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Mangrove forests serve as significant carbon sinks and play a crucial role inmitigating

climate change. Currently, the response of mangroves to intensified climate change

and human activities, and the factors that influence themagnitude of carbon storage

in their sediments remain uncertain. To address these questions, two sediment cores

were collected from the mangrove reserve in Pearl Bay, Guangxi, China. The activity

of 210Pb in the sediment, grain size, bulk elemental composition, stable carbon

isotopes, lignin, and different sediment organic matter (OM) fractions were

investigated to determine the local mangrove’s response to climate change and

human activities, as well as the factors influencing its carbon storage. The results

showed mangrove forests with lower tidal ranges, slower sedimentation rates, and

where OM predominantly originated locally tend to have larger carbon stocks. The

mangrove OM (MOM) decreased progressively from the bottom to the top of the

cores, indicating that the mangroves in Pearl Bay have possibly undergone

degradation, which was further substantiated by the decrease in lignin content.

Based on these results, the entire cores were divided into two stages: stable stage 1

(1963–2001) and degradation stage 2 (2001–2020). The cause of the mangrove

degradation is likely due to the impact of human activities; however, these impacts

are anticipated to gradually lessen in the future due tomangrove protection policies.

Our results indicate that lignin can track and predict mangrove growth trends and

provide guidance for the sustainable management of mangrove ecosystems.
KEYWORDS

blue carbon ecosystem, sediment carbon storage, lignin biomarker, sea level rise,
human disturbance
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1 Introduction

Mangrove forests are wetland plant communities comprising of

salt-tolerant woody halophytes growing in the inter tidal zone of

tropical and subtropical coasts. These forests play an important role

in dissipating winds and waves, purifying seawater, maintaining

biodiversity, and so on (Gao et al., 2019; Medina-Contreras et al.,

2024). Mangrove ecosystems have high primary productivity of

approximately 92–280 Tg carbon per year, and the carbon stored in

mangrove soil is much higher than that in other macrophyte

ecosystems (Bouillon et al., 2008; Alongi, 2014). Although

mangrove forests make up only 0.1% of Earth’s land area, their

excellent ecosystem service and carbon storage capacity can help

humanity cope with the threats posed by climate change (Atwood

et al., 2017; Cavanaugh et al., 2019).

The global mangrove forest area decreased by 520,000 ha

between 1996 and 2020, with an estimated loss of 3.4% over 24

years (Bunting et al., 2022), due to the effects of both climate change

and human activities. Global warming has caused mangroves

encroachment into salt marshes (Doughty et al., 2015), while

erosion, land subsidence, and soil degradation cause a reduction

in mangrove area (Giri and Long, 2014). The rise in sea level caused

by climate change compresses the living spaces of mangrove forests

and forces mangrove ecosystems to migrate toward the land

(Alongi, 2015). Changes in temperature and rainfall affect

phenological patterns, such as seed germination and flowering

time, and species composition (Ward et al., 2016). Water vapor

deficit and high salt conditions caused by excessive temperature

affect the growth and development of mangrove forests, eventually

leading to their degradation (Adame et al., 2021; Alongi, 2021).

Mangrove forests face a greater threat from human activities than

climate change, as 62% of global mangrove loss from 2000 to 2016

was attributed to human activities; this loss is primarily due to the

conversion of mangrove forests for aquaculture and agriculture

purposes (Goldberg et al., 2020). These natural and anthropogenic

factors can cause additional fluctuations in mangrove area over

shorter time scales, potentially altering mangrove carbon stocks

(Comeaux et al., 2012).

The majority of sediment organic carbon (SOC) in mangrove

sediments is stored in the top 1 meter of sediment, playing a crucial

role in regulating carbon cycle and ecosystem functions (Kauffman

et al., 2020). Due to the complexity of mangrove growth

environments, the carbon stocks in mangrove sediments may be

influenced by multiple factors, for instance, physio-chemical factors

of the soil such as pH and salinity (Gao et al., 2019), types of

mangrove vegetation (Wang et al., 2013), and climate factors

(Kauffman et al., 2011). Xin et al. (2018) found that the carbon

stock in the Sonneratia caseolaris community of Dongzhai Port

mangroves was greater than that in the Bruguiera sexangula

community due to greater biomass and growth density of

Sonneratia caseolaris. The sources of organic carbon (OC) input

into sediments can also affect the carbon stocks, as different OC

sources have different carbon sequestration mechanisms (Sun et al.,

2019). Additionally, the output of OC significantly determines the
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size of the carbon stock in the sediments. Collins et al. (2017) found

that higher tidal range and stronger tidal currents promote

mangrove organic matter (MOM) input, and Perez et al. (2018)

suggested that different hydrological and tidal conditions can affect

the deposition rate and carbon stock in mangrove forests.

Currently, the impact of tidal range on mangrove carbon stocks

remains unclear, and there are few related reports.

When mangrove forests undergo degradation or destruction,

the physicochemical properties of the sediment may undergo

changes, making stored carbon more vulnerable to mobilization,

loss, and conversion to carbon dioxide, which is then released into

the atmosphere (Friesen et al., 2018; Arias-Ortiz et al., 2020).

Therefore, it is necessary to use biogeochemical indicators in

sediment archives to reconstruct the historical dynamics of

mangroves in order to assess changes in mangrove carbon stocks

(Ellison, 2008). The evolutionary history of mangroves can be

reconstructed through the sources of OC determined by the

stable isotope characteristics (d13C) and the ratio of total OC

(TOC) to total nitrogen (TN) (C/N) in sediments (Lamb et al.,

2006; Xiong et al., 2018a; Sánchez and Gómez-León, 2024).

However, the redistribution of mangrove litter by surface runoff

and tides, along with the overlapping d13C and C/N values of

allochthonous source OM, poses a challenge in accurately

reconstructing the evolutionary history of mangroves using this

method (Cloern et al., 2002; Lamb et al., 2006). Therefore, the

crucial aspect lies in ensuring that the d13C and C/N values precisely

reflect the contribution of MOM. Mangrove pollen in sediments is a

direct and effective proxy, widely used to validate the accuracy of

MOM indicated by d13C and C/N values and to trace the historical

development of Holocene mangroves (Li et al., 2008). Xia et al.

(2015) employed chemical tracers (d13C and C/N) and isotope

mixing models to quantify the contribution of MOM while

compensating for the influence of diagenetic changes on stable

isotope values by introducing mangrove pollen relative abundance.

Meng et al. (2016) used a similar method to reconstruct the growth

period, gradual degradation period, and rapid degradation period of

the Maowei Sea mangroves in southwestern China over the past 130

years. However, the applicability of this method relies on the

availability of adequate pollen content within the sediment, and

the acquisition of reliable and accurate pollen data incurs a

significant cost (Versteegh et al., 2004). Lignin, due to its source

specificity and high resistance to degradation, is considered an

effective indicator for tracing terrestrial organic matter (OM),

similar to the ratios of d13C and C/N (Jex et al., 2014). Prasad

and Ramanathan (2009) used the ratio of lignin phenols in

sediments to determine that mangrove leaves were the primary

source of terrestrial OM in the Pichavaram estuarine mangroves in

India. Vaughn et al. (2020) found that the invasion of mangroves

into salt marshes led to an increase in woody tissue input to the soil,

which further promotes the increase in soil carbon stocks. However,

there are few studies that utilize lignin to help reconstruct the

development history of mangroves. Exploring the feasibility of

using lignin biomarkers to reconstruct the evolutionary history of

mangroves is crucial for a comprehensive understanding of their
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responses to future climate change (Gilman et al., 2007). This study

aims to achieve three objectives: 1) Compare mangroves in other

regions to explore the effects of tidal range, sedimentation rate, and

sources of OC on mangrove carbon stocks., 2) Use lignin

biomarkers to infer the evolutionary development history of

mangroves., and 3) Investigate the response of mangrove carbon

stocks to external environmental pressures.
2 Materials and methods

2.1 Study area

Guangxi has a typical subtropical marine monsoon climate. In

this area, the mean annual air temperature is 22.5°C, the coldest

month is January, with an average temperature of 14.3°C (Li et al.,

2015), the annual precipitation is 1,658 mm, and the mean sunshine

duration is 1,673 h (Tian et al., 2021). Guangxi has approximately

8,715 ha of mangrove forests, and the main mangrove species are

Sonneratia apetala, Aegiceras corniculatum, Kandelia obovata,

Avicennia marina , Rhizophora stylosa , and Bruguiera

gymnorrhiza (Zheng and Takeuchi, 2020). Pearl Bay is a semi-

enclosed sea bay located in the city of Fangcheng Harbor, Guangxi,

China. Pearl Bay covers an area of 94 km2 and has a mouth length of

3.5 km. Two freshwater-dominated rivers flow into Pearl Bay: the

Huangzhu and Xinlu Rivers (Fan et al., 2017). The diurnal average

tide height in Pearl Bay is 2.24 m, the highest tide is 5.00 m (Chen

et al., 2021), with an average salinity of 23.1‰ (Xu et al., 2020). The

study area was a creek discharging into Pearl Bay (Figure 1A).

The natural mangrove forest in the sampling site is distributed

in the intertidal zone, with an average tree age of 50 years.Halophila
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beccarii (Seagrass bed) are found on tidal flats at the edge of the

mangrove forest. Some pioneering Avicennia trees grow in the

mudflats in the low tide area. Mangrove species in the sampling site

were A. corniculatum, B. gymnorrhiza, A. marina, and K. obovata.

Underground aquaculture systems were built near the study area by

burying plastic pipes in mud (Chen et al., 2021).
2.2 Sample collection and pretreatment

Two sediment cores were collected from a creek in a natural

mangrove forest on the northeast side of Pearl Bay (Figure 1A) at

GX1 (108°14′28″E, 21°37′2″N) and GX2 (108°14′21″E, 21°37′3″N)
(Figure 1B) on June 30, 2021 using a gouge auger sampler

(diameter: 6 cm; length: 100 cm) with minimal compaction. The

sediment cores GX1 and GX2 were 88 and 96 cm long, respectively.

At the sampling sites, the layers of sediment cores were sliced at

every 2 cm, and the sub-samples were stored in polyethylene bags at

low temperature (4°C). Drying of sediment samples at 45°C for two

days (until constant weight) was completed within one week after

sampling. The difference in mass of the sediment before and after

drying in a 105°C oven was divided by the dry weight of the

sediment to obtain the sediment moisture content, expressed as

percentage dry weight.
2.3 Grain size analyses

Each sub-sample was treated with 20 ml H2O2 (40%) for 24 h to

remove OM, followed by thorough rinsing with deionized water.

Then, 10 ml of 1 M HCl was added to the residue to remove
FIGURE 1

Map showing (A) the locations of Fangcheng Harbor (pink), Pearl Bay (blue), and mangrove forests (green) surrounding Pearl Bay, southern China;
and (B) a high-resolution satellite image of the sampling sites (GX1 and GX2) in the natural mangrove forest.
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inorganic matter, this was allowed to react for 2 h until no more

bubbles were produced. After the reaction was complete, the

samples were rinsed with deionized water until the pH of the

wash water was neutral. Tetrasodium pyrophosphate (2%) was

used to disperse the sub-samples, and grain size was then

determined using the particle size analyzer Mastersizer 2,000

(Malvern, England), which measures particle size ranging from

0.02 mm to 2,000 mm. Grain size was divided into three categories,

namely, clay (< 4 mm), silt (4–63 mm), and sand (63–2000 mm). The

lithology of the sub-sample was determined using the Shepard

triangle method (Shepard, 1954). The mean grain size, standard

deviation, skewness, and kurtosis of the sub-samples were

calculated using the calculation procedure created by Blott and

Pye (2001).
2.4 Bulk elemental and stable carbon
isotope analyses

The freeze-dried sub-samples were treated with HCl (1 M) to

eliminate inorganic carbon until no bubbles were produced. The

sediments were then dried in an oven, homogenized, and analyzed

for TN and TOC using an elemental analyzer (EA3000, EuroVector,

Italy). The molar ratio of TOC and TN was calculated and

henceforth known as C/N ratio.

Stable carbon isotope ratios were analyzed using a stable isotope

mass spectrometer (Delta V + EA Isolink, Thermo Fisher Scientific,

USA). The C/N ratios and d13C of sediments in mangrove

ecosystems have been extensively used to identify the sources of

OM in mangrove sediments (Xiong et al., 2018b; Sasmito et al.,

2020). OM from terrestrial C3 plants, such as mangroves, with

abundant cellulose exhibit a high C/N ratio (> 12) and low d13C
values (< -21‰), whereas OM from marine end-members, such as

phytoplankton, with abundant protein have lower C/N ratio (5–7)

and higher d13C values (> -23‰) (Meyers, 1994; Lamb et al., 2006).

2.5 Radioisotope (210Pb) analysis

Approximately 5 g of the freeze-dried sub-samples were weighed

and placed into sample tubes, which were then compacted and sealed

with paraffin film for 3 weeks to establish equilibrium for 210Pb

activities. Radioisotope analysis of the sub-samples was performed

using an HPGe Gamma Spectrometer (ORTEC-GWL-120-15,

EG&G, USA), with IAEA-RGU ore powder as the standard

reference material. The specific activity of 210Pb was calculated

using the energy peak at 46.5 keV, and the specific activity of 226Ra

was calculated using the energy peaks of its progeny 214Pb (351.9

keV) and 214Bi (609.2 keV). The difference in specific activity between
210Pb and 226Ra represents the excess 210Pbex specific activity. The

statistical errors for 210Pb and 226Ra were <20% and <10%,

respectively (at a 95% confidence level). The vertical distribution of

excess 210Pb specific activities was used to calculate the sedimentation

rate and establish an age model for each core.
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2.6 Lignin analyses

The sediment samples were subjected to the CuO oxidation

method by Hedges and Ertel (1982) to extract lignin-derived

phenol. First, 0.5 g of dry sediment and 1.0 g of CuO were

weighed into a 25 mL Polytetrafluoroethylene (PTFE) reaction

minibomb. In a glove bag filled with N2, 10 mL of 2 M oxygen-

free NaOH (N2 was blown into the solution for 5 min) was added

into the PTFE vessels. The PTFE vessels were placed in a muffle

furnace and heated at 170°C for 3 h. The reaction vessels were then

cooled. The solution was washed with 1 M NaOH and then placed

in a 50 ml centrifuge tube and centrifuged. This step was repeated

three times. The lignin in the supernatant was extracted three times

using C4H8O2 in a separator funnel. Anhydrous Na2SO4 was added

to the extract to remove water, and the extract was filtered using

filter paper. The extract solution was added, with 100 mL of ethyl

vanillin as the internal standard, and then concentrated to 1–2 ml

using a rotary evaporator. N2 was blown into the remaining

concentrated solution to dry the solution and obtain solid

oxidation products . An equal volume of C5H5N and

C8H18F3NOSi2 with 10% C3H9ClSi were added into the oxidation

products and heated at 90°C for derivation purposes. Gas

chromatography (GC-2010 Plus, SHIMADZU, Japan) was used to

elucidate the lignin monomers. The heating procedure of the GC

column was from 100°C to 300°C at a rate of 4°C min-1. The

concentration of each lignin phenol was determined based on the

retention time of each lignin and the internal standard.

Lignin is a good indicator of terrigenous OM and is widely

utilized in the environment of continental shelf, estuarine, lake,

peatland, and salt marsh (Lourençato et al., 2019). Lignin phenol is

one of the main components of plant-derived OM, which can

indicate the vegetation composition of mangroves due to its

unique biogeochemical characteristics (Lowman et al., 2021; Xia

et al., 2023). The value of L6 is the sum of syringyl and vanillin

phenols, whereas the value of L8 is the sum of L6 and cinnamyl

phenols. The ratio of syringyl to vanillyl phenols (S/V) can be used

to distinguish gymnosperms (S/V is approximately 0) and

angiosperms (S/V > 0), and the ratio of cinnamyl to vanillyl

phenols (C/V) can be used to distinguish woody (C/V is

approximately 0) and non-woody (C/V > 0) tissues (Hedges and

Mann, 1979). Furthermore, Tareq et al. (2004) proposed the lignin–

phenol vegetation index (LPVI) to accurately determine the source

of terrestrial OM; the ranges of LPVI values of the woody and non-

woody tissues of gymnosperms are 1 and 12–17, respectively, and

the ranges of LPVI values of woody and non-woody tissues of

angiosperms are 67–415 and 378–2782, respectively. In addition,

the acid–aldehyde ratios of syringyl [(Ad/Al)s] and vanillyl [(Ad/

Al)s] phenols can be used to indicate the degree of lignin

degradation under microbial action. In general, the (Ad/Al)s and

(Ad/Al)V of fresh plant tissues were less than 0.14 and 0.3,

respectively. If (Ad/Al)s is greater than 0.16 and (Ad/Al)v is

greater than 0.6, lignin is considered to have undergone high

degradation (Hedges et al., 1988).
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2.7 Calculation of OC stocks

The OC storage in the sediment was calculated as follows:

(1) dry bulk density (Ddry) is equal to the ratio of dry subsample

mass (Mdry) to wet sample volume (Vwet) (Equation 1),

(2) calculation of the amount of TOC based on TOC percentage

and Ddry of each layer (Equation 2), and (3) SOC storage is the ratio

of the TOClayer of each layer to the cross-sectional area of each layer

(Equation 3).

Ddry  (g   cm
−3) = Mdry  (g)=Vwet  (cm

3)   (1)

TOClayer  (g) = Ddry  (g  cm
−3)�H  (cm)� A(cm2)

� TOC( % )� 0:01 (2)

SOC(Mg Corg  ha
−1) = 100� TOClayer  (g)=A  (cm2) (3)

whereMdryis the mass of 2 cm-3 sub-sample after drying, Vwet is

2 cm-3,H is the thickness of each sediment layer (2 cm), and A is the

cross-sectional area of the sample column (28.3 cm2). TOClayer is

the TOC content of each sediment layer (Supplementary Table S2).
2.8 Calculations of OM fractions

The sources of OM fractions in the forms of mangrove and

terrestrial and marine fractions in the mangrove sediment were

calculated using the SIMMR software package. The detailed

calculation method and process of the SIMMR software package

were described by Parnell and Inger (2016). The d13C and C/N

values of mangrove leaves of different tree species in Qinzhou City

(Guangdong Province) were used to represent the end-members of

mangrove plants, in which the average value of d13C is -28.72 ±

0.78‰, and the average value of C/N is 37.41 ± 9.65 (Xia et al., 2015;

Meng et al., 2016). As the collected data were exclusively obtained

from mangrove forests in Guangxi, characterized by the same

mangrove species, these data adequately represent the end-

member value of mangrove OM. Xia et al. (2015) found that in

areas with similar drainage and material sources, the C/N and d13C
values of river sediments are generally same. Therefore, this study

used the river d13C (-24.1 ± 0.6‰) and C/N (12.8 ± 2.1) data

provided by Xia et al. (2015) as the end-member values for river

OM. The average values of d13C and C/N of phytoplankton in the

northern South China Sea of -16.10 ± 0.80‰ and 6.50 ± 0.10,

respectively (Hou, 2009), were used as the end-members for

phytoplankton OM fraction. The specific data and sources of each

end-member value are shown in Supplementary Table S1.
2.9 Statistical analyses

Given that not all parameters conform to the normal

distribution, the Mann–Whitney U test was used to compare the

differences in measured parameters among different cores. The

correlation between different parameters along the cores was
Frontiers in Marine Science 05
determined using Spearman’s correlation analysis. IBM SPSS

Statistics software was used for statistical analysis of the data, and

a p value of 0.05 was used to determine its significance. Assessment

of the significance of changes in C/N and d13C values in sediments

were based on variance changes using the F-test (Sánchez et al.,

2023). Origin Pro 2022b was used to draw and analyze the data. The

SIMMR software package was used to establish an end-member

mixing model based on C/N values and d13C value to analyze the

relative contributions of different OM sources (Parnell et al., 2013).
3 Results

3.1 Sedimentation rates and age model

Based on the SERAC package provided by Bruel and Sabatier

(2020), three models, namely, the constant flux constant

sedimentation (CFCS), the constant initial concentration (CIC),

and the constant rate of supply (CRS), were used to calculate the

sedimentation rate and age patterns along the GX1 and GX2 cores.

The total 210Pb specific activity (75.82–179.67 Bq kg-1) along the two

cores is greater than that of 226Ra (32.77–60.36 Bq kg-1). The depth of

the two cores, GX1 and GX2, has not reached the background value

of 210Pb in this area; thus, the CRS model is not applicable. In

addition, the reliability of the calculated results of the CIC model is

poor. Thus, the ages along the GX1 and GX2 cores were calculated

using the CFCSmodel. The 210Pb activity of GX1 has a high degree of

linear fit (r2 = 0.87) to the depth profile (Figure 2A). The pattern

observed along GX2 is consistent with a stepped pattern of 210Pb

activity (Figure 2B); therefore, the age model along GX2 was divided

into two parts, 0–71 and 71–95 cm, with a fit of 0.67 and 0.89,

respectively. The mean sedimentation rate along GX1 was 17.7 ± 2.9

mm yr-1, and the ages ranged between 1972 and 2021 (Figure 2A).

The deposition rates along GX2 were 80 ± 22.4 and 17.3 ± 5.4 mm yr-

1 at 95–71 and 71–0 cm, and the corresponding ages were 1977–1980

and 1980–2021, respectively (Figure 2B).
3.2 Sediment grain size

The average grain size, sorting coefficient, kurtosis, and

skewness of the sediments in the study area are 4.93±0.49, 2.28

±0.18, 0.95±0.12, and 0.37±0.12, respectively, with the variation

trends shown in Figures 3A–D. The following formula is used to

calculate particle size. The larger the calculated j value, the smaller

the particle diameter D.

X  (j) = −2log2(D) (4)

where X is the normalized particle size, and D is the particle

diameter. j values decreased from 5.33 j (in 1964) to 4.74 j (in 2001)

along GX1 and decreased from 5.99 j (in 1963) to 4.64 j (in 2001)

along GX2 (Figure 3A), indicating increased particle size from around

1963 to 2001. No evident change was observed in the trend of average

particle size along both cores from 2000 to 2020. According to the

Shepard method (Shepard, 1954), three lithologies exist in the GX1 and
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GX2 sites (Figure 4A): silty-sand, sandy-silt, and clayey-silt. Both GX1

and GX2 showed a silty-sand type (more sand) in the surface layer and

a sandy-silt type (more silt) in the deeper layer. Averages of 39.31% ±

14.32% sand, 47.43% ± 12.25% silt, and 13.27% ± 2.87% clay were

found throughout 1963–2001 along both sediment cores, and 50.87% ±

5.46% sand, 36.39% ± 4.04% silt, and 12.74% ± 1.76% clay were

observed throughout 2001–2020 (Figure 4B).
3.3 Bulk elemental composition (TOC and
TN) and d13C value

The percentages of TOC and TN values along both cores ranged

from 0.39% to 2.05% and 0.026% to 0.093%, respectively. The mean

content of TN along GX1 and GX2 was the same at 0.05%; however,

the average content of TOC in GX1 (1.23%) was slightly higher than

that of GX2 (1.15%). The molar ratio of TOC/TN ranged from 15 to

30 (Supplementary Table S2). The C/N values of GX1 remained at

approximately 25 from 1963 to 2001, but decreased from 25 to 15

from 2001 to 2020, which was significant (F8,14, a=0.05 = 3.49). The

C/N ratio along GX2 also showed a noticeable decrease, but this

change is not significant. Stable carbon isotope ratios (d13C) ranged
from -27.21‰ to -25.65‰ (Supplementary Table S2).

TOC content along GX1 andGX2 showed a slight decreasing trend

from 1963 to 2020, whereas TN content remained stable from 1963 to

2010 and increased slightly from 2010 to 2020 (Figures 5A, B). From

1963 to 2001, the mean d13C values of GX1 and GX2 were -26.50‰

and -26.68‰, respectively. From 2000 to 2020, the d13C values of GX1

and GX2 increased from -26.50‰ to -25.65‰ and from -26.68‰

to -25.82‰, respectively (Figures 5C, D). The variation in d13C values

along GX1 was significant (F8,14, a=0.05 = 3.32), whereas there is no

significant variation along GX2.
FIGURE 2

Linear fitting of 210Pb radioisotope results and age-depth models of
cores (A) GX1 and (B) GX2, where the blue and red lines represent
the best age, and the blue and red areas represent the margin of
error in the calculation of the chronology model.
FIGURE 3

(A) Mean grain size, (B) standard deviation, (C) skewness, and (D) kurtosis along the vertical profile of the cores GX1 (represented by solid blue
circles, of which the ages along the core span from 1964 to 2020) and GX2 (represented by solid pink circles, of which the ages along the core span
from 1963 to 2020).
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3.4 Three end-member mixing model and
potential sources of OM

The proportions of MOM, river OM and marine OM along the

GX1 sediment core were 63.08% ± 6.73%, 26.36% ± 6.12% and 10.58%

± 0.95%, respectively. The proportions of MOM, river OM and marine

OM along the GX2 sediment core were 63.99% ± 7.30%, 25.64% ±

6.15% and 10.36% ± 1.27%, respectively. In summary, the proportions

of MOM, river OM and marine OM in GX1 and GX2 sediment

accounted for 63.56% ± 7.05%, 25.98% ± 6.14% and 10.46% ± 1.13% of

the total OM, respectively (Supplementary Table S3). In the early stages

of sediment deposition (1963–2001), MOM, river OM andmarine OM

accounted for approximately 65.73% ± 3.04%, 23.76% ± 2.35% and

10.52% ± 0.88% of total OM, respectively. In the following stage of
Frontiers in Marine Science 07
sediment deposition (2001–2020), MOM, river OM and marine OM

accounted for approximately 57.34% ± 7.52%, 31.50% ± 6.66% and

11.16% ± 1.21% of the total OM, respectively.
3.5 Lignin

The value of L6 is the sum of syringyl and vanillin phenols,

whereas the value of L8 is the sum of L6 and cinnamyl phenols. The

average values of L6 and L8 in GX1 were 4.60 ± 1.00 and 4.94 ± 1.07

mg/100 mgOC, whereas in GX2, the values were 5.20 ± 1.31 and 5.66

± 1.43 mg/100 mg OC. The trend of total lignin content L6 and L8
remains basically the same (Figures 6A, B; Spearman’s rho = 0.997,

p < 0.001). The S/V and C/V ratios of GX1 ranged from 0.82–1.03
FIGURE 5

(A) Total organic carbon (TOC), (B) total nitrogen (TN), (C) carbon/nitrogen (C/N) ratio, and (D) stable isotope signature (d13C) along the vertical
profile along cores GX1 and GX2 (solid blue circles represent GX1, the core was from 1964 to 2020; solid pink circles represent GX2, the core was
from 1963 to 2020).
FIGURE 4

(A) Categories of particle size among each subsample according to the Shepard method (1954); (B) The clay, silt, and sand grain contents along the
depths of cores GX1 and GX2.
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(mean 0.92 ± 0.06) and 0.09–0.21 (mean 0.14 ± 0.02), respectively.

The S/V and C/V ratios of GX2 ranged from 0.86–1.21 (mean 0.99 ±

0.09) and 0.11–0.26 (mean 0.17 ± 0.04), respectively. The LPVI values

of GX1 and GX2 were 876–3279 and 1091–8038, with an average of

1727 and 2771, respectively. The (Ad/Al)s and (Ad/Al)v were 0.14–

0.21 (mean 0.19 ± 0.02) and 0.21–0.27 (mean 0.26 ± 0.02) along GX1

and 0.17–0.48 (mean 0.33 ± 0.10) and 0.22–0.30 (mean 0.27 ± 0.02)

along GX2, respectively (Supplementary Table S4). The Mann–

Whitney U test results showed significant differences in C/V values

(p = 0.003) and S/V values (p = 0.003) between GX1 and GX2 sites.

The results of the Mann–Whitney U test showed significant

differences in (Ad/Al)s (p < 0.001) and (Ad/Al)v (p = 0.043) values

between the GX1 and GX2 samples.

Total lignin content increased slightly from 1964 to 2000 but

decreased from 2000 to 2020 (Figures 6C, D). No significant change

is observed in the (Ad/Al)s of GX1 from the bottom to the surface

sediment; however, a significant decrease in (Ad/Al)s from the

bottom to surface of core GX2 is observed. The (Ad/Al)v values of

GX1 and GX2 did not change significantly from the bottom to the

top of the sediment (Figures 6E, F). The values of C/V (Spearman’s

rho = 0.662 to 0.704, p < 0.001) and S/V (Spearman’s rho = 0.482 to

0.633, p < 0.015) showed a significant positive correlation with age

at GX1 and GX2. (Ad/Al)s value (Spearman’s rho = 0.893, p <

0.001) was significantly negatively correlated with age at GX2,

whereas the (Ad/Al)s value of GX1 did not change significantly

with age.
4 Discussion

4.1 Sedimentary organic carbon stocks
and sources

Mangrove forests store a remarkable amount of OC in the

sediments. In the current study, the OC stock in the one-meter-top
Frontiers in Marine Science 08
sediments is estimated to be an average of 144.5 Mg Corg ha
-1. The

estimation aligns closely with the estimated SOC stock in the 8-year-

old restored mangrove forests at the Shijiao station of Pearl Bay;

however, this value is lower than the natural mangrove forests

(Figure 6.5 in Chen et al., 2021). Integrating these results indicates

that the average SOC stock in the mangrove forests of Pearl Bay is

approximately 150 Mg Corg ha
-1. This figure is notably lower than the

national average for China, which is reported as 270.39 ± 76.25 Mg

Corg ha
-1 (Liu et al., 2014) and the global average of 334 Mg Corg ha

-1

(Kauffman et al., 2020). Such comparisons suggest that the mangrove

forests in Pearl Bay possess a comparatively diminished capacity for

carbon storage. Various factors, both biotic and abiotic, influence the

carbon storage capacity of mangrove forests. Notably, temperature

always emerges as a primary abiotic factor governing the spatial

pattern of SOC stock (Kauffman et al., 2020; Wang et al., 2021).

Recently, tidal range has been identified as a critical driver of carbon

storage (Wang et al., 2021). Compared to previously published

results, the average SOC stock in our study is similar to the area

with a similar temperature condition within the meso-tidal range of

2–4 m, which is lower than the area with a micro-tidal range of 0–2 m

(Supplementary Figure S1). The average SOC value of six micro-tide

areas was 304.68 Mg Corg ha
-1 (Cai et al., 2013; Feng et al., 2019; Gao

et al., 2019; Wang et al., 2019; Peneva-Reed et al., 2021; Rovai et al.,

2021), and the average SOC value of six meso-tide areas was 137.23

Mg Corg ha
-1 (Bhomia et al., 2016; Palacios Peñaranda et al., 2019;

Wang et al., 2019; Su et al., 2020; Bacar et al., 2023). Lower tidal

ranges can reduce mangrove contact time with the tide, thus reducing

the likelihood of SOC being washed away and retaining more SOC

(Wang et al., 2021). Perera and Amarasinghe (2019) also found that

mangrove sediment in Sri Lanka have a better carbon sequestration

function under a micro-tide environment, and the SOC sequestration

capacity is significantly negatively correlated with the average tidal

amplitude. Furthermore, lower SOC may have attributed to a faster

rate of SOC decomposition in areas with larger tidal ranges and more

frequent tidal inundation due to the frequent renewal of electron
FIGURE 6

The ratios of (A) cinnamyl to vanillyl phenols (C/V), (B) syringyl to vanillyl phenols (S/V), (C) acid to aldehyde of syringyl phenols, (Ad/Al)s, and (D) acid
to aldehyde of vanillyl phenols (Ad/Al)v; and sum of (E) total monomers of vanillyl and syringyl phenols (L6) and (F) total monomers of vanillyl,
syringyl, and cinnamyl phenols (L8).
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acceptors, which may lead to a lower degree of OC preservation and

lower OC stock in sediments (Marchand et al., 2004, 2006).

In areas with similar temperatures and tidal ranges

(approximately 2.4 m), we found that the SOC of mangroves in

Pearl Bay is also significantly lower than that of Gaoqiao (260.3 Mg

Corg ha
-1), Yingluo Bay (237.68 Mg Corg ha

-1) and Zhanjiang (202.7

Mg Corg ha
-1) mangroves (Wang et al., 2013; Gao et al., 2019; Yan

et al., 2024). We hypothesize that the rate of sediment increase is

another key factor and that faster sedimentation rates lead to lower

SOC content. Higher sedimentation rates suggest that mangroves

may have received more input from inland sediments, which tend

to contain more mineral sediment, thus diluting the OC content

(Kusumaningtyas et al., 2019). Therefore, when deposited to the

same depth, a high deposition rate corresponds to low carbon

storage, which is confirmed by the fact that the deposition rate of

Yingluo Bay and Gaoqiao (6.5–11 mm a-1) sediments is lower than

that of Pearl Bay (17.5 mm a-1) (Zhu et al., 2016).

Previous studies have shown that OC decomposition is

constrained by the composition of OC because the residues of

different plants have different resistance to decomposition

(Hemminga and Buth, 1991; Valéry et al., 2004). Sedimentary OC

in mangrove forests is a composite of autochthonous inputs,

including above ground biomass (e.g., leaves and branches) and

below ground biomass (e.g., fine roots), as well as allochthonous

inputs from river and marine environments (Krauss et al., 2014;

Stringer et al., 2016; Xiong et al., 2018b; Sasmito et al., 2020). The

SOC in salt marsh ecosystems primarily relies on its combination

with fine-grained minerals to form mineral OC, whereas SOC in

mangrove forests mainly depends on high aromaticity and low

mineral OC (Sun et al., 2019). Therefore, we consider that the

decomposition rate of MOM is lower than that of allochthonous

OM in mangrove sediments. Under such a mechanism for carbon

fixation, nitrogen content can significantly affect the decomposition

rate of OM, and OMwith a higher C/N value has stronger resistance

to biodegradation (Jones et al., 2016). MOM from mangrove

vegetation has a higher C/N value and a high refractory

compound content, such as tannins, lignin, and cellulose (Holmer

and Olsen, 2002; Friesen et al., 2018). In contrast, allochthonous
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OM from river or marine environments are relatively more

susceptible to degradation due to their high nitrogen content. The

high C/N (23.74±4.06‰), C/V (0.96 ± 0.09), S/V (0.16 ± 0.03), and

lower d13C value (-26.45±0.35‰) in the study area indicate that the

organic matter is primarily derived from local C3 mangrove

angiosperms (Figures 7A, B). This finding was consistent with the

output of the SIMMR model showing that MOM accounted for

63.56% ± 7.05%, river OM accounted for 25.98 ± 6.14% and that

marine OM accounted for 10.46% ± 1.13% of the total sedimentary

OM. Based on Figures 8A, B, the decrease in river and marine OM

with increasing depth aligns with the hypothesis of preferential

degradation of river and marine OM. In regions with similar

temperatures, we also observed a high proportion of MOM in the

sediments. For instance, in Yingluo Bay, the C/N ratios varied from

12.3 to 25.0, with the d13C values from -28.8‰ to -26.6‰ and

67.0%–88.1% autochthonous input (Xia et al., 2015). On Qi’ao

Island, the C/N ratios ranged from 12.032 to 26.690, with a 70.21%

autochthonous input (Jiang et al., 2021). Among the three

investigated regions, Pearl Bay demonstrated the lowest

concentration of MOM, thereby leading to lower SOC levels (150

Mg Corg ha-1) relative to Yingluo Bay (237.68 Mg Corg ha-1) and

Qi’ao Island (210.62 Mg Corg ha-1) (Xia et al., 2015; Jiang et al.,

2021). Similar findings were reported by Suello et al. (2022) in the

mangroves of Ecuador, where mangrove forests with high inputs of

MOM exhibit relatively higher SOC content.

As one of the main components of plant-derived OM, lignin is

also widely used to trace OM in continental shelves, estuaries, lakes,

and other environments (Lourençato et al., 2019; Lowman et al.,

2021; Xia et al., 2023). The L8 value of this study is 5.31 mg/100 mg

TOC, whereas the L8 value of general mangrove sediment is 1.05–

6.78 mg/100 mg TOC, and the L8 value of estuarine sediment is

0.36–1.87 mg/100 mg TOC, which provides additional

confirmation of the relatively high MOM input in mangroves (Li

et al., 2017). The S/V and C/V ratios range from 0.82 to 1.21 (Avg.

0.96 ± 0.09) and 0.09 to 0.26 (Avg. 0.16 ± 0.03), respectively. These

values indicate that OM in the sediments primarily originated from

the non-woody tissues of angiosperms, which is consistent with the

LPVI values, ranging from 876 to 8083, with an average of 2271 ±
FIGURE 7

(A) Scatter plot of d13C and C/N for all sediment samples. The gray area borders are based on Lamb et al. (2006). (B) Scatter plot of C/V values and
S/V values for all sediment samples. The gray area borders are based on Jex et al. (2014).
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1308. Considering that only mangrove plants exist in the vicinity of

the sampling points, these non-woody tissues of angiosperms

mainly derive from mangrove leaves. Similar mixed signals were

found in the surrounding area. For example, the C/V and S/V values

range from 0.09–0.18 and 0.82–1.02 in Bamen Bay, Hainan (Bao

et al., 2013b). Compared with Ad/Al values of fresh plants, only

syringyl phenols have degraded a small part in mangrove sediments,

whereas vanillyl phenols have almost not degraded, which indicates

that lignin in mangrove sediments in Pearl Bay is well preserved

(Hedges et al., 1988). This finding also confirms the hypothesis

mentioned earlier that a large input of MOM leads to slower

decomposition and enhances its preservation, thereby increasing

SOC content. The same situation was found in Guangxi,

Guangdong, and Hainan, where lignin in sediments was basically

not degraded. In the Pearl River Estuary and Shenzhen Bay, the

(Ad/Al)s value is 0.16, and the (Ad/Al)v value ranges from 0.16 to

s0.22 (Zhao et al., 2023). Another possible reason for the excellent

preservation of lignin could be attributed to the comparatively

higher rate of sedimentation. The half-life of lignin in mangrove leaf

litter is 150–300 years (Dittmar and Lara, 2001). In addition, the

high deposition rate causes the surface sediments to be rapidly

buried in an anaerobic environment, and the lignin is more difficult

to decompose.
4.2 Reasons for the changes in C/N and
d13C values

Although the decomposition rate of OM in sediments is

relatively slow in mangrove ecosystems, it still causes changes in

C/N and d13C values in sediment cores (Dittmar and Lara, 2001).

Sampling sites GX1 and GX2 are located near the estuary, where
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sediment distribution is influenced by multiple disturbances such as

sea level rise and human activities. These factors may enhance the

degradation potential of OM in the sediments (Jonge et al., 2015).

As shown in Figures 3A and 4B, the sediment particle size gradually

increases from the bottom to the top of the core, which indicates

that the sedimentary environment of the sampling point has

changed from a silt sedimentary environment (weak tidal action)

to a sand sedimentary environment (strong tidal action). In a sand

sedimentary environment, the inability of coarse particles to

effectively encapsulate OM and prevent its decomposition,

combined with the aforementioned strong tidal action, leads to a

faster rate of OM degradation (Sanders et al., 2012). However, if the

OM input source remains unchanged, Figure 9A indicates that

the carbon stock increases with sediment age, which contradicts the

theory of organic OM degradation. Cui et al. (2021) noted that due

to the high content of recalcitrant carbon, such as lignin, in MOM,

the decomposition of fresh litter leads to an initial increase followed

by a decrease in the proportion of labile OC in the sediment.

Figure 5A shows that the OC content continues to increase with age,

which does not conform to the theory proposed by Cui et al.,

indicating that the degradation of OM in the sediments cannot

explain this trend. Yan et al. (2023) pointed out that the degradation

of sediment OM leads to an increase in d13C values and a decrease

in the C/N ratio. However, the trends shown in Figures 5C, D are

contrary to this. Moreover, if significant degradation of OM were

occurring, TOC and TN values would decrease with the increasing

age of the sediments. However, Figures 5A, B clearly do not show

this trend. Correlation tests showed that the total lignin content is

significantly correlated with TOC and TN (p < 0.001), which

indicated that the degree of degradation of OC may be the same

as that of lignin. However, the (Ad/Al)s and (Ad/Al)v values

showed that lignin is basically not degraded and that the total
FIGURE 8

Changes in the proportion of organic matter (OM) contributions from mangrove and allochthonous sources in GX1 (A) and GX2 (B) mangrove soil;
(C) Total lignin content of GX1 and GX2; (D) Annual average air temperate and (E) precipitation recorded by Guangxi Climate Center (Huang et al.,
2007); Stage 1 (green area) and stage 2 (blue area) represent the periods of growth and degradation, respectively, in (C–E).
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lignin content in the surface layer of the sediment increases with

increasing depth. This trend further confirms that OM has not

undergone significant degradation. Under the condition of constant

sedimentation rates and well-preserved OM in surface sediments,

an increase in SOC with depth indicates an increase in the OC

content of the OM. Therefore, the degradation of OM in the surface

sediment of the sampling point is not the main reason for the

change of C/N and d13C values, but is more likely to be caused by

the change in OM input source. Because OM from riverine and

marine environments has a lower C/N ratio and higher d13C values

(Figure 7A), whereas mangrove OM has a higher C/N ratio and

lower d13C values (Lamb et al., 2006), and considering the trends of

the lignin parameters, the trends observed in Figures 5C, D may be

attributed to a decrease in MOM input.
4.3 Response of mangrove carbon sinks to
external factors

In the previous section, we excluded the factor of OM

degradation. The damage to mangroves caused by climate change-

induced sea level rise or increased intensity of human activities may

also lead to the loss of OC in sediment (Bozi et al., 2021; Wang and

Gu, 2021). Sea level rise increases tidal height and the frequency of

seawater intrusion into the mangrove, which affects the sources of

OM and carbon storage in mangrove sediments (Perera et al., 2018;

Wang et al., 2019). As shown in Figures 8A–C a gradual decrease in

MOM and total lignin content is observed from the bottom to the

top of the core. The lack of a clear pattern in local precipitation and

temperature variations suggests that these factors may not be the

primary influences (Figures 8D, E). While the enhanced tidal effects

resulting from sea level rise may contribute to this trend, we

consider that this is not the primary reason. This is because the
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average sediment deposition rate in the study area is 17.5 mm a-1,

which is much higher than the sea level rise rate of Pearl Bay (2 mm

aa-1), indicating that the salinity and tidal inundation frequency of

mangrove habitats remain largely unaffected, as also found in Ellison

(2008) and Ma et al. (2022). Xia et al. (2019) also proposed that

when the sediment deposition rate (4.4 mm a-1) is higher than the

sea level rise rate, the change of sediment OM source exhibits a

minimal relationship with sea level rise. Li et al. (2015) established a

vulnerability assessment index system for coastal mangroves in

response to sea level rise and indicated that the mangroves in

Pearl Bay, Guangxi, have shown non-vulnerability in the face of

sea level rise. This also supports the opinions of our study. Since sea

level rise is not the primary factor threatening mangroves, we

hypothesize that the changes in parameters are due to mangrove

degradation caused by human activities, leading to a decrease in the

input of native OM. Based on the changing trends in the sources of

OM, the anthropogenic activities in the sedimentary record can be

divided into two distinct stages: 1963–2001 and 2001–2020. In stage

1 (1963–2001), mangroves were less affected by human activities,

thereby ensuring a consistent supply of MOM. However, in stage 2

(2001–2020), the mangroves may have experienced a certain degree

of degradation due to frequent human activities, leading to a gradual

reduction in the provision of MOM. The decline in the rate of SOC

accumulation (Figures 9A, D) from 2.57 Mg Corg ha
-1 yr-1 (stage 1)

to 1.97 Mg Corg ha-1 yr-1 (stage 2) implies mangrove forest

degradation. As the lignin in the sampling locations is exclusively

derived from fresh mangrove tissues (Bao et al., 2013a), the

declining trend in total lignin content from 2001 to 2020 provides

additional support for our hypothesis (Figure 8C). In pursuit of

economic growth, coastal regions have extensively converted

mangrove wetlands into shrimp farming ponds. As a result,

fishery-related economic indicators are employed as proxies for

the intensity of human activities. Based on the variations in gross
FIGURE 9

(A) Vertical profile of soil organic carbon (SOC) along the GX1 and GX2 core; (B) gross fishery value of Guangxi and (C) yield of cultured marine
products in Guangxi (cited from 2022 Guangxi Statistical Yearbook, http://tjj.gxzf.gov.cn//tjsj/tjnj/material/tjnj20200415/2022/zk/indexch.htm);
(D) Core OC storage and accumulation rate for both stages 1 and 2; stage 1 (green area) and stage 2 (blue area) represent the periods of growth and
degradation, respectively.
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fishery value (Figure 9B) and the yield of cultured marine products

(Figure 9C), during the second phase, a substantial increase in

human activity intensity is the primary cause of mangrove

degradation. In addition, in 2011, a marine aquaculture system

was established underneath the mangrove forest in the study area.

Ouyang and Guo (2016) proposed that establishing a mangrove-

aquaculture coupling system in mangrove areas can effectively treat

wastewater generated by aquaculture, while the wastewater can

provide essential nutrients for the growth and development of

mangroves. However, this requires strict regulation of the scale of

aquaculture. If wastewater discharge exceeds the limit, it can lead to

eutrophication of the mangrove area, adversely affecting the growth

of mangroves. While this aquaculture facility does not directly

occupy the land within the mangrove forest, the discharge of

aquaculture wastewater may induce changes in the physical and

chemical properties of the surface sediment, ultimately leading to a

loss of sediment carbon storage in the mangrove forest (Fan et al.,

2013; Santos-Andrade et al., 2021).

The degradation of mangroves must be taken seriously, as the

destruction of mangroves not only leads to a decrease in the OC

deposition rate but also accelerates the decomposition of stored

carbon in sediments, releasing greenhouse gases into the

atmosphere. Ultimately, this could transform mangroves from a

carbon sink into a carbon source (Senger et al., 2021). The effects of

human activities on the mangroves in the study area are expected to

gradually decrease in the future. This is evident from the inclusion

of blue carbon conservation in the national strategy since 2015 and

the introduction of the “Special Action Plan for Mangrove

Conservation and Restoration (2020–2025)” in 2020 (Feng et al.,

2024). However, whether the changes in temperature and

precipitation patterns caused by climate change will pose a threat

to the development of Pearl Bay mangroves remains uncertain.

Currently, the observed changes in temperature and precipitation

do not correspond well to the variations in parameters within

mangrove sediments (Figures 8D, E). Therefore, these

relationships must be investigated in future studies.
5 Conclusion

The results from this study indicate that under similar

temperature conditions, mangrove with lower tidal ranges, slower

sedimentation rates, and OM source primarily from mangrove

plants store larger SOC. Additionally, based on the changes in

lignin, we found that the decrease in MOM from the bottom to the

top of the sediment core is not due to OM decomposition but rather

the result of mangrove degradation. This degradation is likely

caused by the increased intensity of human activities in the study

area. Although mangroves can adapt to environmental pressures

through various mechanisms, such as increasing sediment

deposition rates to cope with sea level rise and absorbing

nutrients from aquaculture wastewater to promote growth, their
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ability to regulate may become ineffective if environmental

pressures increase too rapidly. In the future, due to the relatively

low threat of sea-level rise to mangroves in the study area and the

increased emphasis on mangrove protection in China, which has

reduced the impact of human activities, it is expected that mangrove

degradation will recover. We consider that stable lignin biomarkers

can be used to assess the development of mangroves in other

regions, allowing for the identification of the degree of mangrove

degradation, followed by the implementation of timely measures to

prevent carbon stock loss. This is crucial for using mangrove carbon

storage to mitigate the negative impacts of climate change and

human activities.
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