in Table 4, it is evident that the

reconstruction accuracy of the CZ of the EddyGAN model under

the specified conditions can generally be maintained above 70% in

all four directions. Across different directions, the effect of CZ

reconstruction remains consistently at the same level given identical

conditions. Regarding the trend of change, there is a slight decrease

in model reconstruction accuracy as the distance of the CZ

increases. Concerning the nature of the eddy, the accuracy of the

reconstruction for AEs is significantly greater than that for CEs.

This may be attributed to a lower number of identifications in

cyclonic eddy extractions and a smaller sample set size compared to

that of AEs, resulting in a less effective learning outcome for the

EddyGAN model. Consequently, the reconstruction of the sound

speed field for AEs is notably superior to that of CEs. This disparity

is also due to the CZ calculation being based on the reconstructed

sound speed field, as reflected in the results presented in the

aforementioned table.
5 Validation and generalization of
the model

5.1 Validation in different study areas

Study Area II is characterized as the Oyashio Extender area

where mesoscale eddies significantly influence the oceanographic

characteristics of both regions, as indicated in references (Qiu, 2001;
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Sun et al., 2022). Area II exhibits different dynamics compared to

the KE area (Area I). To investigate the generalization capability of

the EddyGAN model across different marine environments, this

subsection describes the reconstruction of the eddy acoustic field in

Area II using the EddyGAN model. The model’s performance is

evaluated using RMSE, SSIM, and CZ accuracy metrics. The sample

randomization mechanism applied is the same as in Subsection 4.2,

and the results are displayed in Table 5.

The reconstruction index RMSE for Area II is maintained

within the range of 1.80-2.76 m/s, and SSIM is within 0.65-0.83.

The reconstruction accuracy for the first CZ lies between 77.02%-

90.21%, for the second CZ between 71.29%-89.52%, and for the

third CZ between 66.21%-79.36%. When compared to the overall

reconstruction effect in Area I, as discussed in Chapter 4, it is

apparent that Area II exhibits a slightly inferior performance in

many aspects. This discrepancy can be attributed to the dataset

construction, which utilized data from Area I, and the differences in

geographic location, watershed characteristics, and eddy formation

mechanisms between the two areas. Hence, the model tends to be

more attuned to Area I rather than Area II. In terms of the CZ

reconstruction, similar to the findings in 4.2, the accuracy

diminishes as the distance of the CZ increases, indicating that

more remote CZs pose greater challenges for model reconstruction.
5.2 Validation of the effect of eddy sound
field reconstruction based on
measured data

To further validate the generalizability of the EddyGAN model,

we employ mesoscale eddy profiles constructed by fusing multiple

Argo data from the WOA18 dataset for model validation.
TABLE 4 Reconfiguration assessment metrics for the first three CZs in different directions.

Assessment
of indicators

AE CE

E-W N-S NE-SW NW-SE E-W N-S NE-SW NW-SE

First CZ 91.20% 88.04% 89.67% 91.97% 83.24% 81.65% 85.09% 81.22%

Second CZ 87.26% 85.04% 89.13% 85.24% 79.25% 81.52% 78.33% 77.95%

Third CZ 80.11% 77.53% 79.38% 81.25% 73.25% 77.16% 69.24% 71.11%
TABLE 5 Metrics for evaluating the effect of applying Eddy GAN model reconstruction in study area II.

Assessment
of indicators

AE CE

E-W N-S NE-SW NW-SE E-W N-S NE-SW NW-SE

RMSE 1.80 1.78 1.95 2.15 2.27 2.35 2.76 2.02

SSIM 0.83 0.77 0.75 0.80 0.72 0.65 0.67 0.74

First CZ 90.21% 82.45% 81.24% 84.52% 80.64% 77.02% 79.55% 81.27%

Second CZ 85.16% 79.25% 82.19% 83.65% 73.14% 71.29% 75.62% 73.26%

Third CZ 79.36% 75.23% 71.76% 79.05% 71.97% 66.21% 67.09% 70.22%
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Initially, we use the eddy identification information to match

with the latitude and longitude of Argo data post-quality control

screening. We extract data pairs with at least five Argos within 1.2

times the eddy radius. These pairs are relatively uniformly

distributed across the eddy center and its peripheries, with

pointwise first-order fitted straight lines passing through the eddy

center’s extreme region. This matching data encompasses both

Areas I and II. Subsequently, we applied the Akima interpolation

method (Akima, 1970) to transform the discrete Argo profile data

into continuous profiles. This interpolation method is also used to

complement the WOA18 dataset’s temperature and salinity

structures up to a depth of 1000 meters, necessary for subsequent

CZ calculations. Finally, we calculate the sound speed data using the

formula provided in Section 2.2.2. Using the aforementioned

approach, we obtain the target set of measured eddy SSP, which

are then reconstructed using the EddyGAN model, employing the

same sampling mechanism as described in Subsection 4.2.

For the evaluation of effects, SSIM, RMSE, and CZ accuracy

metrics are again utilized for assessment and comparison with the

metrics from Regions I and II. The indicators for the first two

regions are average values accounting for the number, direction,

and month of SSP after sample re-randomization. The evaluation

results are depicted in Figure 12.

In the case of warm eddies, the model exhibits greater

effectiveness in reconstructing the sampling area (Area I), with an

average SSIM of approximately 0.80, an average RMSE of around

1.50 m/s, and reconstruction accuracies exceeding 80% in the three

CZs. In contrast, the reconstruction for Area II is marginally

inferior; nevertheless, it still achieves an average SSIM of about

0.7, an RMSE of 2.0 m/s, and reconstruction accuracies surpassing

70% in the CZs. The average SSIM for Measured data stands at
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approximately 0.65. Regarding cold eddies (CEs), all indicators

underperform relative to warm eddies (AEs), and this trend is

consistent in the actual data reconstruction. As with AEs, the

reconstruction effect in Area II is slightly less favorable compared

to Area I, but with an average SSIM of around 0.7, an RMSE of

about 2.0 m/s, and each CZ’s reconstruction accuracy exceeding

70%. The average SSIM for Measured data is approximately 0.65;

with CEs, all indices are lower than those of AEs, which is also

evident in the reconstruction of the Measured data (Figure 13).

From this analysis, we can deduce that the reconstruction effects

in Areas I and II are in basic agreement with the experimental

results presented in the previous paper. It is observed that the

reconstruction quality of measured data is slightly inferior to that of

reanalyzed data, and the reconstruction effect across different CZ

distances exhibits a consistent trend with the reanalyzed data.

Several factors may account for this: firstly, the sample size of the

measured data is significantly smaller than that of the reanalysis

data, which fails to capture the randomness ideally present;

secondly, the model demonstrates better applicability to data that

originates from the same source as the sample set, leading to

somewhat weaker support for the measured data. Even though

the reanalyzed data assimilate a considerable quantity of

measurements from diverse sources, the volume of data is

relatively limited for the expansive oceanic area. This limitation

contributes to the measured data’s slightly less accurate

reconstruction effect compared to the reanalyzed data. Despite the

reanalyzed data incorporating extensive multi-source real

measurements, the amount remains insufficient for the vast

oceanic expanse, resulting in the model not fully capturing the

characteristics of actual data. Thirdly, the measured data derived

from the combination of WOA18 and Argo data, as introduced in
FIGURE 12

Schematic comparison of the indicators after applying EddyGAN reconstruction to the measured data of Area I and II.
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this section, is not truly raw measured data. In comparison to

shipborne survey measurements, there is a notable disparity in point

density and instrumental precision. Consequently, this difference may

also contribute to the challenge of accounting for the bias observed in

the reconstruction effect.

Additionally, we have also carried out reconstructions of other

high mesoscale eddy regions in the world’s oceans in our

experiments, but the results were not good enough to be

presented in the paper in the form of data visualizations. The

reason is not difficult to explain, it is due to the dataset used in this

paper is the Northwest Pacific region, so the model reconstruction

effect for this region is much better than other regions, while the

support for other regions needs to build additional sample datasets

for training, which will be one of the directions of our future work.
6 Conclusion and outlook

In this paper, we utilized high-resolution reanalysis data and the

mesoscale eddy identification technique based on flow field

geometry to correlate eddy field information with corresponding

mesoscale eddy temperature and salinity profiles. We adopted the

empirical sound speed formula to create a sample dataset of

mesoscale eddy SSPs. Subsequently, we proposed and trained a

generative adversarial network model for mesoscale eddy

reconstruction. The model was evaluated using SSIM, RMSE, and

CZ reconstruction accuracy as indicators to assess its reconstruction

performance. The results indicate that the model provides a better

reconstruction effect. Compared with the native GAN network and

traditional reconstruction methods, under the same sample set and

parameter settings, the proposed Eddy GAN model displayed

improvement. The average SSIM indices for AE and CE exceeded

0.75 and 0.65, respectively; the RMSE indices were 1.45 m/s for AE

and 1.97 m/s for CE; and the reconstruction accuracy for CZ was
Frontiers in Marine Science 16
above 70%, which is slightly higher than that of the native GAN

network and significantly exceeds other methods.

During the experimental process, we observed four phenomena:

first, the reconstruction effect for AE was significantly better than

for CE; second, the reconstruction effect showed little variation

across different directions; third, the reconstruction effect was

poorer around the summer months in the northern hemisphere

compared to other times of the year; and fourth, the reconstruction

accuracy decreased with increasing distance of the CZ.

To verify the model’s generalizability and practical value, we

used mesoscale eddy SSPs constructed by fusing multiple Argo

datasets fromWOA18 for model validation. We employed the same

validation method to evaluate the model’s performance. The results

demonstrate that the EddyGANmodel performs well with real data,

and the SSIM and RMSE metrics indicate performance comparable

to the reanalyzed data. In terms of CZ accuracy, the reconstruction

accuracy for the first two CZs was above 70%, while the third was

slightly lower at 58%. Analyzing its causes, the poorer

reconstruction results of the third CZ may be caused by the

accumulation of its acoustic propagation error, which can be

clearly seen in the decreasing reconstruction accuracy trend of the

first, second, and third CZs in Figure 12. In addition, since the

Measured data in this paper are synthesized from multiple Argo

data that are approximately in a straight line, there is some synthesis

error in itself, and the reconstruction accuracy of the CZ is closely

related to the reconstruction effect of the profiles, so uncontrollable

errors may occur; finally, since there are only about 200 sets of

Measured data that meet the screening conditions in 5.2, the small

amount of data may not be able to reflect the reconstruction effect

more realistically. For the above reasons that may lead to the

decrease of reconstruction effect, we give several possible

solutions, which will also continue to be tried in our next

research: first, updating the model to make it more applicable to

the direction of mesoscale eddy reconstruction; second, expanding
Area 1 Area 2 Measured Data

Multiple
SSP

Ground 

Truth

Masked

EddyGAN

Reconstruct

Double
SSP

Ground 

Truth

Masked

EddyGAN

Reconstruct

Single 
SSP

Ground 

Truth

Masked

EddyGAN

Reconstruct

FIGURE 13

Schematic comparison of the generalizability of the model for different input sound speed profile conditions, including Area 1, Area 2 and Measured
Data (in the case of AEs).
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the sample dataset, which will lead to an increase in the content of

the learning, and the model will be more generalizable and robust;

third, fusing some of the measured data into the sample dataset

instead of only using the reanalysis data to enhance its

reconstruction support for the real data; fourth, the diversity of

evaluation indexes; CZ reconstruction accuracy is admittedly a

better application index to reflect the reconstruction effect, but

other application evaluation indexes are more meaningful for the

areas where CZs are less applied.

Finally, to address the challenge of reconstructing themesoscale eddy

sound field with limited data, we present the EddyGAN model as a

solution. This model requires a minimum amount of data, specifically

the sea surface sound speed field and a single sound speed profile at the

eddy center. The model has undergone experimental evaluations to

support its generalizability and validity, showing a degree of

representativeness. However, there remains a gap in its response to the

finer andmore realistic mesoscale eddy sound field structures: limited by

the collection range of the sample dataset, our proposed model is only

applicable to the KE region and its adjacent regions with similar

mesoscale eddy characteristics, while it is not as descriptive for other

regions. In future work, we will build more models for sea areas with

different mesoscale eddy characteristics to make our model more

generalized and adapt it to the mesoscale eddy reconstruction

conditions in more sea areas. If this research could incorporate a

substantial number of mesoscale eddy survey data, the model’s

credibility would significantly improve. We hope that this work

will encourage the broader sharing of marine survey data

and foster continued advancements in mesoscale eddy

reconstruction research.
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