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1School of Water Conservancy, North China University of Water Resources and Electric Power,
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Under the influence of climate change and human activities, the intensification of

salinity intrusion in the Modaomen (MDM) estuary poses a significant threat to the

water supply security of the Greater Bay Area of Guangdong, Hong Kong, and

Macao. Based on the daily exceedance time data from six stations in the MDM

waterway for the years 2016-2020, this study conducted Empirical Orthogonal

Function (EOF) and decision tree analyses with runoff, maximum tidal range, and

wind. It investigated the variation characteristics and key factors influencing

salinity intrusion. Additionally, Long Short-Term Memory (LSTM) networks and

Convolutional Neural Networks (CNN) were employed to predict the severity of

salinity intrusion. The results indicated that: (1) the first mode (PC1) obtained from

EOF decomposition explained 89% of the variation in daily chlorine exceedance

time, effectively reflecting the temporal changes in salinity intrusion; (2) the

largest contributor to salinity intrusion was runoff (40%), followed by maximum

tidal range, wind speed, and wind direction, contributing 25%, 20%, and 15%,

respectively. Salinity intrusion lagged behind runoff by 1-day, tidal range by 3

days, and wind by 2 days; North Pacific Index (NPI) has the strongest positive

correlation with saltwater intrusion among the 9 atmospheric circulation factors.

(3) LSTM achieved the highest accuracy with an R2 of 0.89 for a horizon of 1 day.

For horizons of 2 days and 3 days, CNN exhibited the highest accuracy with R2

values of 0.73 and 0.68, respectively. This study provides theoretical support for

basin scheduling and salinity intrusion prediction and serves as a reference for

ensuring water supply security in coastal areas.
KEYWORDS

salinity intrusion, Modaomen estuary, empirical orthogonal function, deep neural
network, saltwater forecast
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1 Introduction

Saltwater intrusion is a common natural hydrological

phenomenon in coastal estuarine areas. In recent years, climate

change and human activities have led to an increasingly severe

intrusion of saltwater into estuaries, posing a serious threat to the

water supply security of coastal cities and the stability of estuarine

ecosystems. Moreover, there is a trend of aggravation in the coming

decades (Zhang et al., 2019; Loc et al., 2021; Prayag et al., 2023). In

2021, the eastern region of China’s Pearl River Basin experienced its

severest drought since 1961. Saltwater intrusion into the water

intake points at the Guangchang (GC) pumping station and the

Lianshiwan (LSW) sluice gate in the Zhuhai-Macau water supply

system occurred earlier than usual, on June 21st and August 3rd

respectively, breaking historical records. Additionally, in 2022,

extreme high temperatures across the entire Yangtze River Basin

led to severe dry spells during the flood season in the middle and

lower reaches, resulting in a high-intensity saltwater intrusion

phenomenon observed at the river mouth on August 10th. In the

summer of 2022, Europe experienced an extended drought,

significantly reducing the discharge of the River Rhine for several

months. Consequently, chloride concentrations in the tidal portion

of the river rose above 8000 mg/L (Anoek and Hudson, 2022).

Furthermore, in the coastal delta regions of India, Bangladesh, and

Vietnam, more than 25 million people are at risk of drinking salty

water (Shammi et al., 2019; Das et al., 2021). Therefore, it is crucial

to study the response relationships between various factors in the

evolution of saltwater intrusion and to accurately forecast saltwater

intrusion. This is essential for guiding fine-tuned salinity control in

estuarine areas and ensuring urban water supply security (Rohmer

and Brisset, 2017).

The Pearl River Basin comprises a complex river network

system, formed by multiple rivers including the West River,

North River, and East River, along with numerous tributaries in

the Pearl River Delta region, ultimately connecting to the South

China Sea through the Pearl River Estuary. The Pearl River Estuary

is the core area of the Guangdong-Hong Kong-Macao Greater Bay

Area, where urban water supply primarily relies on river-based

sources, constituting 70.4% of the total water supply. However,

some areas lack sufficient storage capacity, making them highly

susceptible to saltwater intrusion during the dry season. Among the

eight major estuary channels, Modaomen (MDM), located at the

mouth of the Pearl River, frequently experiences saltwater intrusion

disasters, posing a serious threat to the water supply of Macau,

Zhuhai, and Zhongshan, and presenting a daunting challenge to the

high-quality development of the national economy (Tang et al.,

2020; Zhou et al., 2020; Hu et al., 2024). Abundant research has

indicated that saltwater intrusion in the MDM estuary has been

influenced by various driving forces, including runoff, tides, wind,

and mean sea level (Gong and Shen, 2011; Chen, 2015; Lin et al.,

2019; Gong et al., 2022). Gong and Shen (2011) pointed out that the

upstream intrusion distance of saltwater in the MDM waterway

generally exhibits an inverse proportionality to the magnitude of

upstream river discharge, following a power-law relationship. Lin

et al. (2019) discovered that wind has a significant impact on the

saltwater intrusion in the MDM waterway. However, tides and river
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discharge remain the main driving factors. Moreover, due to the

generally unstable nature of external driving forces, different factors

interact and superimpose across various time scales, exhibiting a

certain degree of temporal lag. All of the above factors contribute

significantly to the formidable challenge of forecasting estuarine

saltwater intrusion.

Currently, saltwater intrusion prediction methods mainly fall

into two categories: numerical simulation (Liu et al., 2017; Pappa

et al., 2017; Ye et al., 2017) and data-driven approaches (Zhou et al.,

2017; Hunter et al., 2018). Numerical simulation models can

effectively replicate the physical processes of salt transport.

However, these models require substantial computational

resources for setup, compilation, configuration, and execution.

Additionally, extensive calibration and validation are needed

using real-world data on topography, hydrology, tidal flows,

salinity, etc (Lathashri and Mahesha, 2015; Zhang et al., 2015). In

situations where reliable forecasts are needed but there is

insufficient data on influential factors, data-driven models have

clear advantages. These models uncover nonlinear relationships

between input factors and output targets (Hu et al., 2019). Data-

driven models can generally be categorized into traditional

statistical models and the more recently emerged machine

learning models. For instance, Qiu and Wan (2013) successfully

utilized statistical models to predict salinity in the Caloosahatchee

River Estuary. However, saltwater intrusion processes are

influenced by various factors such as river flow, tidal currents,

wind, precipitation, terrain, and human activities, exhibiting high

complexity and nonlinearity among variables. The ability of

traditional statistical models to capture the nonlinear

characteristics of hydrological processes is limited (Yaseen et al.,

2015; Tian, 2019). Machine learning models possess strong

nonlinear learning capabilities and high computational efficiency.

For example, Liu et al. (2021) employed the Bayesian Model

Averaging (BMA) method to integrate predictions from Random

Forest (RF), Support Vector Machine (SVM), and Elman Neural

Network (ENN) models to forecast monthly-scale saltwater

intrusion in the Pearl River Delta. Hoai et al. (2022) applied

multiple machine learning algorithms including Multiple Linear

Regression (MLR), Random Forest Regression (RFR), and Artificial

Neural Network (ANN) to predict saltwater intrusion in the

Mekong Delta, with results indicating that the ANN algorithm

exhibited better predictive performance.

Although neural networks offer strong nonlinear learning

abilities with high accuracy, but they may face challenges like local

minimum convergence and overfitting. SVM require careful kernel

function selection, influencing predictive accuracy (Xiao et al., 2014;

Gao and Su, 2020; Ren, 2021; Zhang et al., 2022). With the

continuous improvement in data availability and computing power

in recent years, deep learning has become a crucial component of

time series prediction models. However, selecting the most suitable

deep neural network and its parameters is a complex task that

demands substantial expertise. Lara–Benıt́ez et al. (2021) conducted

an extensive study on deep neural network time series prediction. The

results suggested that LSTM and CNN were the optimal predictive

models. LSTM demonstrated the highest accuracy, while CNN

exhibited both stability and efficiency across various parameter
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configurations. Numerous studies have demonstrated that LSTM and

CNN models are capable of capturing long-term correlations in time

series data, providing excellent representation of spatiotemporal

features in hydrological, meteorological, and geographical datasets.

Particularly, they have exhibited strong performance in precipitation,

runoff, and flood forecasting (Kratzert et al., 2018; Le et al., 2019;

Barzegar et al., 2020; Kao et al., 2020; Tian et al., 2023). For instance,

Wullems et al. (2023) utilized water level, discharge and wind speed

as inputs and employed LSTM model to achieve reasonable

predictions of chloride concentration at individual stations in the

Rhine-Meuse Delta in the Netherlands for up to 7 days.

Current research on saltwater intrusion in estuaries often

focuses on individual monitoring stations. However, estuarine

areas typically have multiple monitoring stations, and the daily

variations in chloride concentration at each station can be

significant. Relying solely on data from a single station may not

accurately represent the overall variation in saltwater intrusion

across the estuary, making it difficult to quantify the severity of

the intrusion. Based on the statistical analysis of the temporal trends

in daily chlorine content exceeding standards at six stations from

2016 to 2020 in the MDM waterway, this study selects influencing

factors such as runoff, tidal level, and wind. The primary focus is on

the following tasks: (1) interpolating missing chloride concentration

data; (2) using Empirical Orthogonal Function (EOF) analysis to

understand spatiotemporal patterns in daily exceedance times and

their relationships with influencing factors; (3) quantifying

contributions and temporal characteristics of factors using

decision tree analysis; (4) employing the cross-wavelet method to

analyze the primary driving forces of saltwater intrusion by

selecting the factors with the greatest contribution; and (5)

predicting saltwater intrusion severity with LSTM and CNN

methods. The goal is to identify key factors influencing saltwater

intrusion, enhance simulation and prediction techniques, and

contribute insights for ensuring water supply security in

coastal areas.
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2 Study area and data

The Pearl River Basin has the second-highest annual runoff in

China, following the Yangtze River. However, the distribution of

runoff is uneven, with the dry season accounting for only 23% of the

total. This makes the region highly vulnerable to saltwater intrusion

during the dry season. MDM, one of the eight estuaries in the Pearl

River estuary (Figure 1), is located downstream in the Xijiang River

Basin. It plays a crucial role as the primary channel for flood

discharge and sediment transport in the Xijiang River, contributing

around 27% of the total runoff into the Pearl River estuary. Since the

21st century, saltwater intrusion in the MDM waterway has

exhibited new characteristics. These include earlier onset,

prolonged duration, and increased upstream intrusion distance.

Severe instances of saltwater intrusion occurred during the dry

seasons of 2004-2005, 2005-2006, 2009-2010, 2011-2012, and 2020-

2023. For example, during the 2019-2020 dry season, Zhongshan

City faced 10 instances of saltwater intrusion, affecting 46% of its

water supply capacity. In 2021, saltwater intrusion at the GC

pumping station and LSW sluice gate occurred earlier than usual,

on June 21st and August 3rd, respectively, breaking records.

Subsequently, in 2022, the Pearl River estuary experienced 11

severe saltwater intrusion events, causing all intake points along

the MDM waterway to exceed chlorine standards from December

4th onwards. Notably, the Pinggang pumping station saw chlorine

levels exceed standards for 10 consecutive days, disrupting water

supply in Zhuhai for approximately two weeks.

In this study, hourly chloride concentration data from 2016 to

2020 during the dry season were collected from six automated

monitoring stations (Denglongshan (DLS), LSW, Majiao (MJ),

Nanzhen (NZ), Xihewai (XHW), Quanlu (QL)) in the MDM

waterway, sourced from the Zhongshan Water Affairs Bureau’s

official website. As these stations are typically situated close to the

shore, the chloride data primarily represent surface water salinity.

Data for the annual period from October 1st to March 31st of the
FIGURE 1

Study area and site distribution.
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following year were considered. Hourly runoff data from Makou

(MK) and Sanshui (SS) stations during the period, along with that

from Wuzhou (WZ) station between 1961 and 2020, were sourced

from the Hydrological Yearbook and the National Water and

Rainfall Information Network of the Ministry of Water

Resources. Tidal data for Sanzao (SZ) were sourced from the

Hydrological Yearbook, and wind speed and direction data for

the Macao station were obtained from the China Meteorological

Data Network.

The teleconnection data were obtained from the Hadley

Observing Centre of the UK Met Office, covering monthly

records from 1961 to 2020. Nine major climate teleconnection

indices were selected, including the El Niño-Southern Oscillation

Index (ENSO), Atlantic Multidecadal Oscillation Index (AMO),

North Atlantic Oscillation Index (NAO), Arctic Oscillation Index

(AO), Pacific Decadal Oscillation Index (PDO), Indian Ocean

Dipole Index (DMI), North Pacific Index (NPI), Pacific-North

American Oscillation Index (PNA), and Sunspot Index (SSI).
3 Methodology

3.1 Imputation methods for missing data

Due to various objective and subjective factors, some time series

data were missing in the chlorine content data from automatic

monitoring stations. Various data imputation techniques are widely

used across research domains, including specific value replacements

(such as mean, mode, or median), multivariate imputation, K-nearest

neighbors (KNN), and the expectation maximization (EM)

algorithm. This study evaluated three imputation methods—

median, KNN, and multiple imputation—based on complete

datasets. Through data imputation, a comprehensive and rich

dataset was constructed, providing a solid sample basis and data

support for subsequent in-depth data analysis and exploration work,

thus ensuring the scientificity and accuracy of research conclusions.

3.1.1 Median
Median imputation, a commonly used method for filling

missing values, estimates the average or most common value for a

given attribute based on observed data. However, it is known to

have limitations, including the potential for significant

computational errors (Hadeed et al., 2020; Dahj and Ogudo, 2023).

3.1.2 KNN
The KNN algorithm exhibits strong robustness when filling in

missing data in complex datasets (Habib et al., 2023). It relies on the

positions of the K nearest known data points in the feature space to

imputemissing values, determining classification based on proximity.

However, a low number of neighbors may be influenced by outliers,

while a high number may suffer from irrelevant data interference

(Zhang et al., 2017; Sahoo and Ghose, 2022). This method is most

effective for imputing missing values in observations with

overlapping intersections.
Frontiers in Marine Science 04
3.1.3 Multiple imputation
MICE (Multivariate Imputation by Chained Equations) is a

method for handling missing values through repeated simulations.

It generates a complete dataset from an incomplete one by imputing

missing data using the Markov Chain Monte Carlo (MCMC)

method in each simulated dataset (Wijesuriya et al., 2020; Beesley

et al., 2021). The imputation process involves three steps: initially,

missing data in the original dataset are imputed using the MCMC

method. Then, statistical models analyze and evaluate the

completed data. Finally, the imputed complete dataset is

generated as output.
3.2 EOF decomposition

Since the MDM waterway comprises six monitoring stations,

the exceedance time variation differs significantly among them.

Utilizing data from a single station cannot capture the overall

fluctuation of saltwater intrusion across the estuary. Hence, this

study conducted EOF analysis on the daily exceedance time data

from all six stations for the period 2016-2020. EOF analysis is a

method for examining structural features and extracting principal

characteristics from matrix data. The basic principle involves

decomposing the matrix representing daily exceedance durations

across m monitoring stations over time (Björnsson and Venegas,

1997; Karunarathna et al., 2012; Lin et al., 2019). Mathematically,

we can view this field as an m-dimensional vector X, where X

represents n samples X1, X2, …, Xn, each sample being an m-

dimensional column vector denoted as Xn (t=1,2,…,n). Assuming

each station has daily exceedance time data for n time points, the

daily exceedance duration (xij)mn at any station i and time point j

can be expressed as a linear combination of m spatial functions

eofikandm temporal functions pckj(k=1,2,…,m). As illustrated in the

following formula:

xij =o
m

k

eofikpckj = eofi1pc1j + eofi2pc2j +⋯+eofimpcmj (1)

The matrix form is shown in Equation (2):

X = EOF · PC =

eof11 eof12 ⋯ eof1m

eof21 eof22 ⋯ eof2m

⋮ ⋮ ⋱ ⋮

eofm1 eofm2 ⋯ eofmm

2
666664

3
777775

·

pc11 pc12 ⋯ pc1n

pc21 pc22 ⋯ pc2n

⋮ ⋮ ⋱ ⋮

pcm1 pcm2 ⋯ pcmn

2
666664

3
777775

(2)

Where X is the matrix of m� n order, which indicates the daily

exceeding time of m stations at n moments, xij(i = 1, 2,⋯,m; j =

1, 2,⋯, n) indicates the daily exceeding time of i station at j

moment, and the decomposed EOF and PC are dimensionless.
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The column vectors of EOF represent spatial feature vectors

corresponding to each eigenvalue, while each row of PC represents

the temporal coefficients for each mode. The decomposition

ensures orthogonality with other functions, with the functions

arranged based on the eigenvalues of the covariance matrix.

The specific steps are as follows:

Multiplying the right side of Equation (1) by the transpose of

the daily exceedance time series matrix X, denoted as X0, we obtain:

XX0 = EOF · PC · PC0 · EOF0 (3)

Decomposing this real symmetric matrix, we obtain:

XX0 = EOF · L · EOF 0 (4)

Where, L represents the diagonal matrix composed of the

eigenvalues of matrix XX0, and EOF is the matrix composed of

the column vectors of its corresponding eigenvectors.

Therefore, Equations (3) and (4) lead to the following:

PC · PC0 = L (5)

The eigenvectors have the following properties:

PC0 · PC = PC · PC0 = I (6)

Equations (5) and (6) clearly exhibit orthogonality. Therefore, it

can be inferred that the spatial function matrix EOF can be obtained

from the eigenvectors of matrix XX0, while the temporal function

matrix PC can be obtained by left-multiplying EOF0 with Equation

(1), that is Equation (7):

PC = EOF0 · X (7)

The k-th row element of the temporal function matrix PC can

be expressed as Equation (8) :

pckj = eof1kx1j + eof2kx2j +⋯+eofmkxmj (8)

The product of the first p temporal functions and their

corresponding spatial functions (where p< m)) is taken as an

estimate of the observed value xij at the i-th spatial point and j-th

time point in the original matrix of daily chlorine concentration

exceeding the threshold. Therefore, the fit can be represented by

eigenvalues. When the contribution rate of the first p eigenvalues

reaches a substantial value, the corresponding first p temporal

functions and their associated spatial functions can roughly reflect

the variations in this region.
3.3 Decision tree method

Decision tree analysis is a risk-based decision-making method

that compares different scenarios using trees from probability and

graph theory to obtain optimal solutions. It is a significant method in

data mining, commonly employing classification and regression trees

(CART) to intuitively reflect outcomes (Park et al., 2013; Bae, 2019).

The feature importance of a decision tree measures each feature’s

contribution to the target value, making it useful for feature selection

and model interpretation. Being a non-parametric model, it doesn’t
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require assumptions about samples and can handle complex datasets.

The attribute selection methods for decision trees include

Information Gain (ID3), Gain Ratio (C4.5), and Gini Index

(CART). This study utilized CART to explore the main controlling

factors of saltwater intrusion, assessing the importance and

contribution of various influencing factors.
3.4 Cross-wavelet transform

The cross-wavelet transform is an advanced tool for time-

frequency analysis, revealing the close interaction between two

time series. It captures detailed signal characteristics and

demonstrates its importance in dynamic property research.

Through the cross-wavelet transform, we can discern the

correlation between two sequences in different energy regions:

the wavelet energy spectrum focuses on high-energy areas, while

the wavelet coherence spectrum emphasizes low-energy regions.

Cross-wavelet transform is defined as WXY=WXWY*, where “*“
denotes complex conjugate. ∣WXY∣ reflects the cross-wavelet power
spectrum, while the argument of arg (Wxy) represents the relative

phase between the two time series in the time-frequency domain.

The theoretical distributions of cross-wavelet power between the

two time series and their background power spectra are as as

Equation (9):

D(
WX

n (s)W
Y ∗
n (s)

sXsY

����
���� < p) =

Zv(p)
v

ffiffiffiffiffiffiffiffiffiffiffi
PX
k P

Y
k

q
(9)

Where, Zv(p) represents the confidence level of the probability

density function constructed using the double-parameter c2

integrated variance distribution; sX and sY are the standard

deviations of the respective time series data; v is the degree

of freedom.

The cross-wavelet energy spectrum unveils phase coupling and

common characteristics among different time series, while the

wavelet coherence spectrum precisely evaluates the correlation

level between time series at a local scale. Its expression is as

Equation (10):

R2
n(s) =

S(s−1WXY
n (s))

�� ��2
S(s−1 WX

n (s)j j2) · S(s−1 WY
n (s)j j2) (10)

Where, S represents the smoother, defined as S(W) = Sscale(Stime

(Wn(s)));Sscale denotes the smoothing along the scaling dimension

achieved by wavelet transform; Stime refers to the smoothing along

the time translation dimension performed by wavelet transform.
3.5 Deep neural network prediction model

3.5.1 LSTM
The LSTM addresses challenges in traditional models during

long-time sequence training, overcoming issues such as gradient

explosions, vanishing gradients, and difficulties in preserving

historical data over extended periods (Hochreiter and

Schmidhuber, 1997). LSTM’s self-connected hidden layer captures
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both cell state and hidden layer state from the previous time step,

utilizing ‘forget gates,’ ‘input gates,’ and ‘output gates’ to control

information transmission and updating. Specifically, the ‘forget

gate’ controls the forgetting of cell state information, the ‘input

gate’ manages the input of new information, and the ‘output gate’

regulates the output of cell state information.

The LSTM hidden layer structure, as depicted in Figure 2A,

involves Ct-1 and Ct for cell state information at time steps t-1 and t.
~Ct represents the candidate update information at time step t, ht-1 and

ht denote the hidden layer state information at time steps t-1 and t, Xt

is the input value at time step t, s is the sigmoid function, and ft, it,

and ot are the control coefficients for the ‘forget gate’, ‘input gate’, and

‘output gate’, respectively. These coefficients are computed using the

Sigmoid function, regulating gate opening and closing. The tanh

function computes the new candidate cell state within a range of -1 to

1. By adjusting the control coefficients of the sigmoid gates, it

determines which information to retain or update, thereby

updating the cell state information.

3.5.2 CNN
CNN, equipped with powerful data processing capabilities,

consists of convolutional layers and pooling layers responsible for

convolution calculations, feature extraction, and parameter

sampling and compression (Mitiche et al., 2020). Utilizing weight

sharing and local connectivity, the CNN model maps and processes

the initial dataset, extracting relevant features to reduce parameter

dimensions and improve computational speed. The principle

involves employing multiple filters for feature extraction through

layer-by-layer convolution and pooling operations on input data.

These features are then converged in fully connected layers,

addressing regression problems through activation functions.

The CNN structure, depicted in Figure 2B, comprises several

components: an input layer for receiving raw data, a convolutional

layer— the core module that extracts features via convolution

operations, an activation function that introduces non-linear

transformations to enhance model capacity, a pooling layer that

reduces dimensionality while preserving key features, a fully

connected layer that flattens the pooling layer’s output into a one-

dimensional vector, connecting it to the output layer, and finally, an

output layer that generates final model predictions.
Frontiers in Marine Science 06
3.6 Evaluation indicators

Different models’ predictive imputation performance is

primarily assessed using specific evaluation metrics. Since there

isn’t a universally applicable standard, multiple metrics are typically

calculated to gauge a model’s generalization ability. To compare the

predictive accuracy of various models, this study employs Root

Mean Square Error (RMSE), Mean Absolute Error (MAE), and the

coefficient of determination (R2) as evaluation metrics for

model performance.

RMSE measures the disparity between predicted and observed

values by averaging squared errors and then taking their square root

to ensure non-negativity. MAE indicates prediction accuracy by

averaging absolute prediction errors, reflecting how predictions

deviate from true values. R2 describes the goodness of fit,

showcasing the model’s ability to explain data variability, with

higher values indicating better prediction accuracy. As shown in

Table 1, yobs represents the observed values, yf represents the

predicted values, yobs represents the mean of the observed values,

and n is the number of observed values.
4 Results

4.1 Missing data imputation

Due to missing data in the chlorine content from automatic

monitoring stations, the study evaluated three imputation methods

by introducing 5%, 10%, and 20% random missing data in the

chlorine content data from six stations for October 2017 to

February 2018. The imputation accuracy was assessed using

RMSE, MAE, and R2. Results in Table 2 and Figure 3 showed a

consistent trend: lower missing ratios led to better imputation

accuracy. For the median imputation method, when the missing

ratio was 5%, the R2 was 0.947, when the missing ratio was 10%, the

R2 was 0.882, and when the missing ratio was 20%, the R2 was 0.732.

The KNN method and the multiple imputation method showed the

same law. It was worth noting that the multiple imputation method

consistently outperformed other methods in different missing

ratios. For example, when the missing ratio was 5%, RMSE of
A B

FIGURE 2

Schematics of different data-driven models: (A) LSTM model; (B) CNN model.
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median method was 0.044, MAE was 0.006, R2 was 0.947, RMSE

of KNN method was 0.020,MAE was 0.002, R2 was 0.989, RMSE of

multiple inputation method was 0.015, MAE was 0.002, R2 was

0.993. When the missing ratio was 10% and 20%, the R2 of multiple

imputation method was still the highest and the precision was

the best.

Hence, this study enhanced accuracy by introducing new rules

based on multiple imputation. For instance, if the upstream station

(far from the estuary) exceeded the water supply chlorine limit

(250mg/L), the chlorine content at the interpolated station was

assuredly greater than 250mg/L. Additionally, if both upstream and

downstream stations were (not) exceeding the limit, then the

chlorine content at the interpolated station was greater than (less

than) 250mg/L.

Due to the large dataset, only partial missing data periods are

shown in Figure 4A, with black squares indicating missing values.

During October 1-9, 2016, chloride data at NZ, XHW, and QL

stations were entirely missing. From October 9-14, 2016, chloride

data at QL station were missing. Interpolated data for some periods

were displayed in Figure 4B, where missing values were filled. To
Frontiers in Marine Science 07
illustrate the interpolation effect, data from October 1-14, 2016,

were magnified in Figure 4C. It’s evident that missing data were

effectively filled, aligning with the salinity boundary: chloride

concentrations exceeded 250 mg/L below it and were below 250

mg/L above it.
4.2 Interannual variation in daily excessive
duration at six stations

The time series in Figure 5 illustrates the interannual variability

of daily excessive duration, denoting periods saltwater intrusion

exceeds the water supply chlorine limit of 250mg/L in the MDM

waterway from 2016 to 2020. Stations 1-6 represent downstream to

upstream locations: DLS, LSW, MJ, NZ, XHW, and QL,

respectively. Notably, the most severe intrusion occurred in 2019-

2020, followed by 2016-2017, 2017-2018, and 2018-2019,

showcasing significant yearly fluctuations.

EOF analysis was performed to unveil the primary temporal

and spatial patterns of daily excessive duration from 2016 to 2020.

The first temporal mode (PC1), which accounted for 89% of the

variation in daily excessive duration, was a crucial indicator for

reflecting the temporal dynamics of saltwater intrusion (Table 3).

Figure 6A highlighted a notable increase in PC1 values during

2019-2020, signifying a phase of intensified saltwater intrusion and

the longest excessive duration. Conversely, PC1 values were 0 in

early October 2017 and March 2019, indicating periods with

minimal or no saltwater intrusion and shorter excessive

durations, aligning with the patterns observed in Figure 5.

Figure 6B depicted a gradual decline in chlorine content from

DLS to MJ, followed by a sharp decrease from MJ to upstream
TABLE 1 Formulas of evaluation indicators.

Evaluation
indicators

Formula
Optimal
value

RMSE RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n
i=1(yf − yobs)

2

r
0

MAE MAE =o
n

i=1

yf − yobs
�� ��=n 0

R2
R2 = 1 −o

n

i=1

(yf − yobs)
2=o

n

i=1

(yobs − yobs)
2 1
A B C

FIGURE 3

Comparison of index results of three imputation methods. (A) Median; (B) KNN; (C) Multiple.
TABLE 2 Missing data imputation results.

Method
RMSE MAE R2

5% 10% 20% 5% 10% 20% 5% 10% 20%

Median 0.044 0.063 0.089 0.006 0.011 0.022 0.947 0.882 0.732

KNN(K=5) 0.020 0.034 0.067 0.002 0.006 0.017 0.989 0.962 0.845

Multiple 0.015 0.022 0.034 0.002 0.004 0.008 0.993 0.985 0.963
f
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stations. This abrupt change could be attributed to a sudden

increase in distance between neighboring stations, leading to a

significant morphological shift. This suggested that MJ station plays

a crucial role in assessing the extent of saltwater intrusion.
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Based on the analysis, this study used the first principal

component (PC1) as a representation of saltwater intrusion

distance. Research suggested that longer intrusion distances led to

longer durations of exceeding standards, posing greater risks to
A

B

C

FIGURE 4

Interpolation effectiveness of chloride data imputation for missing values, (A) represents partially missing data, with black boxes representing missing
values; (B) represents the interpolation results of the missing data in this part; (C) represents a partial amplification of the interpolation result.
A B

DC

FIGURE 5

The time series of daily excessive duration at the six stations. (The color bar represents the duration of chloride concentration exceeding standards
within a day, with the color becoming increasingly red as the duration of the exceedance increases). (A) 2016-2017; (B) 2017-2018; (C) 2018-2019;
(D) 2019-2020.
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water safety. The disaster threshold for chloride monitoring stations

within 24 hours was 18 hours. When the duration of exceeding

standards at a station ranged from 0 to 18 hours, it indicated

saltwater intrusion without causing a disaster. The corresponding

PC1 value for this intrusion extent was listed in Table 4. For

intrusion distances between LSW and MJ, PC1 showed a small

variation range, consistent with the spatial variation of the duration

of exceeding standards shown in Figure 6B, confirming PC1’s

effectiveness. When the intrusion distance was above XHW

station, although PC1’s variation range was small, it still indicated

saltwater intrusion severity. Below the XHW station, PC1 values

showed a distinct range, enabling accurate intrusion distance

prediction. PC1 exceeding 36 indicated a severe intrusion stage,

identifying NZ station as another crucial site for assessing saltwater

intrusion extent.

To vividly depict the spatial changes in saltwater intrusion in

the MDM waterway, we had selected MJ and NZ stations as pivotal

sites reflecting intrusion severity. Table 5 below outlined the PC1

value divisions: PC1 ≤ 7 indicated intrusion downstream of DLS,

7<PC1 ≤ 20 suggested intrusion between DLS and MJ, 20<PC1 ≤ 36

signified intrusion between MJ and NZ, and PC1>36 denoted

intrusion upstream of NZ.
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4.3 Analysis of factors influencing saltwater
intrusion and its temporal lag

As shown in Figure 7, PC1 illustrated the annual and monthly

variations of saltwater intrusion during the dry season. It also

depicted the sum of runoff at MK and SS stations, the daily

maximum tidal range at SZ station, and wind conditions at Macao

station. MDM, a typical river-dominated estuary, experiences

variations in salinity primarily driven by changes in river discharge.

An increase in discharge leaded to a decrease in PC1, and vice versa.

The negative correlation between river discharge and saline water

intrusion was evident, with PC1 changes lagging behind river

discharge variations by several days (Figure 7B). The magnitude of

tidal range is a key indicator of tidal strength. The daily maximum

tidal range exhibits periodic variations, primarily on a half-month

timescale. The interannual variation in tidal range was minimal, while

the intra-annual variation was relatively larger, as shown in

Figure 7C. The mean value of the daily maximum tidal range was

1.50 m. Figure 7D revealed substantial daily fluctuations in both wind

speed and direction, with comparativelyminor changes observed on a

monthly scale. According to the daily wind rose plot (Figure 8),

during the dry season at theMDM estuary, easterly winds prevailed at
TABLE 3 Six principal components (PCs) obtained by EOF decomposition.

PCs PC1 PC2 PC3 PC4 PC5 PC6

Variance contribution % 89.02 7.31 1.94 0.97 0.40 0.37

Cumulative variance contribution % 89.02 96.33 98.27 99.23 99.63 100
A

B

FIGURE 6

EOF decomposition plot of daily excessive duration, (A) first temporal mode and (B) first spatial mode.
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37%, followed by southeast winds at 25%, and south winds at 13%.

Additionally, southwest winds were at 10%, west winds at

5%, northeast winds at 6%, and other wind directions contributed

4%. This highlighted a predominant influence of easterly and

southeast winds in the region. Generally, prevailing winds include

both alongshore (parallel to the coastline) and cross-shore

(perpendicular to the coastline) components, jointly influencing
Frontiers in Marine Science 10
seawater intrusion. For instance, the alongshore component of

easterly winds (southeast winds) enhances seawater intrusion, while

its cross-shore component (northeast winds) diminishes seawater

intrusion. As winds blow from south to north, aligning with estuarine

tidal flow, they significantly increase salt transport, leading to

pronounced seawater intrusion. This makes the estuary susceptible

to short-term seawater intrusions near the estuary mouth, with a

relatively minor impact on upstream river channels closer to

inland areas.

In this study, CART was employed to assess the significance and

contributions of factors influencing salinity intrusion in the MDM

estuary from 2016 to 2020. According to Figure 9, runoff had the

most substantial impact (40%), followed by maximum tidal range,

wind speed, and wind direction, contributing 25%, 20%, and

15%, respectively.

External forces are typically unstable, leading estuaries to exist

in a non-equilibrium state when subjected to continuous changes.

This dynamic state is characterized by a certain time lag effect (Liu

et al., 2014; Gong et al., 2022). This study utilized Pearson

correlation analysis to determine the time lag of salinity intrusion

concerning various influencing factors. The results presented in

Table 6 indicated that salinity intrusion in the MDM waterway

lagged behind runoff by 1 day, tidal range by 3 days, and wind by 2

days. The maximum correlation coefficients were -0.457, -0.324,

and 0.140, respectively, passing a 1% significance test. Furthermore,

salinity intrusion demonstrates a significant negative correlation

with runoff and maximum tidal range, while exhibiting a significant

positive correlation with wind.
TABLE 4 Relationship between PC1 and saltwater intrusion distance.

No. PC1 Saltwater intrusion distance

1 [0, 7] Downstream of DLS

2 (7, 16] DLS-LSW

3 (16, 20] LSW-MJ

4 (20, 36] MJ-NZ

5 (36, 47] NZ-XHW

6 (47, 50] Upstream of XHW
TABLE 5 Relationship between PC1 and saltwater intrusion distance.

No. PC1 Saltwater intrusion distance

1 [0, 7] Downstream of DLS

2 (7, 20] DLS-MJ

3 (20, 36] MJ-NZ

4 (36, 50] Upstream of NZ
A

B

D

C

FIGURE 7

Time series of different characteristic variables, (A) PC1; (B) Runoff; (C) Tide range; (D) Wind.
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4.4 Cross-wavelet analysis of saltwater
intrusion upstream

Saltwater intrusion is influenced by climatic changes, human

activities, and topography, as well as atmospheric circulation

factors. Research suggested (Wang et al., 2024) that cross-wavelet

analysis could accurately reveal the relationship between

atmospheric circulation and watershed climate changes,

enhancing climate diagnostics and predictions. Saltwater intrusion

in the MDM waterway was primarily driven by runoff dynamics,

with upstream runoff contributing 40%. The WZ station, located in

the middle and lower reaches of the Xijiang River basin, played a

crucial role as a control point. Its flow rate determined the

availability of water for regulating salinity and replenishing

freshwater at the Pearl River Estuary. Using the cross-wavelet

method, we investigated the main drivers of monthly runoff

variations at WZ from 1961 to 2020, focusing on atmospheric

circulation factors. Additionally, we analyzed the common

characteristics between monthly runoff and nine atmospheric

circulation factors (ENSO, PDO, NAO, AO, AMO, DMI, NPI,

PNA, SSI) to infer the influence of atmospheric circulation on

saltwater intrusion evolution.

Figure 10 depicted the cross-wavelet transform plot of monthly

runoff at WZ station and atmospheric circulation factors in the low-

energy region, i.e., the wavelet coherence spectrum. Color bars

denoted the square of the wavelet coherence, with higher values
Frontiers in Marine Science 11
indicating stronger correlation between the two-time series in the

corresponding local time-frequency domain. The Figure 10 revealed

a significant positive correlation between runoff and ENSO,

spanning from 1973 to 1995 with a period of 128-190 months.

Regarding PDO, six significant periods emerged: positive

correlations from 1972 to 1976, 2002 to 2006, and 2011 to 2014

(8-16 months), and negative correlations from 1983 to 1987, 1993

to 1996, and 1998 to 2002 (8-16 months). As for NAO, notable

periods included positive correlations from 1968 to 1972 and 1991
A B

DC

FIGURE 8

Wind rose diagrams during the dry season from 2016 to 2020. Winds are divided into sixteen directions. The circle denotes the wind frequency of
different directions. (A) 2016-2017; (B) 2017-2018; (C)2018-2019; (D) 2019-2020.
FIGURE 9

Contribution of influencing factors.
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to 2010 (8-16 and 100-128 months, respectively), and negative

correlations from 1967 to 1972 and 1991 to 1995, and 2011 to 2015

(24-40 and 8-16 months, respectively). Runoff demonstrated two

significant resonance periods positively correlated with AO: 9-16

months during 1962-1968 and 24-30 months during 1987-1996.

Regarding AMO, three notable resonance periods emerged: positive

correlations during 1990-2000 (48-64 months) and 2002-2016 (8-

20 months), and negative correlation during 1985-1998 (90-120

months). Two significant resonance periods negatively correlated

with DMI were observed for runoff: 8-16 months during 1968-1972

and 18-40 months during 1964-1975. Concerning NPI, three

significant resonance periods were identified: positive correlations

during 1961-2020 (8-16 months), 2009-2015 (24-48 months), and

negative correlation during 1976-2002 (128-256 months). Runoff

exhibited four significant resonance periods negatively correlated

with PNA: 8-16 months during 1982-1986, 1992-1995, 1998-2003,

and 2008-2011. Lastly, with SSI, three significant resonance periods

were identified: positive correlations during 1995-2001 (32-48

months) and 2002-2006 (10-16 months), and negative correlation

during 1995-2005 (110-128 months).
TABLE 6 Correlation coefficient between PC1 and lag time of various
influencing factors.

Lag time/day Runoff
Maximum
tidal range

Wind

0 -0.439** -0.146** 0.044

1 -0.457** -0.253** 0.129**

2 -0.452** -0.323** 0.140**

3 -0.442** -0.324** 0.076*

4 -0.432** -0.258** 0.026

5 -0.419** -0.141** 0.005

6 -0.397** -0.008 0.001

7 -0.378** 0.118** 0.013

8 -0.363** 0.238** 0.039

9 -0.347** 0.316** 0.052
In the table, “∗”means passing 5% significance test, “∗∗”means passing 1% significance test.
Bold values indicate the maximum value of correlation coefficient.
FIGURE 10

The wavelet coherence spectrum plot. (The area within the cone-shaped contour lines indicates the effective spectral value influenced by the
wavelet; the solid black line inside the cone represents the confidence interval passing the 95% significance level; arrows indicate phase difference,
with rightward arrows indicating consistent phase changes between the two time series, and leftward arrows indicating opposite phase changes. The
description is consistent with that of Figure 11).
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Figure 11 showed the wavelet power spectrum of monthly

runoff at WZ station and monthly-scale atmospheric circulation

factors from 1961 to 2020. The color bars represented the power

spectrum values, indicating the strength of signal oscillations and

the significance of the corresponding period. Both runoff and

atmospheric circulation factors exhibited short-term oscillation

periods of 8-16 months, with NPI showing the strongest positive

correlation with runoff. Additionally, short-term oscillation periods

of 1-8 months were observed between runoff and atmospheric

circulation factors during this period.

NPI, a crucial factor in ocean-atmosphere interaction and

climate prediction, reflected sea-level pressure anomaly sensitivity,

aiding in characterizing North Pacific climate system decadal

variability. Given the inseparable link between saltwater intrusion

and climate, NPI could enhance saltwater intrusion forecasting

accuracy if integrated into early warning systems.
4.5 Prediction of saltwater
intrusion distance

Considering the complexity of establishing separate daily

exceedance duration prediction models for each of the six
Frontiers in Marine Science 13
chlorine monitoring stations, it becomes challenging to provide

an intuitive representation of the overall salinity intrusion process.

Additionally, this approach would entail a substantial workload.

Using the six PCs from EOF decomposition for prediction and

multiplying them by spatial vectors enables the inverse estimation

of the daily chlorine exceedance duration for all stations.

Nevertheless, this approach still necessitates the development of

six distinct prediction models, and the cumulative forecasting errors

may introduce instability to the results. Based on the analysis, PC1,

contributed to 89.02% of cumulative variance, effectively

characterized the impact of various factors on salinity intrusion

and its severity. Therefore, using PC1 as a predictive variable

established a single forecasting model, reducing the need for

multiple models and avoiding the randomness and instability

associated with individual site data.

Model parameter selection significantly impacts prediction

outcomes. In this study, parameters were chosen using a

controlled variable approach to prevent overfitting of the training

set and enhance the generalization ability of the test set. Optimal

parameters within predefined ranges were presented in Table 7.

LSTM and CNN methods were used to preliminarily assess the

impact level of salinity intrusion (PC1) in the MDM waterway.

Input variables included the 1-day lagged runoff sum of MK and SS,
FIGURE 11

The wavelet power spectrum plot.
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the 3-day lagged maximum tidal range at SZ, and the 2-day lagged

wind speed at Macao station. The data were split into an 80%

training set and a 20% validation set for model training. Results are

shown in Figure 12 and Table 8.

With a 1-day horizon, LSTM performed best, achieving a test set

RMSE of 6.57,MAE of 4.73, and R2 of 0.89. Extending the horizon to

2 days, CNN outperformed. Compared to the 1-day horizon, LSTM’s

test set saw a 94% increase in RMSE, 120% in MAE, and a 54%

decrease in R2. For CNN’s test set, there was a 50% increase in RMSE,

63% inMAE, and a 20% decrease in R2. With a 3-day horizon, CNN

maintained superiority. Compared to the 2-day horizon, LSTM’s test

set experienced a 4% increase in RMSE, 5% in MAE, and a 6%

decrease in R2. Meanwhile, CNN’s test set showed a 5% increase in

RMSE, 2% inMAE, and a 7% decrease in R2. As the forecast horizon

increased, model accuracy diminished to some extent. The reduction

in accuracy for a 3-day horizon was smaller than for a 2-day horizon,

exhibiting a decreasing trend. This is likely due to the nonlinear and
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time-delay characteristics of hydrological factors. Predicting salinity

intrusion involves considering the interactions and delayed responses

among various factors. As the forecast horizon extends, the model’s

understanding of these complexities decreases. Additionally, a

comparison between training and test sets revealed no overfitting,

indicating the CNN model’s good generalization ability. Unlike the

LSTM model, the CNN model maintained stable performance with

an extended forecast horizon.

While both models exhibited reduced accuracy in predicting

specific values of PC1 with an extended forecast horizon, Table 8

indicated that different intervals of PC1 effectively capture the

impact of various factors on salinity intrusion and its severity.

Both LSTM and CNN models performed well in predicting PC1

interval values. In terms of assessing the severity of salinity

intrusion in the MDM waterway, these models maintained

practicality and reliability.
5 Discussion

5.1 Possible causes of saltwater intrusion

5.1.1 The impact of tidal levels
The Pearl River estuary, characterized by multiple outlets,

exhibits diverse tidal dynamics and variations in riverbed

topography. Even within a single outlet, different mechanisms of

salinity intrusion and stratification processes can occur under

varying tidal conditions. As shown in Figure 13, salinity intrusion

displayed a distinctive fortnightly tidal cycle. During neap tides,
TABLE 7 Optimal parameters of the model.

Model Parameters Optimal value

LSTM

Units 100

epochs 29

batch_size 32

CNN

Units 64

epochs 100

batch_size 32
A

B

C

FIGURE 12

Comparison between predicted and actual values of the principal component PC1, which characterizes the extent of saltwater intrusion, at different
forecast horizons. (A) T=1-day; (B) T=2-day; (C) T=3-day.
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salinity intrusion intensified, reaching its peak shortly after the neap

tide and weakening during spring tides. This is because during the

neap tide, gravitational circulation stratifies saline and fresh water,

with the saltwater wedge advancing from the bottom. In the post-

neap to mid-tide phase, vertical mixing intensifies, leading to

enhanced mixing and a maximum upstream distance. During the

spring tide, gravitational circulation and river runoff interaction

strengthen saline and fresh water mixing, resembling a “piston”

effect. The saltwater-freshwater interface moves downward.

Consequently, the maximum salinity intrusion typically occurs

between neap tides and spring tides, while the minimum

intrusion usually occurs during spring tides.

5.1.2 The impact of wind
In this paper, wind component was obtained through

calculation of wind speed and direction. Although wind

component is also a factor affecting seawater intrusion, in

practical applications, observation data of wind speed and

direction are relatively easy to obtain with high observation

accuracy, which is more in line with the needs of practical

applications. However, calculation of wind component may

introduce additional errors. Wind speed and wind direction

directly reflect the influence of wind intensity and direction on

seawater intrusion. Choosing them as the driving factors of brine

intrusion may help simplify the model and improve the
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interpretability of the model. Therefore, wind speed and wind

direction were chosen as the driving factors of brine intrusion in

this paper (Li et al., 2012; Duan et al., 2021).
5.2 Uncertainty

This study faces uncertainty in three aspects. Firstly, the

chlorine concentration data, sourced from automatic monitoring

stations, could have had missing values during certain periods.

Despite employing optimal interpolation methods and rigorous

quality control, the filled values might not have precisely represent

the actual concentrations at those times, introducing potential

uncertainty into the assessment of salinity intrusion severity and

subsequent analyses. Secondly, in using LSTM and CNN to predict

the time series (PC1) representing salinity intrusion severity, the

choice of model parameters significantly influenced the forecasting

results. The parameters selected in this study were optimized within

a specified range to prevent overfitting in the training set while

maximizing generalization ability on the test set. However, the

existence of superior parameters beyond this range remains

unknown. Finally, the upwelling of salt tides in the Pearl River

estuary has a typical half-moon tidal cycle variation law.

Meanwhile, according to the cross wavelet analysis by Gong et al.

(2022), it can be seen that the saltwater intrusion variation of MDM
TABLE 8 Model evaluation results.

Forecast horizon Model
Training set Test set

RMSE MAE R2 RMSE MAE R2

1-day
LSTM 6.82 4.76 0.85 6.57 4.73 0.89

CNN 6.05 4.31 0.88 6.92 5.16 0.87

2-day
LSTM 10.87 8.07 0.62 12.77 10.41 0.57

CNN 9.55 7.18 0.71 10.36 8.40 0.73

3-day
LSTM 12.23 9.84 0.52 13.31 10.94 0.54

CNN 12.37 9.94 0.60 10.85 8.56 0.68
Bold values indicate the evaluation index corresponding to the best model.
FIGURE 13

The process of salinity intrusion distance and the tidal level variation at the SZ station.
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waterway has a resonance period of 12-17 days with the tidal range

of SZ station, and the half-moon cycle in this paper is precisely

concentrated in this range. During model training, a training time

window of 15 days was selected, and the model performance and

results were also obtained by training under this window. The

training time window was of the preset size, so the model effect

outside this selection was not yet known.
5.3 Advantages and limitations

The combined EOF and neural network trend prediction

method simplified multidimensional data, effectively capturing the

spatial variation of daily exceedance time at six chlorine monitoring

stations in the MDM waterway. Using the PC1 obtained from EOF

decomposition as a predictive variable, a single forecasting model

was established to determine salinity intrusion severity. Therefore,

when other estuarine areas, such as the Rhine-Meuse Delta, have

multiple chlorine monitoring stations, the EOF decomposition

method can also be used to identify key factors reflecting the

spatiotemporal variations of saltwater intrusion. These factors can

then be predicted to forecast the severity of saltwater intrusion.

Extreme events such as tropical cyclones and cold fronts will

also have a certain impact on salt intrusion. Refer to Zhu et al.

(2020), only northerly winds with wind speeds greater than 10 m/s

can cause net transport to land in the northern Channel, and

extremely serious seawater intrusion will occur only when

northerly winds last for 8 days. However, the duration of the

northerly wind induced by the cold front was only 1-2 days, and

no extremely serious seawater intrusion event occurred. According

to the study area and data period of this paper, extreme weather

events such as autumn tropical cyclones (typhoons) did not occur

during 2016-2020, and MDM is a typical estuary with strong

diameter and weak tide. When the upstream flow is very small,

strong seawater intrusion events have already occurred in the

downstream estuary, which has little impact on the overall

saltwater intrusion in the estuary. In future studies, we can try to

take into account the effects of these extreme events in the regions

where they exist and in the data cycle.

6 Conclusion

This study first utilized multiple imputation to address missing

chlorine concentration data. Subsequently, it applied methods like

EOF decomposition, decision trees, and neural network time series

prediction to analyze the variation patterns and key factors

influencing salinity intrusion in the MDM waterway during the

dry season from 2016 to 2020. Finally, the study predicted the

severity of salinity intrusion. The key findings included:

(1) The first temporal mode (PC1), derived from EOF

decomposition, accounted for 89% of daily chlorine exceedance

time, effectively reflecting temporal changes in salinity intrusion. A

higher PC1 value indicated more severe salinity intrusion.

Specifically, when 0≤PC1 ≤ 7, the saltwater boundary was below

DLS station; when 7<PC1 ≤ 20, it lay between DLS and MJ stations;

when 20<PC1 ≤ 36, it was between MJ and NZ stations; and when
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36<PC1 ≤ 50, it was above NZ station. The first spatial mode

(EOF1) explained the spatial variation in daily exceedance time,

with a gradual decrease from DLS station to MJ station and a sharp

decline from MJ to upstream stations.

(2) The primary factor impacting salinity intrusion in the MDM

waterway was runoff, contributing 40%. Subsequently, maximum

tidal range, wind speed, and wind direction follow with

contributions of 25%, 20%, and 15%, respectively. Salinity

intrusion exhibited a lag of 1 day with runoff, 3 days with tidal

range, and 2 days with wind. Notably, it showed a significant

negative correlation with runoff and maximum tidal range

(correlation coefficients of -0.457 and -0.324) and a positive

correlation with wind (correlation coefficient of 0.140), passing a

1% significance test. NPI had the strongest positive correlation with

saltwater intrusion among the 9 atmospheric circulation factors.

(3) When predicting the time series PC1 that represents the

severity of salinity intrusion, LSTM achieved the highest accuracy

with an R2 of 0.89 for a horizon of 1 day. For horizons of 2 days and

3 days, CNN exhibited the highest accuracy with R2 values of 0.73

and 0.68, respectively. Although the precision of both models in

predicting specific values of PC1 decreased with an extended

forecast horizon, they still demonstrated practicality and

reliability in assessing the severity of salinity intrusion in the

MDM waterway.
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