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Ithaca, NY, United States, 3Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State
University, Corvallis, OR, United States, 4National Audubon Society Seabird Institute, Bremen,
ME, United States
Introduction: Atlantic puffin (Fratercula arctica, hereafter “puffin”) reproductive

success in the Gulf of Maine (GoM) has declined following a recent

oceanographic regime shift that has led to rapid warming and increasingly

frequent marine heatwaves. Concurrent changes in both the regional forage

fish community and puffin chick diets and provisioning rates suggest that

inadequate prey resources may be driving this decline. Traditional, noninvasive

methods of diet assessment, however, are unable to determine seabird diet at

many age classes and breeding stages.

Methods: To determine what prey GoM puffins were feeding on during two years

of marine heatwave conditions, we assessed puffin diet using two

complementary methods: traditional, observational methods that utilize bill-

load photography and emerging methods employing fecal DNA metabarcoding.

We then examined the effect of methodology, age, breeding stage, and year on

puffin diet composition.

Results:We identified a strong correlation between the composition of chick diet

as estimated through traditional and emerging methods, supporting the

interpretation of DNA relative read abundance as a quantitative metric of diet

composition. Both methods identified the same dominant prey groups yet

metabarcoding identified a greater number of species and offered higher

taxonomic resolution. Additionally, metabarcoding revealed adult puffin diet

during the incubation period for the first time. Although puffin adults and

chicks fed on many of the same prey types, adults consumed a greater variety

of taxa and consumed more low quality prey types than they provisioned chicks.

Discussion: For both age classes, diet varied both between and within years,

likely reflecting changes in the local forage fish community in response to

environmental variability. Puffins exploited unusual abundances of typically-

uncommon prey during these two years of marine heatwave conditions, yet

low puffin productivity suggests the observed dietary plasticity was not fully able
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to compensate for apparent prey shortages. Continued refinement of molecular

methods and the interpretation of the data they provide will enable better

assessments of how seabirds of diverse ages and breeding stages are adapting

to changing prey communities.
KEYWORDS

Atlantic puffins, Gulf of Maine, DNA metabarcoding, forage fish, seabird diet, optimal
foraging theory (OFT), marine heatwave (MHW)
1 Introduction

Seabird breeding success is closely related to the availability of

adequate prey resources (Cury et al., 2011). As central place

foragers, the geographic extent of a breeding seabird’s foraging

activity is restricted by the need to return regularly to the nest site

(Orians and Pearson, 1979). Thus, while seabirds may spend most

of the year capable of traveling vast distances to feed where prey

resources and foraging conditions are favorable (Gulka et al., 2023),

during the breeding period they become dependent on the prey

available within foraging range of the colony. This restriction makes

breeding seabirds vulnerable to changes in the distribution,

abundance, and composition of local prey resources (Boyd et al.,

2017; Fayet et al., 2021).

In response to anthropogenic warming, many marine species

have shifted their spatiotemporal patterns of occurrence, including

numerous species that are important prey for breeding seabirds

(Pinsky et al., 2013; Kleisner et al., 2017; Suca et al., 2021). These

prey species, being largely heterothermic, are affected by ocean

warming through direct physiological impacts; in contrast, seabirds

react to ocean warming indirectly, reacting in response to the

changing availability and distribution of their prey (Sydeman

et al., 2015). Shifts in marine species distributions may be

accelerated by marine heatwaves (MHWs) that temporarily – but

often rapidly – bring anomalously warm conditions to a region,

altering the distribution of thermal habitat (Lonhart et al., 2019;

Jacox et al., 2020). While changes to a region’s marine community

in response to warming are typically two-fold, involving both the

“loss” of cold-water adapted species and the “gain” of warm-water

adapted species (McLean et al., 2021), not all marine species are

equally-suitable as prey for breeding seabirds (Harris et al., 2007;

Smith and Craig, 2023). If changing ocean conditions lead to the

rapid increase of less-suitable prey taxa, negative impacts on local

seabird populations may follow (Descamps et al., 2022).

The suitability of marine taxa as prey for a particular seabird

depends on varied traits (e.g., morphology, size, caloric value, lipid-

content) that collectively summarize prey quality. When high-

quality prey items predominate, seabirds can deliver more energy

to chicks per foraging trip and breeding success tends to be high

(Schrimpf et al., 2012). In contrast, the increased consumption of
02
low-quality prey types may limit the reproductive success of marine

predators (the junk food hypothesis; Romano et al., 2006;

Österblom et al., 2008). Although seabirds may be able to

compensate for variable prey conditions through behavioral

adjustments like increasing foraging effort (Schrimpf et al., 2012),

significant declines in the quality of available prey may exceed

seabirds’ abilities to compensate (Ludynia et al., 2010; Wanless

et al., 2005, 2023; Scopel et al., 2019).

The changing composition of Atlantic puffin (Fratercula arctica,

hereafter puffins) chick diet has been proposed as a cause of recent

declines in puffin reproductive success within the Gulf of Maine

(GoM; Kress et al., 2016). A recent (2008–2010) thermal regime

shift in the GoM was characterized by above-average ocean

temperatures, followed by decreases in zooplankton biomass and

cascading impacts across trophic levels (Johnson et al., 2018;

Friedland et al., 2020b; Seidov et al., 2021). The timing of this

regime shift closely aligns with both the observed decline in puffin

reproductive success and changes in the composition of puffin chick

diet (Kress et al., 2016; Scopel et al., 2019; Major et al., 2021).

Concerningly, ocean temperatures within the GoM have continued

to rise and the region is increasingly affected by MHWs (Pershing

et al., 2018; Seidov et al., 2021). The result is that the GoM is now

one of the most rapidly-warming parts of the global ocean, with

significant declines predicted for many of the region’s species

(Pershing et al., 2015, 2021).

When diet monitoring of GoM puffins began in the 1990s,

Atlantic herring (Clupea harengus, hereafter herring) was among

the most commonly observed prey species delivered (Diamond and

Devlin, 2003; Diamond, 2021). Herring is an energy-dense species

with a high lipid content, making it an important food item for

many marine predators within the GoM (Lawson et al., 1998;

Overholtz and Link, 2007; Spitz et al., 2010). However, both

regional herring recruitment and occurrence in puffin diet have

declined markedly in recent decades (Diamond and Devlin, 2003;

Kress et al., 2016; Northeast Fisheries Science Center, 2018). In

response, puffins have attempted to replace herring by provisioning

chicks with alternative prey taxa like haddock (Meleanogrammus

aeglefinnus) and rough scad (Trachurus lathami), neither of which

were observed in GoM puffin diet before 2009. Despite the recent

inclusion of these species into puffin diet, declining reproductive
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metrics suggest that these alternative prey species may not be

adequate replacements (Scopel et al., 2019).

Puffin diet in the GoM has largely been assessed through the use

of bill-load photography to identify the prey items provisioned by

adults to chicks at the breeding colony (Kress et al., 2016; Scopel

et al., 2019). This method is noninvasive and highly-effective at

identifying major prey groups, although visual identification of prey

is often limited to low-resolution taxonomic assignments (Gaglio

et al., 2017). Furthermore, while bill-load photography may be

suitable for estimating chick diet, it is unable to determine the diet

of adults since adult puffins consume their prey at sea (Harris and

Wanless, 2012). Evidence that seabird chick diet can be used as an

effective proxy for adult diet is mixed (Wilson et al., 2004; Bowser

et al., 2013) and the diets of adult seabirds, generally, are poorly

understood compared to those of chicks (Barrett et al., 2007).

However, since adult body condition is known to directly impact

reproductive success, adult diet during the breeding period is likely

equally as important to understand as chick diet (Erikstad et al.,

1997; Barrett et al., 2012). Given the recent decline in GoM puffin

reproductive success and continued climate-mediated shifts in the

local forage fish community, reassessments of puffin diet and the

methods used to determine this are warranted.

In this study, we aim to determine the diet of breeding puffins

through the use of two complementary methods: traditional bill-

load photography and molecular diet assessment using fecal DNA

metabarcoding. From these two methods, we describe the prey

types occurring in the diet of puffin chicks and breeding adults

across incubation and chick-rearing during two anomalously warm

breeding periods. We then examine differences in the composition

of diets as determined through the different methodologies as well

as between different age classes, breeding stages, and years.
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2 Methods

2.1 Data collection

2.1.1 Location and timing
Research occurred at the puffin colony on Matinicus Rock

(43.78° N, 68.85° W), an 8-hectare island located 37 km offshore

of Rockland, Maine (Figure 1). Matinicus Rock is a part of Maine

Coastal Islands National Wildlife Refuge and is cooperatively-

managed by the U.S. Fish and Wildlife Service and National

Audubon Society’s Seabird Institute. Data collection occurred

from June 9th to August 11th, 2021 and from May 25th to August

8th, 2022, spanning the incubation and chick-rearing periods.

2.1.2 Field methods
Researchers continued long-term, photography-based diet

monitoring during 2021 and 2022, beginning soon after the first

puffin chicks hatched (late June) and continuing until most chicks

had fledged (mid August). Bill-loads of provisioning adults were

photographed and the prey items in each load were identified,

counted, and their sizes were estimated relative to the size of the

puffin’s bill length. For more details on these photography-based

diet assessments, see Kress et al. (2016) and Scopel et al. (2019).

Puffin fecal samples were collected beginning with the

researchers’ arrival to the island during puffin incubation (late

May/early June) and continued until most chicks had fledged

(mid August). During the chick-rearing period, the timing of

photography-based puffin diet observations and fecal sample

collection overlapped. Fecal samples were all collected with fresh,

individually-wrapped wooden spatulas, with effort made to limit

contact between the spatula and adjacent surfaces. Samples were
FIGURE 1

The location of the Matinicus Rock puffin colony within the Gulf of Maine.
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immediately placed into sterile collection vials containing 1 ml of

DNA/RNA Shield (Zymo Research, Irvine, CA). Vials were stored

out of direct sunlight at room temperature until they were sent for

processing immediately following puffin fledging at the end of each

field season (range: 1–12 weeks following sample collection).

During the incubation period, burrows known to contain an

adult and egg were observed for incubation switches, indicated by

one adult returning from sea and entering the burrow with the other

adult typically exiting soon after. The identification of breeding

individuals was facilitated by the large number of uniquely marked

birds at the Matinicus Rock colony. If either of the adults defecated

immediately prior to or following the incubation switch, these

samples were then promptly collected. Additional incubation

period samples were obtained during productivity checks when

fresh feces were observed deep in burrows adjacent to adults

incubating eggs. Since disturbance may cause incubating puffins

to abandon their nests (Rodway et al., 1996), we did not remove any

adults from their burrows for fecal sample collection.

Following chick hatch, we no longer collected samples from

within burrows due to uncertainty about the origin of the fecal

matter. Instead, adult fecal samples were obtained immediately

before or after observed chick-provisioning events, as nonbreeding

puffins attending the colony do not carry fish. We avoided collecting

samples if there was doubt as to which fecal deposit in the area was

made by the observed bird of known breeding status. Chick fecal

samples were collected opportunistically while handling chicks for

regular growth and productivity monitoring efforts. When samples

were collected during the handling of chicks as part of monitoring

efforts, birds were positioned over clean sheets of aluminum foil or

wax paper to minimize possible environmental contamination.

Fecal samples from non-restrained birds were only collected from

surfaces free of visible contamination (i.e., other seabird fecal

matter). To determine if amplifiable DNA existed within the local

environment, field blanks were collected from varied surfaces and

regions of the colony in order to confirm that our samples could be

considered reasonably free of environmental contamination.

Previous research indicates that detectable quantities of prey

DNA may be detected in seabird feces up to four days after the

ingestion of that prey (Deagle et al., 2010). Accordingly, samples

were not collected from the same individuals or burrows less than

five days apart to avoid repeated sampling. Aside from avoiding

particular burrows for this reason, we attempted to collect samples

from puffins across the breeding colony to minimize the influence

of potential sub-colony variation in diet (Hipfner et al., 2007).

2.1.3 Laboratory and bioinformatics methods
DNA extraction, amplification, and sequencing closely followed

methods outlined in Fayet et al. (2021), (Supplementary

Information) and were led by GVC. Fecal samples were

homogenized and DNA was extracted from samples using a

Quick-DNA Fecal/Soil Microbe Miniprep Kit (Zymo Research,

Irvine, CA). We followed a hierarchical barcoding approach,

targeting two gene regions using primers with different taxonomic

breadth and resolution. We first used universal metazoan primers to

target a region of the 18S gene to capture the occurrence of broad

metazoan taxa within puffin diet (McInnes et al., 2017). Since we
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expected fish to be the primary component of puffin diet, we also

employed MiFish primers (Miya et al., 2015) that target the 12S

gene to obtain higher taxonomic resolution of the fish DNA

detected in fecal samples. For both primer sets, DNA sequences

were amplified using 4.6 ml of template DNA and a two-step PCR.

Field-, extraction-, and PCR-blanks were used to monitor for

contamination at every step. Samples and blanks were sent to the

University of New Hampshire for sequencing on an Illumina HiSeq

2500 (Illumina Inc., San Diego, CA).

Following sequencing, demultiplexed reads were imported into

Qiime2 (Bolyen et al., 2019) for processing (all code can be found at

https://github.com/GemmaClucas/Matinicus-Rock-2021-Atlantic-

Puffins/). Sequence reads for the 12S region were identified using an

iterative blast method with a custom database downloaded from

GenBank using the RESCRIPt plugin (Robeson et al., 2021). We

removed all avian and human DNA from our data set, as well as

taxonomic groups known to solely contain obligate parasites, since

these did not represent intended prey. Alpha diversity rarefaction

curves were constructed to determine the read depth necessary to

capture the complete diversity of the community present in each

sample; from these rarefaction curves, we determined that 2500

sequences per sample were required for 18S analyses and 600

sequences per sample were required for 12S analyses. Samples

were rarefied to these depths and all samples with an insufficient

number of sequences were removed from our data set.

Taxonomic assignments of sequences were verified using the

National Center for Biotechnology Information’s BLAST tool

(NCBI, 2023) and the geographic distributions of identified fish

taxa were checked using FishBase (Froese and Pauly, 2023) to

ensure assignments were reasonable. For 12S taxa, taxonomic

assignments matching reference sequences with 98% similarity or

greater were assigned to the species-level while taxa with lower

percentages were assigned to the genus or family level, depending

on the number of similarly-ranked, sympatric species. Due to lower

possible taxonomic resolution, 18S taxonomic assignments were

grouped by class or order.
2.2 Data processing

2.2.1 Observational methods
Once prey items were identified and counted from photographs,

the frequency of occurrence (FOO) of prey types were calculated.

FOO data summarizes the proportion of samples in a group that

contain the taxa of interest. We assumed each provisioning bill load

represented a discrete sample.

Using photographs, the size of fish prey identified in bill loads

could be estimated in increments of 0.25 relative to the puffin’s bill

length, then multiplied by an average bill length of 30 mm (Harris

and Wanless, 2012). The approximated lengths of prey items could

then be used to estimate the mass of prey delivered to puffin chicks

using published length-mass relationships (Winters, 1989; Wigley

et al., 2003; see Supplementary Table 1). Totaling our estimates of

prey biomass delivered, we could then estimate the relative biomass

contributed by each prey taxa per year. The importance of each prey

taxa in our observation-based diet assessments could thus be
frontiersin.org
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summarized using FOO or estimated relative biomass. Species

occurring infrequently (FOO < 5%) were excluded from

these summaries.

2.2.2 Molecular methods
Metabarcoding-based diet analyses frequently summarize the

importance of different prey types using either FOO or relative read

abundance (RRA; Deagle et al., 2019). RRA measures the

proportion of reads within a sample or group assigned to a

particular taxon. We relied on FOO, the more conservative

measurement, for 18S data in our assessment of broad metazoan

taxa in puffin diet. For a taxon to qualify as present in a fecal sample,

we set a minimum threshold for each prey type of at least 1% of the

samples’ total read depth (i.e., requiring at least 25 reads for a

sample depth of 2500 reads) to limit the influence of rare taxa. In

most cases, this removed taxa that were also detected in field blanks

yet were unlikely to have been consumed by puffins, such as Diptera

flies. Using this presence/absence data, we calculated the FOO of all

broad metazoan taxa in different combinations of bird age, breeding

stage, and study year.

For 12S (fish) data, we calculated both FOO and RRA. Previous

research suggests RRA can be employed as an imperfect but useful

proxy for the relative biomass of a given prey type consumed

(Clucas et al., 2024); RRA can thus aid in determining the relative

importance of different prey types in an organism’s diet (Bowles

et al., 2011; Deagle et al., 2019). This was of particular interest for

fish, as fish were expected to constitute the majority of puffin diet by

mass (Harris and Wanless, 2012). Using the same groupings of bird

age, breeding stage, and study year as with 18S data, we calculated

the relative proportion of reads contributed by each species to the

grouping’s total.

Following the identification and taxonomic assignment of all

sample sequences, we summarized the diversity of prey types

puffins consumed by calculating the species richness for each

sample in our analyses. To better capture the diversity of prey

types within fecal samples, Shannon Index (Shannon, 1948) values

were then calculated for RRA and relative biomass estimates using

the ‘diversity’ function in the R (Version 4.0.2; R Core Team, 2021)

package ‘vegan’ (Oksanen et al., 2022). Then, to determine if we

collected a sufficient number of fecal samples to effectively

characterize the diets of incubating adults, chick-rearing adults,

and chicks, we constructed prey species accumulation curves using

the ‘specaccum’ function in R package ‘vegan’ using 1,000 random

permutations (Supplementary Figure 1).
2.3 Statistical analyses

2.3.1 Comparing methodology
In order to first assess the comparability of our two methods of

diet assessment, we tested for differences in our estimates of puffin

chick diet as obtained from bill-load photography and fecal DNA

metabarcoding. For these comparisons, we used an abridged data

set of eight dominant fish prey types that together comprised more

than 95% of prey sequences and were identifiable via both methods
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of diet assessment. We calculated the estimated consumption of

each of the main fish prey items during the early, middle, and late

parts of the chick-rearing period. Our different estimates (FOO,

RRA, relative biomass) of the relative consumption of each prey

type were compared with Pearson correlation tests using the

‘cor.test’ function in the R package ‘stats’ (R Core Team, 2021).

We then tested if the overall estimated composition of puffin

diets obtained from observational and molecular methods were

statistically distinguishable using two tests of community similarity.

Data summarized as presence-absence for FOO calculations were

tested using analyses of similarity (ANOSIM) with method as a

fixed effect, using the ‘anosim’ function in R package ‘vegan’

(Oksanen et al., 2022). ANOSIM is a nonparametric means of

testing for significant differences between two groups using ranked

dissimilarities, testing if greater differences exist between groups or

within them. All ANOSIM in our study were performed using

Jaccard distances and 999 permutations. Estimates of puffin diet

composition using abundance data (relative biomass and RRA)

were compared using permutational multivariate analyses of

variance (PERMANOVA) using the ‘adonis2’ function and Bray-

Curtis distances, also in R package ‘vegan’ (Oksanen et al., 2022).

PERMANOVA is a nonparametric alternative to MANOVA and is

more robust than ANOSIM for data with heterogenous dispersions

(Anderson and Walsh, 2013). We used a significance level of p <

0.05 for all PERMANOVA and ANOSIM. Following each

significant test, a post hoc analysis of similarity percentages

(SIMPER) was used to determine the contribution of each taxa to

the observed dissimilarity of the groups examined.

2.3.2 Comparing ages, breeding stages, and years
We likewise used ANOSIM and PERMANOVA to compare

metabarcoding-derived puffin diet composition among different

age, breeding stage, and year combinations. For these tests, we

used the complete community of fish prey taxa detected via 12S

molecular methods. Due to a large number of metazoan groups

identified using 18S molecular methods, we removed all but those

taxa identified using both molecular and observational methods,

attributing the presence of the others to secondary consumption

(Bowser et al., 2013). We tested for differences in puffin diet across

the two age classes of puffins examined (breeding adults and

chicks), the different stages of the breeding period (incubation

and chick-rearing), and the two years of the study (2021 and

2022). Additionally, for each of these combinations, we used

Wilcoxon tests to compare the species richness and Shannon

Index values for 12S fish prey.
3 Results

During the 2021 and 2022 field seasons, researchers performed

250 hours of observation-based puffin diet surveys. A total of 692

photographed provisioning loads (Table 1) were included in these

analyses, representing more than 2,500 identifiable prey items. For

molecular dietary assessments, researchers collected a total of 414

fecal samples from Matinicus Rock puffins. Of these, 176 (43%)
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amplified sufficient dietary DNA using 18S primers to be included

in our assessment of broad metazoan taxa represented in puffin diet.

Using 12S MiFish primers, 285 (69%) amplified to a sufficient depth

to be included in our analyses of fish taxa consumed by puffins.
3.1 Taxa detected in puffin diet

Observational methods identified six broad taxonomic groups

being provisioned to chicks (Table 2). Fish occurred in more than

97% of bill loads but squid, krill/shrimp, polychaetes, amphipods,

and a single comb jelly were also identified. At least 14 fish taxa were

identified in puffin bill-loads across the two years (Table 3), with

haddock, Atlantic saury (Scomberesox saurus), sandlance

(Ammodytes spp.), and rough scad among the most commonly

observed species. Unidentified hake species (Merlucciidae/

Phycidae/Lotidae) were observed frequently in bill loads but

could not be visually identified to species level due to the similar

morphology of juvenile hakes. We therefore combined all as a single

“hake spp.” category.

Molecular methods identified 17 broad groups of metazoans

from DNA in puffin fecal samples (Table 2). Many of these taxa

likely represent secondary consumption but we assumed that the

five major groups detected via both methods (fish, squid, krill/

shrimp, polychaetes, and comb jellies) represent the range of

metazoan groups most likely to have been consumed directly by

puffins (Figure 2). The other groups detected (e.g., copepods) were

likely consumed by prey taxa prior to ingestion by the puffin

(Bowser et al., 2013). Using 12S primers, we identified 28 unique

fish taxa occurring in puffin diet (Table 3), fully twice the number

identified via observational methods. In part, this was driven by the

higher taxonomic resolution offered by DNA metabarcoding; for

instance, we determined that at least five species of “hake spp.” were
Frontiers in Marine Science 06
consumed, with white hake (Urophycis tenuis) and fourbeard

rockling (Enchelyopus cimbrius) the most frequently detected.

Additionally, we detected four species not previously documented

in puffin diet: spotted hake (Urophycis regia), Atlantic salmon

(Salmo salar), northern sennet (Sphyraena borealis), and white

mullet (Mugil curema).
3.2 Metabarcoding as a method for
estimating seabird diet

We observed a positive and significant correlation between our

estimates of relative prey consumption as determined by

observational and molecular means (Figure 3). Both FOO and

RRA produced estimates of puffin chick diet that were strongly

correlated with our estimates of relative biomass consumed from

observational methods. The relationship of estimated relative

biomass and RRA was stronger than that with FOO (RRA:

Pearson’s r = 0.847, p < 0.001; FOO: Pearson’s r = 0.801, p <

0.001), suggesting that RRA, in particular, can serve as a useful

proxy for the relative biomass of each fish prey species consumed.

Accordingly, we did not detect a significant effect of methodology

on the estimated composition of puffin chick diet (PERMANOVA,

F1,769 = 1.722, p = 0.12).
3.3 Variation in puffin diet

3.3.1 Between ages
Of the 28 unique fish taxa that occurred in our study of puffin

diet overall, all 28 species were detected in adult puffin fecal samples

while 17 of these were detected in chick samples. Mean species

richness per sample was significantly higher in adult fecal samples

than those from chicks during the chick-rearing period (Wilcoxon

test, W = 9576.5, p = 0.04; mean of 3.1 and 2.7 species per sample,

respectively). However, Shannon Index values calculated from RRA

– thereby accounting for the evenness of reads from taxa within a

sample – did not suggest higher species diversity in adult samples

than those from chicks (Wilcoxon test, W = 9136.5, p = 0.21).

We detected significant differences in the occurrence of both

broad prey groups (ANOSIM, R = 0.052, p < 0.001) and fish prey taxa

(ANOSIM, R = 0.085, p < 0.001) between adult and chick diets using

metabarcoding methods. Post hoc SIMPER analyses revealed that

differences were driven primarily by the higher occurrence of

invertebrate prey (particularly Eucarida and Teuthida) in adult diet

and a higher occurrence of fish prey in chick diet (Figure 2). Similarly,

we more frequently detected Atlantic saury and rough scad in chick

samples while butterfish (Peprilus triacanthus) and hakes occurred

more often in adult diet (Figure 4). The relative abundance of different

fish taxa in adult and chick diets also differed, with a one-way

PERMANOVA revealing significant effects of age (F1,260 = 11.797, p

< 0.001) on diet composition. A SIMPER analysis revealed that these

differences were driven largely by sandlance, rough scad, and Atlantic

saury, all of which were more prevalent in chick diet.
TABLE 1 Sample sizes for diet analyses split by methodology, bird age,
breeding stage, and study year.

2021 2022

Method Stage Adults Chicks Adults Chicks

Bill-load Photography

Incubation – – – –

Chick-rearing – 324 – 368

18S (Broad Metazoan Taxa)

Incubation 3 – 4 –

Chick-rearing 43 31 43 52

12S (Fish Taxa)

Incubation 11 – 12 –

Chick-rearing 83 43 65 71
For molecular methods, these numbers represent those samples that amplified sufficient DNA
to be included; of 414 total fecal samples collected, 43% of samples (n = 176) had sufficient 18S
reads while 69% of samples (n = 285) had sufficient 12S reads. Note that not all methods can
produce diet estimates for each age or breeding stage.
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3.3.2 Between stages
Amplification success was low for incubation stage fecal

samples, with only 9% of these samples amplifying sufficient

DNA using 18S primers to be included in analyses. Due to the

very small sample sizes from the incubation period (2021: n = 3,

2022: n = 4), we could not statistically test for differences in the

occurrence of broad metazoan groups. Visual examination of the

data (Table 2), however, reveals evidence suggestive of less frequent

fish consumption by adults during the incubation period (FOO:

57%) than during chick-rearing (FOO: 94%).

Higher amplification success for incubation stage samples using

12S primers (29% amplification success, n = 23 samples) allowed for

comparisons of fish consumption between breeding stages

(Table 3). Neither fish species richness per sample (Wilcoxon test,

W = 1462, p = 0.17) nor Shannon Index values (Wilcoxon test, W =

1577, p = 0.41) varied with breeding stage. In contrast, the

occurrence (ANOSIM, R = 0.249, p < 0.001) and relative

composition (PERMANOVA, F1,171 = 7.01, p < 0.001) of fish taxa

in adult diets did differ between between stages. A post hoc SIMPER
Frontiers in Marine Science 07
analysis suggests the observed dissimilarity among fish prey was

largely due to greater consumption of Atlantic herring, white hake,

and pollock (Pollachius virens) during the incubation period.

3.3.3 Between years
Since we determined that aspects of puffin diet varied with age

class, we analyzed puffin adult and chick diets separately. The

occurrence of broad metazoan taxa in puffin diet did not vary by

year in either adults (ANOSIM: R = -0.08, p = 0.81) or chicks

(ANOSIM: R = 0.011, p = 0.47). Visual examination of the data

confirms that the high occurrence of fish in puffin diet (especially

chicks) was consistent across study years (Table 2). Similarly,

greater invertebrate consumption by adults than chicks occurred

in both 2021 and 2022.

In contrast, there was high interannual variability in the types of

fish consumed. Within adult diet, there was significant variation

between years in both the occurrence (ANOSIM, R = 0.170, p <

0.001) and relative consumption (PERMANOVA, F1,147 = 8.105,

p < 0.001) of different fish taxa. Chick diet also differed between
TABLE 2 The frequency of occurrence (FOO, expressed as %) of prey taxa detected in puffin fecal samples using 18S primers for 2021 and 2022.

Taxa
(Common Name)

2021 2022

Inc. Chick-rearing Inc. Chick-rearing

Adults Adults Chicks Photos Adults Adults Chicks Photos

n=3 n=43 n=31 n = 324 n = 4 n = 43 n = 52 n = 368

Acoela
(Acoelomorph Flatworms)

2.3

Amiphoda (Amphipods) 0.8

Indet. Animalia (Metazoans) 33.3 20.1 3.2 25.0 16.3 3.9

Copepoda (Copepods) 66.7 58.1 51.6 50.0 60.5 50.0

Chromadorea (Nematodes) 2.3 9.7 5.8

Cladocera (Water Fleas) 2.3 1.9

Collembola (Springtails) 1.9

Demospongiae
(Most Sponges)

6.4 2.4 3.9

Eucarida (Krill, Shrimp, etc.) 23.2 25.0 23.3 1.9

Hydrozoa (Hydrozoans) 40.0 35.5 16.3 13.5

Myotiloidea (True Mussels) 2.3

Neoptera (Most
Winged Insects)

4.7 3.2 4.7 3.9

Polychaeta (Polychaetes) 33.3 3.2 0.6 4.7

Scyphozoa (True Jellyfish) 18.6 19.4 9.3 1.9

Teleostei (Most Ray-
finned Fishes)

33.3 97.7 100.0 96.9 75.0 90.7 100.0 98.4

Tentaculata (Comb Jellies) 4.6 0.3 1.9

Teuthida (Squid) 4.6 3.2 3.7 11.6 1.9 0.8
Inc. Incubation stage.
FOO for the traditional, photographic identification of prey using adult provisioning loads is displayed for comparison. Bolded taxa are those identified using both methods and most likely to
represent primary consumption.
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TABLE 3 The relative read abundance (RRA, expressed as %) of fish prey taxa detected in puffin fecal samples using 12S primers for 2021 and 2022.

Common Name

2021 2022

Inc. Chick-Rearing Inc. Chick-Rearing

Adults Adults Chicks Photos Adults Adults Chicks Photos

n = 11 n = 83 n = 43 n = 324 n = 12 n = 65 n = 71 n = 368

American Anglerfish 0.4 0.5 + 8.4 2.2 0.2 +

Atlantic Butterfish 11.3 25.1 13.1 12.3 1.0 16.1 8.9 11.9

Atlantic Cod 0.2 1.3 1.3 0.1

Atlantic Herring 0.2 1.2 <0.1 1.1 15.5 1.5 2.5 4.9

Atlantic Mackerel 0.1 0.1 + 0.1 9.1 +

Atlantic Salmon 1.2 0.9

Atlantic Saury <0.1 0.5 8.7 17.7 20.7

Bluefish <0.1

Cunner <0.1 <0.1

Cusk <0.1

Haddock 45.2 30.1 45.1 45.0 20.5 6.1 0.9 5.4

Hake spp. 10.7 30.3 8.9 2.0 31.6 47.0 20.8 16.8

Fourbeard Rockling 0.5 29.7 7.9 * 30.5 5.2 *

Red Hake <0.1 <0.1 * 0.1 0.2 *

Silver Hake 9.1 * <0.1 *

Spotted Codling/Hake 0.1 * <0.1 *

White Hake 1.1 0.5 1.0 * 31.6 16.4 15.4 *

Lumpfish <0.1 + 2.3

Northern Sennet 1.0 +

Pollock 16.3 <0.1 0.4 2.1 <0.1 <0.1 0.3

Pufferfish spp. 0.6 + 0.5 +

Radiated Shanny 0.3 0.2 0.3

Redfish spp. 1.1 1.3 2.6 <0.1 2.4 0.5 0.4

Rock Gunnel 0.1 0.1

Rough Scad 0.3 4.3 14.6 28.8 3.1 7.6 10.8

Sandlance 14.7 3.1 5.8 9.8 15.2 10.7 28.5 28.9

Indet. Scombridae 0.1 0.7 8.4 1.9 2.9

Three-
spined Stickleback

0.1

White Mullet <0.1

Sum
Taxa Detected

14 20 14 12 12 26 17 13

Species Rich-
ness/Sample

2.3 2.5 2.2 1.5 2.2 2.9 2.5 1.4

Shannon Diver-
sity Index

0.48 0.45 0.40 - 0.58 0.51 0.44 -
F
rontiers in Marine Scienc
e 08
 fr
Inc. Incubation stage.
+ identified visually but not a dominant prey type; relative mass consumed not estimated.
* not visually identifiable to species, lumped as “Hake spp.”.
Estimated relative biomass for the traditional, photographic identification of prey using chick provisioning loads is displayed for comparison. For scientific names of prey taxa, see
Supplementary Table 2.
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years (ANOSIM, R = 0.233, p < 0.001; PERMANOVA, F1,112 =

15.334, p < 0.001). For both age groups, the greater consumption of

white hake and Atlantic saury in 2022, paired with the absence of

normally-abundant haddock that year, contributed most to the

observed interannual differences in prey consumption (Figure 4).

Despite these differences, we did not identify any significant

variation in diet diversity (species richness and Shannon Index)

between years for either chicks or adults (Wilcoxon tests, p ≥ 0.05).
4 Discussion

Using a combination of observational and molecular methods,

we demonstrate significant variation in Atlantic puffin diet across
Frontiers in Marine Science 09
ages, breeding stages, and years. This study provides the first formal

assessment of puffin diet during the incubation period and is the

first multi-year comparison of breeding puffin adult and chick diets

using fecal DNA metabarcoding. Emerging, molecular methods

produced similar estimates of chick prey consumption as

traditional, observational methods for dominant prey types. Yet,

metabarcoding identified twice as many fish prey species overall.

Our study reveals that puffin diet in the GoM is both diverse and

highly variable.

The use of molecular methods enabled us to examine puffin diet

during the incubation period for the first time. We hypothesized

that, lacking the demands of frequent chick-provisioning, adult

puffins would be able to perform longer, more distant foraging trips

during incubation. This could enable them to access prey resources
FIGURE 2

The frequency of occurrence of major metazoan taxa identified using 18S gene sequences in puffin adult and chick diet. Taxa shown are those that
likely represent primary consumption. Data from the two years of the study were combined after it was found that no significant differences existed
between them.
FIGURE 3

The relationships between two quantifications of DNA-assessed diet composition (RRA and FOO) and the visually-estimated relative biomass of prey
taxa delivered to chicks during the same time period. Each point represents the estimated contribution of a taxa to puffin chick diet during one
period (early, middle, or late) of the chick-rearing stage.
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not exploited during chick-rearing, similar to the strategy used by

some thick-billed murres (Uria lomvia; Ito et al., 2010). While we

did observe significant differences between diet composition

between the incubation and chick-rearing stages, an examination

of the taxa driving the observed dissimilarities suggests that these

differences may have more to do with changes in local prey

availability than different habitat selection. In 2022, for example,

the RRA of both white hake and Atlantic herring was higher during

the incubation stage than during chick-rearing. Both of these

species are comparatively cold water adapted (Rose, 2005;

Kleisner et al., 2017) and perhaps followed suitable thermal

habitat away from the breeding colony as local waters exceeded

key temperature thresholds. Other differences between periods may

be explained by interspecific variation in the timing of fish

transitioning from larval stages to the age-0 juveniles generally

consumed by puffins. It must be noted that our sample sizes during

incubation were small and were likely insufficient to detect all prey

taxa consumed (Supplementary Figure 1), so puffin diet during

incubation is likely more diverse than we report here. Further work

on seabird diets immediately before and after egg laying is

encouraged since the prey availability and consumption during

this time may have important impacts on reproductive success

(Barrett et al., 2012).
Frontiers in Marine Science 10
Better known is how seabird diet during chick-rearing can

influence reproductive output. However, comparatively few

published studies have compared seabird adult and chick diets

simultaneously (Wilson et al., 2004; Bowser et al., 2013; Fayet et al.,

2021). Our results agree with the available literature in determining

that the dominant prey types consumed by adults and chicks

generally overlapped, but that adults consumed a greater overall

variety of species. On an individual sample level, samples from

adults had a greater mean species richness than those from chicks,

while adults’ Shannon Index values were similar to those from chick

samples. This may mean that adults “snacked” on more diverse prey

types than chicks but generally relied on a similar number of

species. While we found adult puffin diet to be highly diverse (28

fish taxa detected), more than 90% of their diet was comprised of

the eight most common fish taxa each year.

An important finding of our study is that adult and chick diets

were statistically distinguishable. Despite feeding on the same

dominant prey types, the relative importance of these fishes in

puffin diet varied by age class. Interestingly, the only previous

comparison of puffin adult and chick diets in the GoM found

their compositions to be generally similar (Bowser et al., 2013).

However, the degree of dietary differentiation between age classes

likely varies with prey conditions (Baird, 1991). Bowser et al.’s
FIGURE 4

The relative read abundance of dominant fish taxa identified in puffin diet using 12S gene sequences. Data shown are only from the chick-
rearing period.
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samples were collected during a year (2009) of anomalously high

herring abundance where puffin adult and chick diets differed little

because herring was detected in each sample. Likewise, in a multi-

colony study of puffin foraging ecology (Fayet et al., 2021), locations

where prey conditions and reproductive success were high (e.g.,

Wales) had highly similar adult and chick diets. During years of

poor prey availability, as in our study, adults must be additionally

selective about the prey items they provision to chicks (Burke and

Montevecchi, 2009). Greater selectivity at these times likely leads to

greater differences in chick and adult diets. This suggests that the

use of chick diet as a proxy for adult diet could be acceptable in

years of very high prey availability, but that diets may diverge

greatly when prey conditions are less favorable.

As predicted by optimal foraging theory (Orians and Pearson,

1979), we found that adults appeared to prioritize higher-quality

prey for chick-provisioning and fed on lower quality items

themselves. Those species consumed more often by chicks, like

sandlance, Atlantic saury, and mackerel (Scomber scombrus), were

generally lipid-rich (5–10% lipids by wet mass; Spitz et al., 2010),

large (≥ 2 bill lengths), or both. In contrast, adults consumed more

small and low-lipid prey types like juvenile hakes and invertebrates

(≤ 3.7% lipids by wet mass; Spitz et al., 2010). Interestingly, haddock

were a greater component of chick diet than adult diet in 2021,

despite being lipid-poor like most gadids (Harris and Hislop, 1978;

Spitz et al., 2010). This may be because provisioned haddock tended

to be large (x̄ = 2.1 bill lengths) and their mass could thus

compensate for a low energy density. This highlights that prey

quality is challenging to define using any singular metric and

demonstrates the value of multiple, simultaneous methods of diet

assessment in interpreting dietary data.

Relative to previous years of observational chick diet

monitoring in the GoM (Kress et al., 2016; Scopel et al., 2019),

the composition of puffin diet during the two years of this study was

unusual. Haddock, consistently present in GoM puffin diet since it

was first noted in 2009 (Bowser et al., 2013) was exceptionally scarce

during 2022. Additionally, two typically uncommon species – rough

scad and Atlantic saury – were provisioned in frequencies never

before recorded at this colony (National Audubon Society’s Seabird

Institute, unpublished data). Both rough scad and Atlantic saury

favor warm waters (Collette and Klein-MacPhee, 2002) and may

have followed rising temperatures into the GoM during the two

anomalously warm years of our study (Mills et al., 2023). As the

occurrence of herring in puffin diet has declined in association with

warming ocean temperatures (Kress et al., 2016; Scopel et al., 2019),

puffins in the GoM have demonstrated remarkable dietary

flexibility; here, puffins appeared to exploit the infrequent, but

opportune abundance of these two species. As generalist

predators, puffins are capable of feeding on alternative prey types

and diversifying their foraging strategies in order to mediate the

effects of variable prey availability (Baillie et al., 2004; Schoen et al.,

2018). The below-average puffin reproductive success during this

study (2004–2020 mean: 0.65 chicks nest-1; 2021–22 mean: 0.45
Frontiers in Marine Science 11
chicks nest-1; National Audubon Society’s Seabird Institute,

unpublished data), however, suggests that even the exploitation of

these alternative prey types was insufficient to fully compensate for

the poor prey conditions during the 2021–2022 MHWs.

In addition to the unprecedented abundance of Atlantic saury

and rough scad in puffin diet, this study documents the occurrence

of four species in puffin diet for the first time: Atlantic salmon,

spotted hake, white mullet, and northern sennet. The appearance of

salmon may be related to higher migration success of smolts

following dam removals in Maine and regulatory changes at

remaining dams (Stevens et al., 2019). The occurrence of salmon

in the diet of two 2021 puffins during June is likewise well-timed

with the spring seaward movements of smolts (Kocik et al., 2009).

The presence of the other species is likely related to warming ocean

conditions and shifting thermal habitat. Spotted hake, white mullet,

and northern sennet are typically uncommon north of Cape Cod,

being more abundant within the warmer Mid-Atlantic Bight

(Collette and Klein-MacPhee, 2002). Warming conditions –

exacerbated by MHWs – have led to range shifts for many

marine species and the general tropicalization of the U.S.

Northeast Shelf (Kleisner et al., 2017; Friedland et al., 2020a). Our

detection of these novel species in puffin diet demonstrates the

potential efficacy of using metabarcoding techniques and generalist,

marine predators to monitor changing marine communities in

response to global climate change (Sydeman et al., 2017; Lenoir

et al., 2020).

The greater taxonomic resolution offered by metabarcoding also

enabled us to identify more fish taxa in puffin fecal samples than

with visual observations alone. Precise visual identification of

juvenile hakes from bill load photography is not possible, and

observations must be grouped as “hake spp.” in these

assessments. In contrast, we were able to identify five unique

species of “hakes” (fourbeard rockling and white, red (Urophycis

chuss), silver (Merluccius bilinearis), and spotted hakes) using fecal

DNA. With molecular identification, we observed changes in the

composition of “hake spp.” over our study; whereas white hake

predominated during incubation and throughout 2022, hakes

during chick-rearing in 2021 were overwhelmingly fourbeard

rockling. While seemingly trivial, closely related species may have

different thermal tolerances and responses to changing ocean

conditions (Rose, 2005); although MHW conditions dominated

both years of our study, ocean conditions were notably warmer in

2021 (Mills et al., 2023) and may have contributed to the scarcity of

the less heat-tolerant white hake in puffin diet that year. Beyond

thermal tolerances, morphologically-similar species can also have

different lipid contents, resulting in variable energetic gain for their

predators (Spitz et al., 2010). The use of diet assessment methods

capable of such high-level identification can therefore be valuable

for understanding the complex relationships between marine

predator diet, reproduction, and ocean warming.

Despite these advantages, metabarcoding techniques are not a

panacea and cannot replace certain types of data collected using
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traditional methods. Most obviously, metabarcoding is not capable

of estimating the total mass of prey consumed or the size or age

class distributions of prey items. Whereas stomach flushing revealed

that common murre (Uria aalge) adults tend to consume smaller,

younger age classes of sandeels (Ammodytes spp.) than they

provision their chicks (Wilson et al., 2004), the isolated use of

molecular methods would have been unable to discern this.

Furthermore, some interpretation of molecular diet assessments

are necessary to account for potential secondary and incidental

ingestion (Sheppard et al., 2005). We detected the occurrence of 17

unique metazoan groups in puffin diet but this total includes many

taxa unlikely to have been consumed directly by puffins due to

habitat (e.g., terrestrial winged insects) or size (e.g., copepods). We

thus relied heavily on concurrent visual observations of prey

deliveries to determine which invertebrate taxa were most likely

consumed by puffins directly and which were likely consumed by

puffin prey. Since we detected various differences in adult and chick

diets, we note that this method is likely imperfect and that even our

dual-methodology may be inadequate to fully assess adult puffin

invertebrate consumption. Although our decisions regarding which

taxa represent intentional consumption were largely substantiated

by the available literature on both puffin (particularly Piatt, 1987;

Falk et al., 1992; Bowser et al., 2013; Harris et al., 2015) and forage

fish diet (Bowser et al., 2013; Suca et al., 2018), it is possible that

adult puffins exploit invertebrate prey resources more broadly than

currently thought. Simultaneous diet sampling across multiple

trophic levels (i.e., diet studies of seabirds and their prey; see

Bowser et al., 2013) will doubtless aid in the interpretation of

metabarcoding-derived diet data.

Generally, though, we believe our dual-method strategy for

assessing puffin diet confirms the utility of fecal DNA in

supplementing traditional methods of diet assessment. A key

finding of our research is that the estimated relative contribution

of a prey taxa to puffin diet was found to be strongly correlated

when estimated through traditional and molecular methods, as

confirmed recently elsewhere (Clucas et al., 2024). As in other

metabarcoding studies, the correlation was strong though imperfect

due to various factors such as the differential survival of DNA

during digestion, interspecific variation in the amount of DNA per

gram of tissue, primer binding biases, and PCR stochasticity

(Deagle and Tollit, 2007; Thomas et al., 2016; Alberdi et al.,

2019). Despite this, the estimated relative importance of most

dominant prey types was highly similar between methods and we

believe this highlights the efficacy of using metabarcoding to

quantitively assess seabird diet. We believe the relative

composition of puffin diet may be reliably estimated using the

RRA from fecal DNA metabarcoding methods, including for ages

and breeding stages not previously possible to assess noninvasively.

Further monitoring of puffin diet within the GoM will provide

valuable information on how puffins are adapting to changing prey-
Frontiers in Marine Science 12
resources. The loss of puffins’ dominant prey species in other

regions has very rapidly led to widespread breeding failure

(Barrett et al., 1987; Miles et al., 2015) but declines in

reproductive success within the GoM have so far been milder

(Scopel et al., 2019). The high diversity of prey taxa available in

the region has likely served as a buffer against the decline of herring

and other cold water-adapted species (the portfolio concept;

Schindler et al., 2015). This diversity and the opportunistic nature

of puffins in exploiting irregularly-occurring prey resources may

help this population be resilient to ongoing and projected

oceanographic changes within the GoM.
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