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sediment transport during heavy
ice years in the Bohai Sea
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Mengqi Li4, Qi Feng2, Lvyang Xing2, Di Yu2 and Yufeng Pan2

1Academy of the Future Ocean, Ocean University of China, Qingdao, China, 2College of Marine
Geosciences, Ocean University of China, Qingdao, China, 3Key Lab of Submarine Geosciences and
Prospecting Techniques, MOE, Qingdao, China, 4Research Institute of Petroleum Exploration and
Development, PetroChina, Beijing, China
The Bohai Sea, known for being the lowest latitude seasonally frozen sea area in

the world, experienced severe ice conditions with a 30-year recurrence period

during the winter of 2009-2010. Water-sediment flux is a crucial parameter for

water quality management in marine environment. Using a highly accurate

three-dimensional hydrodynamic and sediment transport numerical model, the

significant wave height (Hs), current velocity, suspended sediment concentration

(SSC) and water-sediment flux in the Bohai Sea during ice-covered and ice-free

conditions are compared. Our findings indicate that the current velocity and

sediment resuspension decrease under the ice coverage, but increase at the

edge of the ice. The net outflow tidal flux (TF) in winter under ice-free conditions

accounts for 24.5% of the whole year. The net outflow TF increases by 32.7%

during ice-covered conditions, primarily due to the pressure difference between

high air pressure superimposing heavy sea ice in the northwest Bohai Sea and the

low air pressure in Bohai Strait, resulting in increased ebb velocity and decreased

flood velocity. The net outflow suspended sediment flux (SSF) during ice-free

conditions in the winter is 2.32×109 kg, while SSF increases by 1.24 times during

ice-covered conditions, leading to worse water quality in the outer sea. The

decrease of TF in the southern part of the Bohai Strait and the reduction of

suspended sediment concentration by nearly 15 mg/l lead to the significant

decrease in SSF. This study has significance guiding value for understanding the

source-sink sedimentation system and water quality research in East China Sea.
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Highlights
Fron
• The current velocity reduces by direct ice cover, but

increases along ice edge.

• The area where the velocity increases during ebb tide is

larger during ice cover.

• The net outflow water-sediment flux from the Bohai Sea

increase under ice cover.

• The net outflow tidal flux increases by 32.7% due to the

pressure difference.

• The net outflow suspended sediment flux increases by

1.24 times.
1 Introduction

The Bohai Sea, known for being the lowest latitude seasonally

frozen sea area in the northern hemisphere (Wang et al., 2021; Li et al.,

2024), freezes for approximately 3-4 months annually (Su and Wang,

2012). Sea ice poses threats to marine transportation safety, oil platform

structural safety, offshore engineering operations, as well as aquaculture

(Zhang and Li, 1999; Zhang et al., 2018; Zhou et al., 2023; Wang et al.,

2024). Additionally, the Yellow River carries around 1.1 billion tons of

sediment into the Bohai Sea each year (Milliman and Meade, 1983).

The sediment accumulates near the Yellow River estuary in summer

and is strongly resuspended in winter, subsequently transported to the

open sea (Yang et al., 2011; Wang et al., 2014). In the marine

environment, suspended sediment concentration (SSC) plays a vital

role in water quality management and influences biogeochemical

processes (Bilotta et al., 2012; Zhou et al., 2022). As an important

link between the Yellow River and the open sea, the exchange of water

and sediment in the Bohai Sea is especially crucial (Liu et al., 2024). At

present, global climate change is experiencing peak fluctuations,

making mid- and high-latitude bays more susceptible to extreme ice

conditions (Xu et al., 2019). Therefore, investigating the impacts of sea

ice on water-sediment flux and sediment transport during heavy ice

winters in the Bohai Sea has significance guiding value for

understanding the source-sink sedimentation system and water

quality research in East China Sea.

Previous research on the impact of sea ice on hydrodynamic

dynamics has predominantly focused on polar regions, and few

studies have been carried out in seasonal frozen areas with frequent

human activities, such as the Bohai Sea (Kug et al., 2015; Manson et al.,

2016; Jiao et al., 2019). Sea ice reduced significant wave height (Hs)

(Che et al., 2019; Zhang et al., 2020), and suppressed tidal amplitude

(Zhang et al., 2019). The wave direction under the ice coverage changed

compared to open water (Wahlgren et al., 2023). Researchers believed

that due to ice coverage, the maximum surface current velocity

decreased and lagged (Su et al., 2003), as well as the vertical

distribution of current velocity changed from the traditional

logarithmic type to the parabolic type (Jiang et al., 2020).

Additionally, it was proposed that energy transferring from the open

sea to the inner bay remains constant, albeit with reduction in vertical

amplitude, causing energy to transform into horizontal flow along the
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coastal ice boundary (Liu et al., 2022). Most scholars asserted that sea

ice inhibited sediment resuspension by limiting wave and current speed

(Forest et al., 2008; Lannuzel et al., 2010; Murray et al., 2012; Bonsell

and Dunton, 2018). Due to ice coverage, the SSC in Liaodong Bay was

lower than that in Bohai Bay and Laizhou Bay (Xie et al., 2023).

Sediment efflux was lowest at stations that were most recently ice-

covered in the Pacific Arctic (Barrett et al., 2023). However, some

scholars argued that ice mass interference increased seawater resistance

and water body instability, thereby making it easier to trigger sediment

resuspension (Peck et al., 2005; Giesbrecht et al., 2013).

Despite numerous researches on the impacts of sea ice on

hydrodynamics and sediment resuspension, the water-sediment

flux exchange between the Bohai Sea and the outer sea under ice

coverage has not been fully investigated. In the winter of 2009-2010,

severe ice conditions with a recurrence period of 30 years occurred

in the Bohai Sea (Zhao et al., 2012). The thickness and extent of sea

ice during this period were depicted in Figure 1. Using the MIKE

three-dimensional hydrodynamic and sediment transport

numerical model, the Hs, current velocity and SSC in the Bohai

Sea were compared during both ice-covered and ice-free conditions

from December 2009 to February 2010 to investigate the impacts of

sea ice on the water-sediment flux.
2 Data and methods

2.1 Data sources

The field water level, current, wave height and SSC data were

provided by the Acoustic Wave and Current instrument (AWAC)

and Optical Back Scattering (OBS) installed at seabed-based

observation station QD12 (119.1°E, 38.48°N, depth 5.5 m),

located in western Laizhou Bay. The observation period was from

2 April 2009 to 7 April 2010. Sea ice thickness referred to the

vertical distance from the ice surface to the ice bottom, while sea ice

concentration represented the ratio of the sea ice coverage area to

the total sea area (Lu et al., 2004; Ren et al., 2022). These parameters

are fundamental for characterizing sea ice. The sea ice thickness and

concentration data in the Bohai Sea used in this model from

December 2009 to February 2010 were obtained from previous

studies (Zhang and Tang, 2010; Zhang et al., 2019). The near-shore

sea ice concentration was 0.55 in Bohai Bay and Laizhou Bay, 0.6 in

Liaodong Bay, and 0.5 far offshore in the three bays. The near-shore

sea ice thickness was 30 cm in Bohai Bay and Laizhou Bay, 55 cm in

Liaodong Bay, and 20 cm far offshore in the three bays.
2.2 Model description

The MIKE 3 hydrodynamic and sediment transport model,

developed by the Danish Hydraulic Institute (DHI), was employed

in this study. MIKE is widely recommended and applied commercial

numerical simulation system in the international marine engineering

field (Warren and Bach, 1992; DHI, 2012), predominantly in

applications within ports, rivers, lakes, estuaries, coastal regions, and

oceans. Its triangular grid offers precise simulation of intricate and
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irregular coastlines, distinctly excelling in extensive areas and long-time

numerical simulations. The accuracy of simulating wave, tide, current

and sediment transport was validated extensively (Wang et al., 2017;

Liu et al., 2018; Liu et al., 2024).

The Hydrodynamic Module is based on the three-dimensional

incompressible Reynolds-averaged Navier-Stokes equations and

adopts Boussinesq approximation and hydrostatic assumption

(DHI, 2012). The local continuity equation is written as Formula 1:

∂ u
∂ x

+
∂ v
∂ y

+
∂w
∂ z

= S (1)

The motion equations in the x and y direction are written as

Formulas 2 and 3:
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+
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+
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Where t is the time, x, y, and z are the Cartesian coordinates, z is
the surface elevation; d is the still water depth, h = z + d is the total

water depth, u, v, and w are the velocity components in x, y and z

directions, f is the Coriolis parameter (f = 2Wsinq), where W is the
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earth rotational angular velocity and q is the latitude, g is the gravity
acceleration, r is the seawater density, r0 is the reference seawater
density, Sxx, Sxy, Syx, and Syy are components of the radiation stress

tensor, nt is the vertical turbulent viscosity, pa is the atmospheric

pressure, S is the magnitude of the discharge due to point sources,

and (us, vs) is the velocity by which the water is discharged into the

ambient water (DHI, 2012). The horizontal stress terms are

described using a gradient-stress relation (DHI, 2012), which is

simplified to Formulas 4 and 5:

Fu =
∂

∂ x
(2A

∂ u
∂ x

) +
∂

∂ y
(A(

∂ u
∂ y

+
∂ v
∂ x

)) (4)

Fv =
∂

∂ x
(2A(

∂ u
∂ y

+
∂ v
∂ x

)) +
∂

∂ y
(2A

∂ v
∂ y

) (5)

where A is horizontal eddy viscosity.

Based on the conservation equation of wave action, MIKE SW

uses the wave action density spectrum (N(s , q)) to describe waves.

The independent variables of the model are relative wave frequency

(s ) and wave direction (q). The relationship between wave action

density and wave energy spectrum density (E(s , q)) is written as

Formula 6:

N(s , q) = E(s , q)=s (6)

Where s is the relative frequency and q is the wave direction.
2.3 Model configuration

The calculation area of the model encompassed the entire Bohai

Sea, covering 37°-41°N and 117.5°-122.5°E, with an opening

boundary at 121.9°E. The model was horizontally divided into
FIGURE 1

Sea ice extent and thickness of the Bohai Sea in February 2010. (A) Sea ice extent and thickness of the Bohai Sea from Landsat remote sensing
images in February 2010. The red line is the Bohai Strait section. (B, C) The photos of sea ice on the west bank of Laizhou Bay in January 2010.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1411770
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Liu et al. 10.3389/fmars.2024.1411770
17,075 triangular grids, and vertically divided into 7 sigma layers

with the surface and bottom layer encrypted. The land boundary

was derived from 2009 Landsat satellite images and partially

smoothed. Water depth was determined through a combination

of electronic chart depth and measured depth. The boundary water

level conditions were obtained from TPXO8 tidal data set (https://

www.tpxo.net/global) with a spatial resolution of 1/30°. Monthly

runoff and sediment discharge data of the Yellow River was from

the Yellow River Sediment Bulletin (http://yrcc.gov.cn/gzfw/nsgb/

index.html). The sediments distribution in the Bohai Sea was

determined according to Li (2005). Since temperature and salinity

had little influence on this study, the water temperature and salinity

field are taken as constants (Li et al., 2001). Atmospheric forcing

field data were provided by the European Centre for Medium-

Range Weather Forecasts Reanalysis v5 (ERA5), including wind

and mean sea level pressure, with a temporal resolution of 1 hr and

a spatial resolution of 0.25°. The models under ice-covered and ice-

free conditions utilized identical shoreline, water depth, wind field,

runoff and opening boundary. The sole disparity lied in the sea ice

conditions to study the impacts of sea ice on hydrodynamics

(current and wave) and sediment resuspension.
2.4 Model verification

The model performance was assessed quantificationally by four

indices: mean absolute error (MAE), root mean square error

(RMSE), correlation coefficient (R), and prediction skill (Skill)

(Liu et al., 2024). RMSE indicated the average deviation between

model results and observation data, while Skill demonstrated the

consistency index between model results and observed data (Liu

et al., 2024). A Skill value of 1 indicated complete consistency

between the model prediction and the measured data (Liu et al.,

2024). According to Willmott (1981), the calculation formulas were

as Formulas 7, 8 and 9.
MAE =

1
N
 oN

k=1 Xmodi  −  Xobsij j (7)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
No

N
k=1ðXmodi  −  Xobsi)

2

r
(8)

Skill = 1 − oN
k=1jXmodi  −  Xobsij 2

oN
k=1(jXmodi  −   ̅Xobs   +j jXobsi  −   ̅Xobsj   )2

(9)

Where Xmod and Xobs were model and observation data,

respectively, Xobs represented the average observation data, i was

the instant, N was the sample size. Harmonic analysis was

conducted on the tidal data over one-year period (Pawlowicz

et al., 2002), revealing that the amplitude and phase of M2, S2, O1

and K1 tidal constituents were in good agreement with measured in

the Bohai Sea (Figures 2A–C). The data on current velocity and

direction, water level and Hs under sea ice coverage were also well-

verified (Figures 2D–I). The regularity and magnitude of bottom

SSC corresponded well with the observed data (Figure 2J). Table 1

presented the error calculation of each element. The model utilized
Frontiers in Marine Science 04
in this study is capable of simulating the actual hydrodynamic

environment in the Bohai Sea and holds potential for future

research applications.
2.5 Calculation of water-sediment flux and
wave-current induced shear stress

The annual tidal flux (TF) and suspended sediment flux (SSF)

were calculated according to Formulas 10 and 11 (Liu et al., 2024).

TF =
ðð  

s
→
u
→
n
ds (10)

SSF =
ðð  

s
→
u
→
n
cds (11)

Where, →
u
was the velocity vector of one point in a section, →

n
was the normal vector of the section, ds was the area of the micro-

element, c was the SSC on the micro-element. The direction of TF

and SSF in the Bohai Strait was positive to the east and negative to

the west. For the Bohai Strait, inflow was considered negative and

outflow was positive (Figure 1A).

Currents and waves play a pivotal role controlling sediment

resuspension (MacVean and Lacy, 2014), and bottom shear stress is

crucial for predicting SSC (Heath et al., 2016). The current-induced

shear stress (tc) was calculated by Formulas 12 and 13 (Soulsby,

1997):

U(z) = (u*=k)In(z=z0) (12)

  tc = ru 2
* (13)

U(z) is the average velocity (m/s) of the sampling period above the

seabed z (m), u* is the friction velocity (m/s), k is the Carmen constant

(0.4), r is the seawater density (1025 kg/m3), and z0 is the roughness

length of the seabed (z0=ks/30, where ks = 2.5D50 is theNikuradse particle

roughness and D50 is the median grain size of the sediment) (Li, 2005).

According to linear wave theory, the amplitude of the wave

orbit velocity Uw and the major axis radius of near-bottom wave

orbit Aw calculated by Formulas 14 and 15 (Shi et al., 2014):

Uw =
pHrms

Tsinh(2pd=L)
(14)

Aw = UwT=2p (15)

Hrms is the root mean square wave height (m) [=Hs/
ffiffiffi
2

p
, Hs is

the significant wave height (m)], T is the wave period (s), d is the

water depth (m), and L is the wavelength (m), calculated by

Formula 16 (Li and Amos, 2001; Wiberg and Sherwood, 2008):

L = gT2tanh(2pd=L)=2p (16)

The orbital motion of waves increases the bed shear stress.

Herein, wave-induced shear stress (tw) is calculated by Formula 17

(Soulsby, 1997):
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tw =
1
2
rfwU

    2
w (17)

r is the seawater density (1025 kg/m3) and fw is the wave

friction coefficient related to the wave Reynolds number Rew [Rew
=Aw Uw/n, where n is the seawater kinematic viscosity coefficient

(10-6 m2/s)].

Rew ≤ 105,  fw = 2Re−0:5w ;

Rew > 105,  fw = 0:0521Re−0:187w ;

The wave-current induced shear stress   (tcw) is calculated by

Formulas 18 and 19 (Soulsby, 1995):

tcw = ½(tm + tmjcosjj)2 + (twsinjj)2�1=2 (18)

tm = tc½1 + 1:2(tw=(tc + tw))
3:2� (19)

tm is the average shear stress under the action of waves and

currents, and j is the propagation angle of the waves and currents.
Frontiers in Marine Science 05
3 Results

3.1 Hydrodynamics and sediment
resuspension variation

The sea ice coverage in Bohai Bay, Laizhou Bay, and Liaodong

Bay has led to varying reductions in Hs and current velocity. The Hs

decreased in the northeastern Liaodong Bay, with a maximum of

nearly 1 m (Figures 3A, B). The friction of sea ice caused a reduction

in surface velocity by over 6 cm/s and bottom velocity by over 2 cm/

s in all three bays (Figures 3C–E). The central part of Bohai Sea and

the Bohai Strait, not directly covered by sea ice, experienced current

velocity fluctuations of within 2 cm/s. However, in the west of

Dalian, current velocity increased significantly staying below 6 cm/

s, most likely due to its proximity the ice edge.

Additionally, SSC decreased in most areas of the Bohai Sea

under ice coverage, with the decreasing range of SSC increasing

from surface to bottom (Figures 3F–H). Under ice coverage, SSC

reduced by over 100 mg/l in the west of Bohai Bay, the north of
B C

D E

F G

H I

J

A

FIGURE 2

Comparison between model data and observation data. (A) The location of the tide stations. (B) Amplitude of M2, S2, O1 and K1 tidal constituents.
(C) Phase of M2, S2, O1 and K1 tidal constituents. (D) Comparison of tide under ice coverage. (E) Comparison of Hs under ice coverage.
(F) Comparison of bottom current velocity under ice coverage. (G) Comparison of bottom current direction under ice coverage. (H) Comparison of
surface current velocity under ice coverage. (I) Comparison of surface current direction under ice coverage. (J) Comparison of bottom SSC.
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Liaodong Bay and near the Yellow River Estuary. On the other

hand, SSC in the central of Bohai Sea and near Bohai Strait either

increased or decreased in the range of 10 mg/l. The disturbance to

the bottom sediment caused by increased current velocity at the ice

edge in the west of Dalian led to a significant increase in bottom SSC

(Figure 3F). The variations in surface SSC were showed in

Figure 3H, with a decrease by more than 100 mg/l in the

northern Liaodong Bay, 10-100 mg/l near the Yellow River Delta

and southwestern Bohai Bay, and minor fluctuations in most

other areas.

Bottom shear stress played a crucial role in sediment erosion,

sedimentation, and resuspension. The interaction of waves,

currents, and their coupling effects were key contributors to

sediment resuspension. Through the analysis of tw, tc, and tcw
under ice-covered and ice-free conditions, it was observed that the

tw diminished in the Bohai Sea, with reduction of about 0.2 Pa near

the coastline (Figure 4A). The tc decreased in all three bays, with the
most significant decrease in the northern Liaodong Bay, up to

0.2 Pa, while tc increased approximately 0.04 Pa in the northern

part of Bohai Strait (Figure 4B). The tcw notably decreased in the

three bays, particularly in the shallow coastal waters (Figure 4C),

causing a significant decrease in bottom SSC during ice-covered

conditions (Figure 3D). Conversely, the tcw amplified in the

northern Bohai Strait, leading to an increase in bottom

SSC (Figure 3D).
3.2 Impacts of sea ice on TF

Under ice-free conditions, the outflow and inflow TF of the

Bohai Strait (the red line in Figure 1A) during the entire winter

(from December 2009 to February 2010) were 5.541×1012 m3 and
Frontiers in Marine Science 06
5.492×1012 m3, respectively, indicating a net outflow TF of 4.9×1010

m3. The peak TF value was in the northern part of the Bohai Strait

section (Figures 5C, D). Under ice-covered conditions, the outflow

TF from the Bohai Strait in winter was 5.544×1012 m3, which was

3×109 m3 higher than that without ice. The inflow tidal flux was

5.479×1012 m3, decreased by 1.3×1010 m3 compared with the ice-

free conditions (Figures 5A, B). Under ice-covered conditions, the

net outflow TF from the Bohai Sea in winter was 6.5×1010 m3, an

increase of 32.7% compared with the ice-free conditions

(Figures 5E, F). In the case of ice coverage, the outflow TF

increased, while the inflow TF decreased.
3.3 Impacts of sea ice on SSF

Under ice-free conditions, the outflow and inflow SSF in the

Bohai Strait in winter were 3.960×1010 kg and 3.728×1010 kg,

respectively, showing the net outflow SSF of 2.32×109 kg. The

highest value of SSF was in the southern part of the Bohai Strait

section (the northern part of Shandong Peninsula; Figures 6C, D).

Under ice-covered conditions, the outflow SSF from the Bohai Strait

in winter was 3.489×1010 kg, which was 4.71×109 kg lower than

under ice-free conditions, accounting for 11.9%. The inflow SSF was

2.970×1010 kg, reduced by 7.58×109 kg, accounting for 20.3%

compared to the ice-free conditions (Figures 6A, B). Under ice-

covered conditions, the net SSF in the Bohai Sea during winter was

5.19×109 kg, which was 1.24 times higher than that in the absence of

ice (Figures 6E, F). Although both the inflow and outflow SSF were

reduced under ice coverage, the inflow was even less, leading to a

significant increase in the net outflow SSF from the Bohai Strait

under ice coverage.
4 Discussion

4.1 Sea surface pressure

Under ice coverage, the current velocity decreased by more than

30 cm/s during rapid flood and ebb tides in the northern Liaodong

Bay, but increased by over 5 cm/s at the edge of sea ice (Figures 7A–

D). Liu et al. (1993) observed an along-ice-edge jet in polar regions,

attributing it to reduced wave energy due to sea ice coverage, with

energy being transferred to the sea ice and the underlying seawater.

Dai et al. (2019) suggested that the rapid decrease in wave energy

resulted in the interaction between the waves and sea ice occurring

only near the marginal ice zone, leading to the jet formation.

Additionally, observations in the Bohai Sea revealed that

decreased wave height and tidal amplitude under ice coverage

caused energy conversion into horizontal flow along the ice edge,

leading to higher velocities (Liu et al., 2022).

Although the current velocity increased at the edge of sea ice,

the area of increasing current velocity was large at the rapid ebb

moment, including the northern area of Bohai Strait, while the area

of increasing current velocity at the rapid flood moment was

comparatively limited (Figures 7A–D). Figure 7E depicted the

vertical current velocity profile at the edge of the sea ice during
TABLE 1 Error calculation of elements.

Elements MAE RMSE R Skill

M2

Amplitude (cm) 6.17 8.02 0.98 0.99

Phase (°) 7.57 9.95 1.00 1.00

S2
Amplitude (cm) 2.77 3.62 0.91 0.95

Phase (°) 10.06 12.66 0.99 1.00

K1

Amplitude (cm) 4.85 6.13 0.84 0.91

Phase (°) 13.58 16.03 0.99 0.99

O1

Amplitude (cm) 2.54 3.23 0.90 0.94

Phase (°) 8.17 9.33 1.00 1.00

Tide (m) 0.12 0.16 0.98 0.98

Hs (m) 0.11 0.17 0.93 0.95

Current

Bottom speed (m/s) 0.07 0.09 0.83 0.88

Surface speed (m/s) 0.07 0.08 0.81 0.90

Bottom direction (°) 11.18 13.67 0.99 0.99

Surface direction (°) 9.25 11.93 0.99 1.00

Bottom SSC (kg/m3) 0.08 0.10 0.76 0.84
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the rapid flood and ebb. The current velocity from the bottom to the

surface increased under ice-free conditions. However, under ice-

covered conditions, the surface and bottom current velocity was

lower due to friction, and the middle current velocity was largest.

During the rapid ebb, the current velocity under ice-covered

conditions exceeded that under ice-free conditions. Conversely,

during the rapid flood, it was the opposite.

Section 3.2 revealed that sea ice coverage enhanced the outflow TF

and lessened the inflow TF in the Bohai Sea. Comparison of mean sea
Frontiers in Marine Science 07
level pressure data downloaded by ERA5 from December 2009 to

February 2010 revealed a gradual pressure decrease from northwest to

southeast (Figure 7F). During the ebb tide, the high pressure in Liaodong

Bay combined with the pressure of heavy sea ice on the water body

resulted in a pressure disparity between Liaodong Bay and the Bohai

Strait, accelerating the current velocity in the north of the Bohai Strait,

thereby increasing the outflow TF from the Bohai Sea. Conversely,

during the flood tide, sea ice coverage impeded water from entering the

Bohai Sea, thus diminishing the inflow TF into the Bohai Sea.
FIGURE 4

Comparison of shear stress in the Bohai Sea during winter (ice-covered minus ice-free). (A) Wave-induced shear stress (tw). (B) Current-induced
shear stress (tc). (C) Wave-current induced shear stress (tcw ).
FIGURE 3

Comparison of significant wave height (Hs), current velocity and SSC in the Bohai Sea during winter (ice-covered minus ice-free). (A) Hs during ice-
free condition. (B) Hs during ice-covered condition. (C) Bottom current velocity difference. (D) Middle current velocity difference. (E) Surface current
velocity difference. (F) Bottom SSC difference. (G) Middle SSC difference. (H) Surface SSC difference.
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4.2 Current velocity and SSC

During winter, the average current velocity in the Bohai Strait

was 0.37 m/s under ice-covered conditions and 0.38 m/s under ice-

free conditions (Figures 8A, B). The current velocity in the northern
Frontiers in Marine Science 08
part of the Bohai Strait (LaoTieshan waterway) was larger,

averaging nearly 0.8 m/s, whereas the current velocity in the

southernmost part was smaller, averaging approximately 0.5 m/s,

which was similar as previous research (Jiang et al., 2019). In the

northernmost part of the Bohai Strait, current velocity decreased
FIGURE 6

The net outflow and inflow SSF under both ice-covered and ice-free conditions during winter in the Bohai Strait. (A) The outflow SSF under ice-
covered condition. (B) The outflow SSF under ice-free condition. (C) The outflow SSF difference (ice-covered minus ice-free). (D) The inflow SSF
under ice-covered condition. (E) The inflow SSF under ice-free condition. (F) The inflow SSF difference (ice-covered minus ice-free).
FIGURE 5

The net outflow and inflow TF under both ice-covered and ice-free conditions during winter in the Bohai Strait. (A) The outflow TF under ice-
covered condition. (B) The outflow TF under ice-free condition. (C) The outflow TF difference (ice-covered minus ice-free). (D) The inflow TF under
ice-covered condition. (E) The inflow TF under ice-free condition. (F) The inflow TF difference (ice-covered minus ice-free). The section orientation
was shown in Figure 1A.
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due to substantial ice cover friction (Figure 8C). Conversely, in the

northern sea ice margin area, current velocity slightly increased due

to the effects of pressure. In the southern part of the Bohai Strait, the

shallow water depth was affected by the surface sea ice, leading to a

decrease in velocity.

During winter, the average SSC in the Bohai Strait was 13.1 mg/l

under ice-covered conditions and 15.2 mg/l under ice-free

conditions (Figures 8D, E). In the southern part of the Bohai

Strait (the north coast of the Shandong Peninsula), SSC was high,

and the ice coverage reduced current velocity, thereby lowering the

SSC to a maximum of nearly 15 mg/l (Figure 8F). Additionally, Yu

(2012) supported that the high SSC near the north coast of

Shandong Peninsula in winter was due to the strong wind waves

and coastal currents in winter. Under ice-covered conditions, the

reduction of SSF into the Bohai Sea by 20.3% was attributed to the

decrease in inflow TF superimposing the decrease in SSC. In the

northern part of the Bohai Strait, outflow TF increased, while SSC

was low and changed minimally. On the other hand, in the southern

part, the outflow TF decreased slightly, but the higher SSC

decreased significantly. Ultimately, the outflow SSF from the

entire Bohai Strait decreased by 11.9%, as opposed to increasing

like the TF.
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4.3 Annual water-sediment flux

The annual (March 2009 to February 2010) outflow TF from the

Bohai Strait was 2.21×1013 m3 (Figure 9A), under ice-free

conditions in winter representing approximately 25.1% of the

total year (Figure 10A). Simultaneously, the annual inflow TF was

2.19×1013 m3 (Figure 9B), also under ice-free conditions in winter

accounting for about 25.1% (Figure 10A). The annual net outflow

TF from Bohai Sea was 2×1011 m3; during ice-free winters, the net

outflow was 4.9×1010 m3, making up 24.5% of the annual total,

whereas during winters with ice coverage, the net outflow TF was

6.5×1010 m3, accounting for 32.5% of the annual total (Figure 10A).

During the whole year, the outflow SSF from the Bohai Strait

was 1.17×1011 kg (Figure 9C), under ice-free conditions in winter

accounting for about 33.8% and under ice-covered conditions for

about 29.8% (Figure 10B). The annual inflow SSF was 1.22×1011 kg

(Figure 9D), under ice-free conditions in winter accounting for

about 30.6% and under ice-covered conditions for about 24.3%

(Figure 10B). The annual net inflow SSF to the Bohai Sea was 5×109

kg. In winter, the net outflow SSF from the Bohai Sea was 2.32×109

kg under ice-free conditions and 5.19×109 kg under ice-covered

conditions (Figure 10B).
FIGURE 7

Comparison of bottom and surface current velocity and pressure in the northern Bohai Sea in winter. (A) Comparison of bottom current velocity at
the rapid flood moment (ice-covered minus ice-free). The red arrow was the ice-free condition and the yellow arrow was the ice-covered
condition. The black line served as the boundary between ice-covered and ice-free regions, equal to 0. (B) Comparison of surface current velocity
at the rapid flood moment (ice-covered minus ice-free). (C) Comparison of bottom current velocity at the rapid ebb moment (ice-covered minus
ice-free). (D) Comparison of surface current velocity at the rapid ebb moment (ice-covered minus ice-free). (E) The current velocity profile of a
single point under ice-free and ice-covered conditions at the rapid flood and ebb moment. The point was located at the blue dot in (A–D). (F) Mean
sea level pressure in the Bohai Sea from December 2009 to February 2010.
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Strong gale processes may induce significant wind-driven

compensation flow and water exchange phenomena in the Bohai

Sea (Wan et al., 2015a). In a year with consistent wind speed and

tidal current velocity, the inflow and outflow TF and SSF during

winter (92 days) accounted for 24.7% of the annual cycle (365 days).

Numerical simulation results showed that under ice-free conditions,

the inflow and outflow TF during winter contributed to 25.1% of the

entire year. Moreover, the inflow and outflow SSF during winter

under ice-free conditions contributed to 33.8% and 30.6% of the

entire year, respectively. These findings indicated a slightly stronger

water exchange capacity, sediment resuspension and diffusion in
Frontiers in Marine Science 10
winter, primarily attributed to the winter gale processes (Wan

et al., 2015b).
5 Conclusions

The paper established a high-precision MIKE 3D hydrodynamic and

sediment transport numerical model in the Bohai Sea, along with a

demonstration of its reliability through comparison with observation data.

The changes in current velocity, SSC, andwater-sediment flux in the Bohai

Sea under both ice-free and ice-covered conditions was fully investigated.
FIGURE 9

Annual inflow and outflow TF and SSF in the Bohai Strait. (A) Outflow TF. (B) Inflow TF. (C) Outflow SSF. (D) Inflow SSF.
FIGURE 8

Comparison of current velocity and SSC in the Bohai Strait during winter. (A) The current velocity under ice-covered conditions. (B) The current
velocity under ice-free conditions. (C) The current velocity difference (ice-covered minus ice-free). (D) The SSC under ice-covered conditions.
(E) The SSC under ice-free conditions. (F) The SSC difference (ice-covered minus ice-free).
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Furthermore, this study analyzed the response mechanism of suspended

sediment transport to sea ice in the Bohai Sea during heavy ice years.
Fron
(1) Sea ice coverage inhibited the Hs, current velocity and

sediment resuspension in the three bays of Bohai Sea,

leading to varying degrees of decrease in Hs, current velocity

and SSC. However, the current velocity increased at the edge of

ice, intensifying disturbance to the bottom sediment.

Additionally, under ice coverage, the current velocity in the

middle layer was high, while it was low in the bottom and

surface layer. Conversely, under ice-free conditions, the

current velocity increased from the bottom to the surface.

(2) Under ice coverage, the inflow TF in the Bohai Sea decreased

and the outflow TF increased. The net outflow TF in winter

was 6.5×1010 m3, which was 32.7% higher than that without

ice. During the ebb tide, the high pressure in Liaodong Bay and

the pressure of heavy sea ice on the water body resulted in a

pressure disparity between Liaodong Bay and the Bohai Strait,

leading to the acceleration of current velocity and the larger

outflow TF from the Bohai Sea. During flood tide, sea ice

coverage made it difficult for water to enter the Bohai Sea, so

the inflow TF decreased. The annual net outflow TF from the

Bohai Sea was 2×1011 m3, under ice-free conditions in winter

accounting for about 24.5% and under ice-covered conditions

for about 32.5%.

(3) The average SSC in the Bohai Strait was 13.1 mg/l under ice-

covered conditions and 15.2 mg/l under ice-free conditions.

Under ice coverage, the decrease of SSF into Bohai Sea was

attributed to the reduction of inflow TF and SSC, resulting in
tiers in Marine Science 11
the inflow SSF decreasing by 20.3%. Despite an increase in

outflow TF from the northern part of the Bohai Strait, the low

and stable SSC led to minimal change. Conversely, the outflow

TF in the southern part of the Bohai Strait decreased,

significantly reducing the SSC by nearly 15 mg/l. Overall,

the outflow SSF from the Bohai Sea decreased by 11.9%, unlike

the TF. The annual net inflow SSF to the Bohai Sea was 5×109

kg, while in winter net outflow SSF was 5.19×109 kg under ice-

covered conditions, which was 1.24 times higher than that

under ice-free conditions.
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