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Deep underwater image
compression for enhanced
machine vision applications
Hanshu Zhang1, Suzhen Fan1, Shuo Zou1, Zhibin Yu1,2*

and Bing Zheng1,2*

1Sanya Oceanographic Institution, Ocean University of China, Sanya, China, 2Faculty of Information
Science and Engineering, Ocean University of China, Qingdao, China
Underwater image compression is fundamental in underwater visual

applications. The storage resources of autonomous underwater vehicles

(AUVs) and underwater cameras are limited. By employing effective image

compression methods, it is possible to optimize the resource utilization of

these devices, thereby extending the operational time underwater. Current

image compression methods neglect the unique characteristics of the

underwater environment, thus failing to support downstream underwater

visual tasks efficiently. We propose a novel underwater image compression

framework that integrates frequency priors and feature decomposition fusion

in response to these challenges. Our framework incorporates a task-driven

feature decomposition fusion module (FDFM). This module enables the

network to understand and preserve machine-friendly information during the

compression process, prioritizing task relevance over human visual perception.

Additionally, we propose a frequency-guided underwater image correction

module (UICM) to address noise issues and accurately identify redundant

information, enhancing the overall compression process. Our framework

effectively preserves machine-friendly features at a low bit rate. Extensive

experiments across various downstream visual tasks, including object

detection, semantic segmentation, and saliency detection, consistently

demonstrated significant improvements achieved by our approach.
KEYWORDS

underwater image compression, machine vision, frequency priors, feature fusion,
deep learning
1 Introduction

The development of computer vision has greatly boost the advancement of underwater

vision based marine research, including biological monitoring Gudimov (2020); Huo et al.

(2021); Zhou et al. (2023), terrain mapping Rowley (2018); Nadai (2019); Jeyaraj et al.

(2022), environmental surveillance Guo et al. (2020); Babić et al. (2023); Xue (2023),
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fisheries management Hsu et al. (2019); Madia et al. (2023); Wang

et al. (2023a), etc. In these research domains, underwater imagery is

pivotal in acquiring marine visual information. Since underwater

photography and image acquisition usually rely on potable devices,

underwater image compression is always required.

Learning-free techniques like JPEG Wallace (1991), JPEG2000

Rabbani and Joshi (2002), BPG Sullivan et al. (2012), and VVC

Bross et al. (2021) reduce intra-frame information redundancy

through encoding, quantization, and intra-frame prediction.

Recent advancements in image compression methods based on

deep learning networks have revealed their superior potential

compared to conventional approaches Ballé et al. (2016, 2018);

Sullivan et al. (2012); Minnen et al. (2018); He et al. (2021, 2022);

Bross et al. (2021). These deep learning-based image compression

methodologies leverage deep neural networks to acquire image

data’s intrinsic features and compression strategies, aiming for

higher compression rates and improved image quality.

Unfortunately, current image compression methods are typically

designed for terrestrial images. Applying these compression

methods to underwater images makes it easy to trigger image

information loss, which can be crucial to downstream visual tasks

(e.g., image classification Deng et al. (2009); He et al. (2016); Sandler

et al. (2018), object detection Redmon et al. (2016); He et al. (2017);

Ren et al. (2017), and semantic segmentation models Long et al.

(2015); Badrinarayanan et al. (2017); Chen et al. (2018a), as

depicted in the Figure 1.

Due to the distinctive characteristics of the underwater

environment, existing image compression methods suffer from

two primary drawbacks during underwater image compression

tasks. On the one hand, while these methods enhance the quality

of reconstructed images to some extent, their primary focus is

preserving pixel-level fidelity as perceived by the human visual

system rather than facilitating feature recognition in machine visual

applications Fang et al. (2023). Without considering the

requirements of the underwater downstream visual tasks, the

preserved information can be useless or even adverse to

underwater downstream visual tasks.

On the other hand, current learning-based or learning-free

compression methods are mainly designed to remove redundant

information in terrestrial environments, in which typically exhibit

uniform color distribution and high clarity Ancuti et al. (2012).

However, underwater photos are highly susceptible to color bias,

scattering, motion blur, and other distortions, which are quite

different with the terrestrial environments Pei et al. (2018). The

noise caused by the underwater environment can affect image

compression and downstream visual tasks Jiang et al. (2020);

Brummer and De Vleeschouwer (2023). Due to the enormous gap

between the terrestrial and underwater domains, the experience for

redundant information definition in terrestrial environments does

not apply to underwater environments. In other words, the removed

‘redundancy’ information defined in these conventional compression

methods may be useful in underwater downstream visual tasks.

Learning-based visual tasks are fundamental for underwater

automation. For high-quality images, advanced visual tasks, such as
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image classification Deng et al. (2009); He et al. (2016); Sandler et al.

(2018), object detection Redmon et al. (2016); He et al. (2017); Ren

et al. (2017), and semantic segmentation models Long et al. (2015);

Badrinarayanan et al. (2017); Chen et al. (2018a) can efficiently

accomplish machine visual tasks by learning discriminative

features. However, if we consider these tasks with underwater

image compression, the accumulation loss of information due to

underwater degradation and image compression can significantly

impact the performance of reconstructed images in downstream

machine visual tasks. Therefore, our primary concerns are

effectively introducing underwater image transformation into the

compression framework and obtain more machine-friendly feature

representations. Following the learning-based compression

framework, we introduce a task-driven feature decomposition

fusion module (FDFM) to help the network understand and

preserve machine-friendly information during the compression

process. This allows the network to concentrate on information

pertinent to the task, prioritizing task relevance over human visual

perception. Furthermore, we propose a frequency-guided

underwater image correction module (UICM) to reduce the

impact of noise caused by the underwater environment and to

accurately locate the redundant information that can be eliminated.

To this end, we propose a novel underwater image compression

framework that facilitates downstream visual tasks in underwater

scenarios. The overall framework is illustrated in Figure 2. The

primary contributions of this work are summarized as follows:
• We have proposed a novel machine-oriented underwater

image compression framework, which has achieved high

compression rates and ensured the performance of

downstream underwater visual tasks. Extensive experiments

on three different downstream visual tasks further

demonstrate the consistent and significant improvements

achieved by our method.

• To alleviate the impact of information loss caused by

underwater degradation during the image compression

process, we propose a frequency-guided underwater image

correction module (UICM) that leverages frequency priors

to remove the correct redundant information.

• We introduce a task-driven feature decomposition fusion

module (FDFM). Under the guidance of downstream visual

tasks, this module can effectively capture and keep

machine-friendly information during the image

compression process.
2 Related works

2.1 Image compression

Image compression uses reversible function mapping and

encoding techniques to represent the original image data

losslessly or lossily using fewer bits.
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2.1.1 Learning-free image compression
In early years, learning-free image compression algorithms,

including JPEG Wallace (1991), JPEG2000 Rabbani and Joshi

(2002), BPG Sullivan et al. (2012), and VVC Bross et al. (2021),

have gained widespread practical adoption due to their extensive

development. These algorithms employ lossy compression

techniques, such as transform Khayam (2003); Al-Haj (2007),
Frontiers in Marine Science 03
quantization, entropy coding Di et al. (2003); Sze and Budagavi

(2012), intra-frame prediction Brand et al. (2019), and deep

hierarchical structure Motl and Schulte (2015), to process images.

However, the individual components of these standards are

manually designed in advance, with rate-distortion optimization

applied to determine pixel signal fidelity. The rigid, hand-crafted

nature of traditional codecs limits their adaptability and efficiency
A B DC

FIGURE 1

(A) source image, (B) the proposed method, (C) JPEG, and (D) BPG. We provide three groups of downstream visual tasks including object detection,
semantic segmentation, and saliency detection. The initial subset of results pertains to the object detection task, where the first column exhibits the
original image. Notably, our approach achieves superior accuracy and confidence in three tasks.
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in catering to diverse targets. Since they lack end-to-end

optimization, they cannot dynamically adjust to image content

characteristics. Consequently, compression requirements vary for

different image types, scenarios and complexities, posing challenges

to learning-free image compression methods.

2.1.2 Learning-based image compression
The rapid development of deep learning networks has

significantly boost learning-based image compression methods.

Notably, methods based on Variational Autoencoders (VAE)

Ballé et al. (2016, 2018); Minnen et al. (2018); Cheng et al.

(2020); Li et al. (2020); He et al. (2021; Chen et al. (2021); Zhu

et al. (2022), 2022); Zou et al. (2022) employ encoders and decoders

to compress images, focusing on compressing latent features. These

approaches optimize the network in an end-to-end fashion,

resulting in a high-performance compression framework. For

instance, Ballé et al. (2016) introduced an image compression

method incorporating a nonlinear analysis transform, a uniform

quantizer, and a nonlinear synthesis transform. This method laid

the foundation for the image compression model based on the VAE

model. Similarly, Ballé et al. (2018) proposed an image compression

model based on variational autoencoders, combining priors to

capture spatial dependencies in latent representations and

training the model in an end-to-end manner. When trained on

appropriate losses, the model cannot fully achieve the performance

of highly optimized traditional methods (such as BPG based on

PSNR). This difference may indicate that the method has not yet

reached the expressive power of traditional methods. In another

approach, Minnen et al. (2018) enhanced an image compression

method by refining the entropy model with an autoregressive

model. The synergy between the autoregressive model and the

prior model leads to improved image indicators, such as PSNR

and MS-SSIM, outperforming the BPG Sullivan et al. (2012)

method. However, the sequential computational approach of

autoregressive models results in low operational efficiency.

Moreover, Zhu et al. (2022) presented an image compression
Frontiers in Marine Science 04
method using a multivariate Gaussian mixture, employing vector

quantization to approximate the mean and solving it through

cascaded estimation, avoiding the need for a context model and

reducing complexity. However, this method is trained in an

unsupervised manner, and the generated results may be biased. Li

et al. (2020) introduced a content-weighted codec model, which

generates an importance mask for local adaptive bit allocation

through an importance mapping subnet, offering an alternative to

entropy estimation. This method improves image compression

efficiency while reducing the computational complexity of the

context model. Chen et al. (2021) introduced an image

compression method that combines non-local attention

optimization with improved context modeling. This method

utilizes local network operations as nonlinear transformations,

estimating the corresponding latent features and priors by

calculating local and global correlation information. This method

leverages joint 3D convolution to enhance both the autoregressive

model and the hyperprior model, improving the efficiency of the

entropy model. Experimental results have demonstrated that this

method outperforms JPEG, JPEG2000, and BPG in terms of image

compression efficiency. Cheng et al. (2020) proposed an entropy

model with enhanced flexibility in latent representation distribution

estimation through a discretized Gaussian mixture model.

Additionally, the performance was improved by incorporating an

attention module to focus on complex regions. This method pays

more attention to information-rich regions during the training

process, thus improving the encoding performance. He et al.

(2021, 2022) surpassed the compression efficiency of VVC by

employing a checkerboard context model and unevenly grouped

space channels. These two methods increase the decoding speed of

the autoregressive model by more than 40 times, improving the

parallelism and computational efficiency of the autoregressive

model. Zou et al. (2022) presented a plug-and-play non-

overlapping window local attention block, which calculates the

attention map for each window using an embedded Gaussian

function and normalization factors to focus on high-contrast
FIGURE 2

The details of the method we proposed. UICM, FDFM, AFAM respectively represent the feature recovery module, feature decomposition fusion
module, and attention feature aggregation module, respectively. Q, AE and AD indicate quantization, arithmetic encoding and arithmetic decoding
respectively. IY and IUV represent the luminance and chrominance components of the image in the YCbCr color space.
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regions. Tolstonogov and Shiryaev (2021) present an underwater

image compression method based on camera frames, involving

semantic segmentation, semantic shape simplification, and binary

data compression. Compared to the JPEG algorithm, this method

achieves a threefold increase in frame rate. Anjum et al. (2022)

introduces a data-driven underwater image compression method

for transmitting images through water. This method effectively

utilizes limited bandwidth to transmit images and exhibits

robustness against disturbances caused by channel transmission.

Burguera and Bonin-Font (2022) proposes a progressive

underwater image compression method that divides images into

small blocks that can be transmitted separately. Experimental

results have shown that this method performs well in low

bandwidth or unreliable communication channel environments.

Liu et al. (2023) introduces an autoencoder-based underwater

image compression technique. This method enhances the

reliability of encoding through a multi-step training strategy and

multi-description encoding policy. Despite the remarkable

performance of VAE-based methods, they are primarily designed

to preserve pixel-wise signal fidelity rather than high-level semantic

features, which are required in downstream visual tasks.

In parallel to the approaches above, certain studies Agustsson

et al. (2019); Wu et al. (2020); Liu et al. (2021a) have explored

generative adversarial networks (GANs) to generate visually

pleasing textures at low bit rates. GAN-based image compression

offers several notable advantages. Firstly, GANs can compress full-

resolution images, showcasing the versatility of this approach.

Secondly, GANs are capable of achieving extreme bit-rate image

compression. However, it is essential to note that the generated

images may exhibit significant differences from the original ones,

resulting in a potentially deceptive perception of clarity and

high resolution.
2.2 Underwater downstream visual tasks

2.2.1 Object detection
The authors of Ellen et al. (2023) utilized underwater drones

with YOLOv5 to detect submerged objects, achieving considerable

accuracy. In Zhang and Zhu (2023), the authors improved YOLOv5

by implementing coordinate attention mechanisms and

bidirectional feature pyramids, resulting in enhanced precision in

ship detection. The work in Ranolo et al. (2023) compared the

detection results of seaweed using YOLOv5 and YOLOv3, with

YOLOv3 exhibiting higher accuracy. The method proposed in Gao

et al. (2023b) significantly increased the detection accuracy in sonar

imagery by denoising sonar images and enhancing YOLOv5. The

approach in Ercan et al. (2022) involves detecting targets in

swimming pools through cloud-based computing. In Fu et al.

(2022), the authors utilized K-means to recluster target anchor

frames, improving YOLOv5’s accuracy in detecting small objects in

side-scan sonar images. The authors of Hu and Xu (2022) reduced

the backbone size of YOLOv5 and restructured the feature pyramid,

introducing a novel method for underwater debris detection. The

method presented in Xu and Matzner (2018) conducts a

comparative analysis of fish detection across multiple datasets and
Frontiers in Marine Science 05
suggests using different datasets during the detector training

process. The sonar is an essential tool for the underwater image

target detection. Zhang et al. (2024) developed a chirp scaling

algorithm based on the reformulated Loffeld’s bistatic formula.

Compared with the traditional method, the proposed method is

much more efficient and can be directly applied to multichannel

and tandem synthetic aperture radar. Yang (2024) proposes an

imaging algorithm based on Loffeld’s bistatic formula for a

multireceiver synthetic aperture sonar system. The presented

method can produce high-resolution images.

2.2.2 Semantic segmentation
The authors of Nezla et al. (2021) used a deep convolutional

encoder-decoder model based on the UNet architecture to segment

the Fish4Knowledge image dataset, achieving commendable scores.

Using a self-supervised approach, the method proposed in Singh et al.

(2023) addresses the lack of large labeled datasets in underwater

scenarios. This approach allows pretraining on extensive terrestrial

datasets and fine-tuning on smaller underwater datasets. Kabir et al.

(2023) introduced a novel underwater dataset centered around

animals, with pixel-level annotations for various fine-grained

animal categories. In Pergeorelis et al. (2022), the authors tackled

the issue of class instance imbalance in underwater datasets by

employing a scheme that involves cutting and pasting objects from

one image to another. Chicchon et al. (2023) presented a combination

loss function based on active contour theory and level-set methods to

enhance underwater object segmentation accuracy. Wang et al.

(2023b) employed a semi-supervised K-means clustering algorithm

to train and validate objects like coral, sea urchins, starfish, and

seagrass. Islam et al. (2020) proposed the first underwater semantic

segmentation dataset, containing pixel annotations for eight object

categories, and suggested that deep residual models can accurately

segment underwater objects. Thampi et al. (2021) analyzed the

impact of different thresholds on predicted masks for the

underwater semantic segmentation of five different fish species in

the Fish4Knowledge image dataset.

Despite the widespread application of advanced visual tasks in

underwater environments, most require clear input images.

Information loss caused by underwater degradation and image

compression can affect the performance of these methods.
3 The proposed method

3.1 The overall architecture

The details of the proposed methodology are illustrated in

Figure 2. To the impact of information loss caused by underwater

degradation during the image compression process, we introduce

the frequency-guided underwater image correction module

(UICM). This module aims to reduce the impact of noise caused

by the underwater environment and remove redundant information

accurately. The subsequent advancement toward enhancing

encoding efficiency at low bit rates involves the utilization of the

task-driven feature decomposition fusion module (FDFM) for

decomposing features according to their relevance to downstream
frontiersin.org
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underwater visual tasks. This procedure preserves machine-friendly

data while eliminating redundancy, yielding a concise, machine-

friendly feature representation and reduced bit rate while retaining

key features. Finally, a machine-friendly image is reconstructed in

the decoder stage to facilitate diverse downstream visual tasks.
3.2 Frequency-guided underwater image
correction module

Due to the complexity of optical imaging in underwater

environments compared to terrestrial environments, underwater

images are often subject to noise interference. Since image noise is

non-compressible and irrelevant to downstream visual tasks, the

compressed image bit rate will be lower than the standard Brummer

and De Vleeschouwer (2023). The work on Xu et al. (2020) suggests

the varying significance of different frequency channels in visual

tasks. We have designed a frequency-guided underwater image

correction module (UICM) to address this issue to eliminate

noise and pinpoint removable redundant information. The

structure of UICM is illustrated in Figure 2.

Firstly, we revisit the operations and properties of the discrete

cosine transform(DCT). DCT is an orthogonal transformation

method. Compared with the fast Fourier transform (FFT) and the

discrete wavelet transform (DWT), DCT can save computation and

maintain good performance Wen et al. (2022). Given a single-

channel image f of size N × N, the discrete cosine transform D

transforms it into the discrete cosine space as X, which is expressed

as Equation 1:

X(u, v) = Df (i,j) = c(u)c(v)oN−1
i=0 oN−1

j=0

f (i, j)cos  (i+0:5)p
N u

� �
cos  (j+0:5)p

N v
h i

c(u) =

ffiffiffiffi
1
N

q
, u = 0

ffiffiffiffi
2
N

q
, u ≠ 0

8><
>:

c(v) =

ffiffiffiffi
1
N

q
, v = 0

ffiffiffiffi
2
N

q
, v ≠ 0

8><
>:

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

(1)

where i and j are the coordinate bases in the spatial space; u and

v are the coordinate bases in the discrete cosine transform space and

D−1 denotes the inverse discrete cosine transform.

The image features affected by the underwater environment

Idegradation can be expressed as:

Idegradation =oiI
si
degradation (2)

where Isidegradation represents image features affected by the

underwater environment at different scales and si represents

different scale ranges. DCT can effectively model noise signals

and redundant signals. Let ssiuv represent component of Isidegradation
in the DCT space. Equation 2 can be reexpressed as Equation 3:

Idegradation = D−1(o
si
o
u
o
v
ssiuv) (3)
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where si represents different scale ranges; u and v are the

coordinate bases in the discrete cosine transform space.

Let Q represent the expected image features with low noise and

low redundancy, and its component in the DCT space is denoted as

qsiuv . Q can be formulated as follows:

Q = D−1 osiouovq
si
uv

� �
(4)

where si represents different scale ranges; u and v are the

coordinate bases in the discrete cosine transform space.

The difference between Idegradation and Q in the DCT space,

namely the spectral loss zsiuv , can be represented as Equation 5:

zsiuv =osiouou(q
si
uv − ssiuv) (5)

where si represents different scale ranges; u and v are the

coordinate bases in the discrete cosine transform space.

Equation 4 can be reexpressed as Equation 6:

Q = D−1 osiouou(s
si
uv + zsiuv)

� �
(6)

where si represents different scale ranges; u and v are the

coordinate bases in the discrete cosine transform space.

Conventional approaches reliant on DCT space aim to directly

adjust DCT coefficients, posing significant challenges for practical

implementation. Drawing inspiration from Zheng et al. (2019), we

leverage a convolutional neural network (CNN) to estimate zsiuv .

Acknowledging the influence of diverse-scale features and frequencies

on images, our approach entails image adjustment across multiple scales.

UICM employs frequency-space interaction blocks (FSI) as

illustrated in Figure 3 as fundamental units. The FSI block

consists of a frequency branch and a spatial branch to learn

global and local information, respectively. The frequency domain

representation emphasizes global attributes, while the local

attributes are learned in the spatial branch. These two branches

interact to obtain complementary information. The frequency

branch estimates the spectrum loss zsiuv in the DCT space via the

CNN block and then converts it to the color space through block-

IDCT. Block-IDCT uses a predefined convolutional layer with

weights fixed as the D−1 coefficient. The spatial branch processes

information in the spatial domain through convolutional blocks.

We then interweave features from the spatial and frequency

branches, facilitating the acquisition of more information by

different branches. The FSI will then repeat the same calculation

once more. Finally, we merge the outputs of the two branches using

1×1 convolution to obtain the output of the FSI block.
3.3 Task-driven feature decomposition
fusion module

To ensure the image compression network prioritizes machine-

friendly features over preserving pixel-level fidelity as perceived by

the human visual system, we employ the task-driven feature

decomposition fusion module (FDFM). This module facilitates

the preservation of machine-friendly information while

eliminating redundancies. Guided by downstream visual tasks,
frontiersin.org
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FDFM extracts machine-friendly details from both the original

image and the image processed by UICM, effectively removing

redundant information. Additionally, attention mechanisms are

applied to discern the significance of pixels at various spatial

positions. In alignment with downstream underwater visual tasks,

distinct weights are assigned to individual pixels to mitigate

information redundancy.

The detailed workflow is illustrated in Figure 2. The FDFM

comprises three essential modules: a shared encoderFl dedicated to

extracting low-frequency features, a detailed encoder Fh specialized

in capturing high-frequency features, and a decoderY employed for

the reconstruction of features with enhanced semantic information.

In a detailed approach, the FDFMmodel initiates the process by

utilizing the shared encoder Fl and the detailed encoder Fh to

dissect the low-frequency and high-frequency components of both

the original source image Iorigin and the image Irestored processed

through UICM. This results in the extraction of low-frequency

information Flo Fle and high-frequency information Fh, which is

formulated as Equation 7. Drawing inspiration from recent

advancements in backbone networks Ding et al. (2023, 2022,

2021); Liu et al. (2021b), we adopt the ConvNeXt Woo et al.

(2023) structure for the detailed encoder.

Flo = Fl(Iorigin), Fle = Fl(Irestored), Fh = Fh(Iorigin) (7)

In the current context, we possess low-frequency information

denoted as Flo and Fle extracted from both the source image Iorigin
and the restored image Irestored . The imperative task is to devise an

efficient approach for integrating these information sets. Motivated

by the positional attention mechanism discussed in Hou et al.

(2021), which simultaneously empowers the neural network to

assimilate information from diverse channels, we have formulated

an attention feature aggregation module(AFAM). This module is

specifically designed to handle features originating from various

channels collaboratively. Moreover, this module analyzes pixel

significance across various positions, utilizing coordinates to

mitigate information redundancy. Initially, we engage in channel

concatenation for the low-frequency information Flo and Fle.

Subsequently, we conduct computations employing operation

Coo, culminating in the utilization of a 1×1 convolution operation

to produce the final output, which is formulated as Equation 8:
Frontiers in Marine Science 07
Flc = Pw(Coo(Cat(Flo, Fle))) (8)

where the Flc means the integrated low-frequency information;

Pw is indicative of the 1×1 convolution operation; Coo represents

positional attention, and Cat stands for channel concatenation.

Multiscale learning enables the network to autonomously

acquire global and local information from features at higher and

lower resolutions. Consequently, we conduct scale decomposition

on the acquired Flc. We streamline Chen et al. (2022) and

incorporate it as the feature extraction network. Subsequently,

through AFAM fusion, we derive representations imbued with

more profound semantic information. To encapsulate, the process

above can be summarized as Equation 9:

FSi
lc = f(Flc)

Flce = DAFAM oi(F
Si
lc )

� � (9)

where the f signifies scale decomposition; FSi
lc denotes the

features subsequent to scale decomposition; and Flce represents

the augmented representation with enriched information post

scale fusion.

In conclusion, we integrate Flce with Fh. Drawing inspiration

from He et al. (2016), we utilize skip connections to seamlessly

amalgamate Flce and Fh. Subsequently, the acquired features

undergo reconstruction into features Ir endowed with more

profound semantic information and less redundant information

through the decoder Y. The process above can be summarized as

Equation 10.

Ir = Y(Flce + Fh) (10)
3.4 Training

3.4.1 Loss function
In light of our approach to designing for downstream visual

tasks, we employ four distinct loss functions to facilitate the training

of our network.

Lmse is the reconstruction loss between the input image L and

the reconstructed image L′, used to constrain the pixel-level fidelity
FIGURE 3

The illustration of the amplitude format of the FSI block. The FSI block consists of frequency and spatial branches to learn global and local
information. The frequency domain representation emphasizes global attributes, while the local attributes are learned in the spatial branch. These
two branches interact to obtain complementary information.
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of the reconstructed image L′ to the input image L, which is

formulated as Equation 11:

Lmse = MSE(I, I0) (11)

Inspired by the work of Johnson et al. (2016), we integrate the

perceptual loss, denoted as Lfea, to accentuate the perceptual quality

of the reconstructed image. Employing the initial three layers of a

pre-trained VGG-19 Simonyan and Zisserman (2014) as feature

extractors, we input both the original images I and reconstructed

images I0 to derive the corresponding output features. The loss is

formulated by leveraging these features, expressed mathematically

as Equation 12:

Lfea =oN
i (Fi(I) − Fi(I

0)) (12)

where the Fi(I) and Fi(I
0) denote the feature representations at

the i layer within their pre-trained neural network; and the N

represents the total number of layers.

In order to enhance the performance of the reconstructed image

in sophisticated visual tasks, we incorporate diverse downstream

task losses under the designation of the task loss Ltask. The

application of multiple loss constraints ensures that the

reconstructed image aligns with the specific demands of a variety

of downstream visual tasks. Throughout the training phase, the

cumulative loss is denoted as Equation 13:

Ltotal = l1Lmse + l2Lfea + l3Ltask + Lbit (13)

where Lbit represents the bit-rate of latent code;   l1, l2 and l3
are hyperparameters that mediate the compression ratio of the

network. The hyperparameters l1, l2 and l3 will all affect the

results of the method. Typically, we set hyperparameters l1, l2 and
l3 based on experience. Please refer to section 4.1 for detail.

3.4.2 Adaptive training strategy
The single-stage training strategy encounters challenges in

achieving a harmonious equilibrium between low-level and high-

level visual tasks. Current approaches for low-level visual tasks,

propelled by their high-level counterparts, frequently employ pre-

trained high-level visual models to direct the training of models

dedicated to low-level visual tasks. Alternatively, some methodologies

opt for concurrently training low-level and high-level visual tasks

within a unified stage. Our strategy upholds the performance synergy

between image fusion and semantic segmentation by subjecting the

compression network and semantic segmentation network to

alternating training. This method mitigates potential issues, such as

mode collapse, commonly observed during Generative Adversarial

Network (GAN) training Tang et al. (2022).
4 Experiments

4.1 Experimental setup

4.1.1 Datasets
SUIM Islam et al. (2020) is a dataset for semantic segmentation

of underwater. It comprises over 1500 images, each pixel annotated
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for eight distinct object categories: vertebrate fish, invertebrate coral

reefs, aquatic plants, sunken ships/ruins, human divers, robots, and

the seabed. Following a predefined partitioning scheme, the dataset

is divided into 1525 images for training and 110 for testing. The

hyperparameters l1, l2 and l3 will all affect the results of the

method. Typically, we set hyperparameters lambda based on

experience.l1=l2=l3 are empirically set to 0.051/0.15/1, 0.051/0.5/

1 and 0.051/2/1 under 0.1, 0.3 and 0.5 bpp respectively.

URPC2018 is a dataset for object detection of underwater. It

compasses four distinct categories: sea cucumber, sea urchin,

starfish, and scallop, comprising 2901 training images and 800

testing images. Our approach adheres to a pre-established

partitioning scheme. The hyperparameters l1, l2 and l3 will all

affect the results of the method. Typically, we set hyperparameters

lambda based on experience. l1=l2=l3 are empirically set to 0.051/

0.17/1, 0.051/0.5/1 and 0.051/2/1 under 0.028, 0.86 and 0.237

bpp respectively.

4.1.2 Compared methods
We assessed the efficacy of our proposed method through a

comparative analysis with traditional and CNN-based compression

methods. The entropy model is based on Zou et al. (2022). The

traditional methods encompass JPEG Wallace (1991), JPEG2000

Rabbani and Joshi (2002), BPG (intra-frame, 4:4:4 chroma format)

Sullivan et al. (2012), and VVC intra-frame (4:4:4 chroma format)

Bross et al. (2021). Additionally, CNN-based methods such as

Hyperprior (ICLR2018) Ballé et al. (2018), Devil (CVPR2022)

Zou et al. (2022) and Gao Gao et al. (2023a) were included in

the comparison.

We conducted an extensive series of experiments to assess the

performance of the proposed underwater image compression model

in downstream visual tasks downstream, encompassing object

detection, semantic segmentation, and saliency detection.
4.2 Downstream visual tasks
performance comparison

4.2.1 Object detection
We employed the Yolov8s framework for downstream object

detection to present our findings. We fine-tune the detector using a

pre-trained model on the COCO dataset Lin et al. (2014) for

identifying targets such as humans, robots, invertebrates,

vertebrates, and fish. The image dimensions were standardized to

640×640, and the detector underwent training using the Adam

Kingma and Ba (2014) optimizer for 100 epochs, initialized with a

learning rate of 0.00001. Notably, consistent settings were applied

across various image compression methods. Evaluation of detection

performance was based on the recall rate (RA) and the mean

average precision (mAP50).

Table 1 illustrates that our proposed method achieves high

accuracy in target detection even under low bit rates. Specifically,

under 0.1bpp, on SUIM dataset, our method surpasses JPEG,

JPEG2000, BPG, and VVC in RA/mAP50 by 0.237/0.03267 points,

0.162/0.105 points, 0.102/0.065 points, 0.226/0.165 points,

respectively. In comparison to Hyperprior Ballé et al. (2018), devil
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Zou et al. (2022) and Gao Gao et al. (2023a) under 0.01bpp, our

method demonstrates notable improvements of 0.091/0.059 points,

0.189/0.198 points and 0.028/0.053 points in RA/mAP50.

Noteworthy, under 0.3 and 0.5bpp, our method has a comfortable

lead over the alternatives.

As shown in Table 2, our method demonstrates outstanding

performance in the URPC2018 dataset. Specifically, under 0.028

bpp, our approach yields RA/mAP50 scores 0.066/0.09 points higher

than those of VVC. In contrast, the reconstructed images produced

by the JPEG2000 method suffer severe degradation, leading to a loss

in analytical efficacy. Across different bitrates, our proposed method

keeps ahead of various compression methods in underwater object

detection tasks. Due to the influence of the underwater

environment, the images in the URPC2018 dataset are blurry.
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Qualitative analysis is shown in the Figure 4. Experimental results

demonstrate that our method performs well even on blurry images.

4.2.2 Semantic segmentation
We employed DeepLabV3+ Chen et al. (2018b) as the semantic

segmentation framework to present our findings. The segmentation

framework underwent fine-tuning, utilizing a pre-trained model

from Imagenet dataset Deng et al. (2009), for the precise

segmentation of targets including vertebrate fish, invertebrate

coral reefs, aquatic plants, sunken ships/ruins, human divers,

robots, and the seabed. Standardizing the image size to 256×256,

the segmentation framework underwent training with the Adam

Kingma and Ba (2014) optimizer for 100 epochs, commencing with

an initial learning rate of 0.0001. Notably, consistent settings were

applied across diverse image compression methods. Evaluation of
TABLE 1 Comparison on object detection tasks on SUIM dataset.

Method bpp RA mAP50

original – 0.495 0.55

JPEG 0.230 0.279 0.235

JPEG2000 0.103 0.354 0.397

BPG 0.106 0.414 0.437

VVC 0.103 0.290 0.337

Hyperprior 0.100 0.425 0.443

Devil 0.114 0.327 0.304

Gao 0.105 0.488 0.449

Ours 0.103 0.516 0.502

JPEG 0.306 0.402 0.369

JPEG2000 0.304 0.438 0.473

BPG 0.321 0.487 0.489

VVC 0.289 0.432 0.492

Hyperprior 0.299 0.519 0.522

Devil 0.301 0.432 0.492

Gao 0.298 0.541 0.529

Ours 0.303 0.554 0.533

JPEG 0.502 0.443 0.514

JPEG2000 0.495 0.527 0.544

BPG 0.507 0.492 0.497

VVC 0.512 0.550 0.549

Hyperprior 0.504 0.510 0.541

Devil 0.512 0.428 0.532

Gao 0.509 0.570 0.551

Ours 0.501 0.578 0.558
*The top two scores are highlighted in red (the best) and blue (the second best).
*The minimum bpp of JPEG is 0.23.
We conducted experiments under different bits per pixel (bpp) settings.
TABLE 2 Comparison on object detection tasks on URPC2018 dataset.

method bpp RA mAP50

origin – 0.622 0.688

JPEG – – –

JEPG2000 0.030 0.015 0.01

BPG 0.027 0.222 0.196

VVC 0.028 0.229 0.202

Hyperprior 0.024 0.130 0.114

Devil 0.026 0.220 0.194

Gao 0.027 0.260 0.256

Ours 0.028 295 0.292

JPEG 0.209 0.135 0.136

JEPG2000 0.087 0.288 0.285

BPG 0.085 0.358 0.357

VVC 0.086 0.391 0.393

Hyperprior 0.087 0.321 0.314

Devil 0.088 0.349 0.341

Gao 0.089 0.398 0.410

Ours 0.086 0.416 0.436

JPEG 0.232 0.277 0.264

JEPG2000 0.237 0.439 0.466

BPG 0.229 0.47 0.487

VVC 0.234 0.482 0.519

Hyperprior 0.237 0.429 0.44

Devil 0.233 0.398 0.413

Gao 0.233 0.499 0.535

Ours 0.237 0.503 0.541
*The top two scores are highlighted in red (the best) and blue (the second best).
*The minimum bpp of JPEG is 0.209.
We conducted experiments under different (bpp) settings.
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segmentation performance was conducted using mean Intersection

over Union (mIOU), mean Pixel Accuracy (mPA), and Pixel

Accuracy (PA).

Table 3 shows the comparisons among different methods in

semantic segmentation tasks. It is evident that our approach

outperforms the other methods. As we discussed in section 1, the

high-level features in underwater images can be easily affected,

posing challenges for downstream visual tasks. Unlike our methods,

current CNN-based compression methods still focus on mitigating

pixel distortion without considering the key features required by

semantic segmentation and other downstream visual tasks. For

example, under approximately 0.1bpp, our proposed method

attains higher mIOU/mPA/PA scores than JPEG, JPEG2000, BPG,

and VVC by 12.84/13.22/6.8 points, 5.09/3.98/1.78 points, 3.96/

4.63/1.34 points, 0.44/1.21/1.08 points, respectively. In comparison

to Hyperprior Ballé et al. (2018), devil Zou et al. (2022) and Gao

Gao et al. (2023a) under 0.01bpp, our method remains ahead of

0.42/1.63/1.38 points, 10.56/10.36/6.3 points and 0.46/1.83/1.26

points in mIOU/mPA/PA.
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4.2.3 Saliency detection
We employed the U2net Qin et al. (2020) framework for

underwater saliency detection with different compression

frameworks. The saliency detection framework underwent fine-

tuning utilizing a pre-trained model on the DUTS dataset Piao et al.

(2020), specifically targeting human divers, robots, fish, and

vertebrates. The dimensions of the images in the detection

framework were standardized to 320×320, and the training

process utilized the AdamW Loshchilov and Hutter (2017)

optimizer for 360 epochs, initializing with a learning rate of

0.001. Consistency was maintained across various image

compression methods as we adhered to the same settings. Our

evaluation of the detection performance relies on mean absolute

error (MAE) and maximal F-measure (maxFb) Achanta†

et al. (2009).

Table 4 reveals that our proposed method achieved the best

performance in saliency detection even under low bit rates.

Specifically , under 0.1bpp, our method ’s MAE/maxFb

outperforms JPEG, JPEG2000, BPG, and VVC by 0.025/0.115
A

B

FIGURE 4

Qualitative analysis of object detection conducted on the URPC2018 dataset. Where (A) are original images, and (B) are reconstructed images using
the proposed method under 0.237 bpp.
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points, 0.012/0.058 points, 0.014/0.058 points, 0.004/0.023 points,

respectively. In comparison to Hyperprior Ballé et al. (2018), devil

Zou et al. (2022) and Gao Gao et al. (2023a) under 0.01bpp, our

method showcases improvements of 0.002/0.031 points, 0.022/

0.107 points and 0.002/0.018 points in MAE/maxFb. Under 0.3

and 0.5bpp, our method consistently maintains superior

performance. It is evident that our method can efficiently support

underwater saliency detection tasks.

Figure 5 illustrates a qualitative analysis of the outcomes obtained

from various methods across three tasks: object detection, semantic

segmentation, and saliency detection. In the initial row of each set, we

display the bounding boxes and confidence levels associated with the

object detection results, with the initial image serving as a

representation of the original image. Evidently, underwater images

compressed with our approach remain high detection accuracy and

confidence scores. The effectiveness of the object detector can be
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easily constrained by the impact of underwater degradation with

compression. Nevertheless, our UICM systematically removes noise

and redundant information, resulting in specific detection outcomes

surpassing those of the original images. In the subsequent row of each

set, the initial image serves as the ground truth for the semantic

segmentation task, with varied colors denoting distinct categories. For

semantic segmentation task, our approach obtained segmentation

accuracy compared to alternative methods, producing contours that

align more closely with the ground truth. Additionally, our approach

demonstrates comparable efficacy in salient object detection, as

depicted in the third-row results, where the initial image serves as

the ground truth.

Through a comprehensive examination of both qualitative and

quantitative outcomes in the three tasks above, our proposed

method has exhibited superior performance on various

downstream visual tasks.
TABLE 3 Comparison on semantic segmentation tasks on SUIM dataset.

Method bpp mIOU mPA PA

original – 62.1 72.67 84.13

JPEG 0.230 41.71 53.19 73.90

JPEG2000 0.103 49.46 62.43 78.92

BPG 0.106 50.59 61.78 79.36

VVC 0.103 54.11 65.20 79.62

Hyperprior 0.100 54.13 64.78 79.32

Devil 0.114 43.99 56.05 74.40

Gao 0.109 54.09 64.58 79.44

Ours 0.103 54.55 66.41 80.70

JPEG 0.306 52.80 64.64 79.20

JPEG2000 0.304 57.59 68.73 81.71

BPG 0.321 54.15 65.16 80.66

VVC 0.289 54.98 65.51 79.96

Hyperprior 0.299 57.85 68.68 82.59

Devil 0.301 57.01 67.56 81.42

Gao 0.305 57.69 68.69 82.40

Ours 0.303 58.73 69.48 83.04

JPEG 0.502 57.98 68.44 81.61

JPEG2000 0.495 59.33 70.31 82.49

BPG 0.507 57.88 69.02 81.68

VVC 0.512 58.72 69.49 82.71

Hyperprior 0.504 60.42 70.84 82.26

Devil 0.512 60.02 70.52 83.30

Gao 0.498 59.98 70.44 83.02

Ours 0.501 61.56 71.43 83.65
*The top two scores are highlighted in red (the best) and blue (the second best).
*The minimum bpp of JPEG is 0.23.
We conducted experiments under different (bpp) settings.
TABLE 4 Comparison on saliency detection tasks on SUIM dataset.

Method bpp MAE maxFb

original – 0.031 0.785

JPEG 0.23 0.070 0.614

JPEG2000 0.103 0.057 0.671

BPG 0.106 0.059 0.671

VVC 0.103 0.049 0.706

Hyperprior 0.100 0.047 0.698

Devil 0.114 0.067 0.622

Gao 0.108 0.047 0.711

Ours 0.103 0.045 0.729

JPEG 0.306 0.054 0.686

JPEG2000 0.304 0.046 0.718

BPG 0.321 0.042 0.728

VVC 0.289 0.042 0.732

Hyperprior 0.299 0.042 0.739

Devil 0.301 0.043 0.733

Gao 0.308 0.038 0.760

Ours 0.303 0.036 0.769

JPEG 0.502 0.039 0.729

JPEG2000 0.495 0.036 0.759

BPG 0.507 0.039 0.745

VVC 0.512 0.038 0.758

Hyperprior 0.504 0.036 0.75

Devil 0.512 0.044 0.738

Gao 0.509 0.034 0.775

Ours 0.501 0.034 0.780
* The top two scores are highlighted in red (the best) and blue (the second best).
* The minimum bpp of JPEG is 0.23.
We conducted experiments under different (bpp) settings.
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4.3 Ablation study

We conducted some ablation experiments to validate the

contributions of the proposed UICM and FDFM. We compared

the results of object detection, semantic segmentation, and saliency
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detection for three network structures: (a) without UICM, (b)

without FDFM, and (c) without both UICM and FDFM.

The ablation experiments’ outcomes for the target detection

task are presented in Table 5. Among the experimental setups, (b)

demonstrates superior performance in RA and mAP50. In
frontiersin.or
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FIGURE 5

Examples results of (A) original image, (B) our method, (C) JPEG, (D) JPEG2000, (E) BPG, (F) VVC, (G) Hyperprior, (H) Devil. For each group, the
results of object detection, segmentation and saliency detection are shown respectively. Our method has better performance compared to
other methods.
g
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comparison to (c), (b) exhibits a notable enhancement of 0.081/

0.037 points in both RA and mAP50. Similarly, when contrasted

with (a), (b) manifests an improvement of 0.009/0.005 points in RA

and mAP50. Furthermore, in contrast to (c), (a) displays an increase

of 0.072/0.032 points RA and mAP50.

We obtained similar performance on semantic segmentation

tasks, as depicted in Table 6. Compared to (c), (b) demonstrates a

notable improvement of 0.93/0.63/1.28 points in mIOU, mPA, and

PA, respectively. Compared with (a), (b) displays a modest

enhancement of 0.06/0.03/0.13 points in mIOU, mPA, and PA.

Similarly, compared to (c), (a) exhibits an increase of 0.87/0.6/1.15

points in mIOU, mPA, and PA.

The outcomes of the ablation experiments conducted for the

saliency detection task are presented in Table 7, unveiling consistent

patterns in the results of the saliency detection task. In comparison

to (c), (b) demonstrates a noteworthy improvement of 0.004/0.015

points in MAE/maxFb. Similarly, contrasted with (a), (b) exhibits a

modest enhancement of 0.001/0.012 points in MAE/maxFb.

Furthermore, when compared to (c), (a) shows an increase of

0.003/0.003 points in MAE/maxFb.

The aforementioned experimental results validate the

effectiveness of UICM and FDFM. UICM incorporates

underwater prior knowledge into the image compression

framework by leveraging frequency information, which is

beneficial for noise and redundant information removal.

Meanwhile, FDFM employs a task-driven approach to decompose

image features, effectively assisting the network in understanding

and preserving machine-friendly information during the

compression process.
4.4 Human perception performance

In order to evaluate the proposed methodology can also apply to

the human visual system, we prepared comprehensive evaluations

to measure human perceptual performance. To refine the

evaluation of our proposed approach within the context of the

human visual system, a deliberate shift from pixel fidelity was made.
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This involved the utilization of metrics such as PSNR and MS −

SSIM for natural images, along with the UIQM Panetta et al. (2015)

metric tailored for underwater imagery. The ensuing outcomes have

been meticulously compiled and are delineated in Tables 8–10.

In the PSNR metric, our proposed method demonstrates

comparable performance to the JPEG2000 approach. Within the

MS − SSIM metric, the effectiveness of our proposed method aligns

with that of the BPG method. Moreover, in UIQM, our proposed

method outperforms alternative approaches.
TABLE 5 Ablation study on object detection tasks on SUIM dataset
under 0.3 bpp.

Method UICM FDFM RA mAP50

(a) × ✓ 0.540 0.527

(b) ✓ × 0.549 0.532

(c) × × 0.468 0.495
TABLE 6 Ablation study on semantic segmentation tasks on SUIM
dataset under 0.3 bpp.

Method UICM FDFM mIOU mPA PA

(a) × ✓ 58.58 69.37 82.84

(b) ✓ × 58.64 69.40 82.97

(c) × × 57.71 68.77 81.69
TABLE 7 Ablation study on saliency detection tasks on SUIM dataset
under 0.3 bpp.

Method UICM FDFM MAE maxFb

(a) × ✓ 0.039 0.743

(b) ✓ × 0.038 0.755

(c) × × 0.042 0.740
TABLE 8 Comparison on human perception performance tasks on SUIM
dataset in terms of PSNR metric.

Method PSNR

0.1bpp 0.3bpp 0.5bpp

JEPG 21.435 28.746 30.157

JPEG2000 25.423 29.255 31.266

BPG 26.865 30.409 32.721

VVC 27.391 30.604 33.434

Hyperprior 26.173 29.340 30.501

Devil 24.248 27.870 29.166

Gao 25.984 30.101 31.899

Ours 25.493 27.741 31.745
*The higher the value, the better the reconstructed image quality.
We conducted experiments under different (bpp) settings.
TABLE 9 Comparison on human perception performance tasks on SUIM
dataset in terms of MS-SSIM metric.

Method MS − SSIM

0.1bpp 0.3bpp 0.5bpp

JEPG 0.704 0.929 0.952

JEPG2000 0.832 0.929 0.955

BPG 0.886 0.948 0.965

VVC 0.901 0.954 0.974

Hyperprior 0.884 0.952 0.968

Devil 0.798 0.927 0.951

Gao 0.870 0.944 0.961

Ours 0.897 0.951 0.983
*The higher the value, the better the reconstructed image quality.
We conducted experiments under different (bpp) settings.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1411527
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Zhang et al. 10.3389/fmars.2024.1411527
From the qualitative analysis examples presented in Figure 6, it

is evident that, at low bit rates, the reconstructed images generated

by our method exhibit enhanced clarity in fulfilling the task

objectives. Specifically, in the first row, the human targets in our

approach are markedly more distinct than alternative methods. In

the second row, the small fish in the lower left corner of the

reconstructed images from other methodologies appear more

indistinct, whereas, in our proposed method, the small fish in the
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corresponding position is relatively well-defined. Progressing to the

third row, our proposed method’s reconstructed image of the sea

urchin object displays more defined boundaries compared with

alternative methods. In summary, despite its primary design for

machine analysis tasks, our method preserves fundamental

functionality for human recognition.
5 Conclusion

This paper proposes a new machine-oriented underwater image

compression framework, introducing a frequency-guided underwater

image correction module (UICM) and a task-driven feature

decomposition fusion module (FDFM). The UICM progressively

removes noise and redundant information. A Frequency-Spatial

Interaction block (FSI) is used to learn complementary global and

local attributes in the frequency domain. Additionally, the FDFM can

effectively locate and keep useful features for downstream visual tasks

through task-driven decomposition of image features. Extensive

experiments on downstream visual tasks demonstrate that the

proposed framework can effectively reduce the performance loss of

the downstream visual tasks caused by compression at low bit rates.

In our future endeavors, we are committed to advancing the

study of image compression techniques within more visual tasks.

Moreover, we aim to investigate strategies for harnessing the

potential advantages derived from large-scale models.
TABLE 10 Comparison human perception performance tasks on SUIM
dataset in terms of UIQM metric.

Method UIQM

0.1bpp 0.3bpp 0.5bpp

JEPG 1.070 1.647 2.104

JEPG2000 1.952 2.223 2.299

BPG 2.058 2.197 2.239

VVC 2.114 2.230 2.273

Hyperprior 2.235 2.395 2.475

Devil 2.154 2.417 2.479

Gao 2.344 2.589 2.799

Ours 2.776 2.784 2.821
*The higher the value, the better the reconstructed image quality.
We conducted experiments under different (bpp) settings.
A B D EC

FIGURE 6

The visual comparison of (A) original image, (B) the proposed method, (C) BPG, (D) VVC, and (E) Hyperprior. (A) is designated as the original image,
while the remaining columns depict reconstructed images using various methods at different bpp. The reconstructed images generated by the
method proposed in this paper exhibit relatively high clarity.
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