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Beyond counting calls:
estimating detection probability
for Antarctic blue whales
reveals biological trends in
seasonal calling
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We explore the utility of estimating the density of calls of baleen whales for better

understanding acoustic trends over time. We consider as a case study stereotyped

‘song’ calls of Antarctic blue whales (Balaenoptera musculus intermedia) on their

Antarctic feeding grounds over the course of a year-long, continuous recording

from 2014. The recording was made in the Southern Ocean from a deep-water

autonomous hydrophone moored near the seafloor in the Eastern Indian sector of

the Antarctic. We estimated call density seasonally via a Monte-Carlo simulation

based on the passive sonar equation, and compared our estimates to seasonal

estimates of detection rate, which are commonly reported in acoustic studies of

Antarctic blue whales. The resulting seasonal call densities at our Antarctic site were

strongly influenced by seasonally varying noise levels, which in turn yielded seasonal

differences in detection range. Incorporating the seasonal estimates of detection

area into our analysis revealed a pattern of call densities in accord with historic (non-

acoustic) knowledge of Antarctic blue whale seasonal distribution and migrations, a

pattern that differed from seasonal detection rates. Furthermore, our methods for

estimating call densities produced results that were more statistically robust for

comparison across sites and time and more meaningful for interpretation of

biological trends compared to detection rates alone. These advantages came at

the cost of a more complex analysis that accounts for the large variability in

detection range of different sounds that occur in Antarctic waters, and also

accounts for the performance and biases introduced by automated algorithms to

detect sounds. Despite the additional analytical complexities, broader usage of call

densities, instead of detection rates, has the potential to yield a standardized,

statistically robust, biologically informative, global investigation of acoustic trends

in baleen whale sounds recorded on single hydrophones, especially in the remote

and difficult to access Antarctic.
KEYWORDS

acoustic propagation modelling, Antarctic, Southern Ocean, Antarctic blue whale,
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1 Introduction

Underwater passive acoustic monitoring has for decades been

proposed as an efficient means of studying certain vocal marine

species, particularly cetaceans (Mellinger et al., 2007; Van Parijs

et al., 2009) with many applications focusing on understanding

distribution and movement patterns of particular species. In more

recent years, advances in computing, acoustic, and statistical

methods have seen an increasing trend towards local density

estimation from passive acoustics (Thomas and Marques, 2012;

Wilcock, 2012; Harris et al., 2013, 2018; Helble et al., 2013;

Hildebrand et al., 2015).

Density estimation can ultimately lead us to make assessments

across multiple recording sites (Helble, 2013) that can lead to

understanding broader population trends in space and time.

Estimating animal density from underwater passive acoustic

monitoring data can be a significant challenge given uncertainties

in detection range of listening stations, acoustic behaviour of

animals, and the performance of automatic detectors of animal

sounds, among others.

A variety of acoustic techniques have been proposed and

summarized in a review by Marques et al. (2013), and most of

these methods are derived from widely used (predominantly visual)

methods for estimating abundance (e.g. Borchers et al., 2002). Here

we present an application of one of these methods: estimating

density from single fixed passive acoustic sensors with a detection

function estimated from auxiliary data (Küsel et al., 2011; Marques

et al., 2013 Section IV.3). Specifically, our application focuses on

estimating the seasonal density of calls, (henceforth call density) of

Antarctic blue whales (Balaenoptera musculus intermedia;

henceforth ABWs) on their Antarctic feeding grounds.

ABWs, the largest animal to have ever lived, are critically

endangered (Cooke, 2018) after being hunted to the brink of

extinction during industrial whaling (Rocha et al., 2015). They

were subsequently encountered very rarely during three decades of

visual surveys spanning the 1970s-2000s (Branch, 2007), and for the

past two decades much of the primary data collection on this species

has relied on passive acoustics (e.g. Ljungblad et al., 1998; Širović

et al., 2004, 2009; Rankin et al., 2005; Širović and Hildebrand, 2011;

Gavrilov et al., 2012; Balcazar et al., 2015; Miller et al., 2015, 2017,

2019; Rocha et al., 2015; Tripovich et al., 2015; Leroy et al., 2016;

Shabangu et al., 2017, 2019, 2020; Thomisch, 2017; Dréo et al., 2019;

Letsheleha et al., 2022). The low frequency sounds of baleen whales,

particularly blue and fin whales, have long been known to be

detectable over very large areas (Payne and Webb, 1971; Širović

et al., 2007; Miller et al., 2015). Work to quantify site- and time-

specific detection ranges (e.g., McDonald and Fox, 1999; McCauley

et al., 2001; Samaran et al., 2010a; Shabangu et al., 2020), and this

has confirmed that detection range can vary across sites and

timespans. However, relatively few acoustic studies have focused

on quantifying and accounting for this variability in detection

range, despite the importance of these factors when interpreting

counts of acoustic detections. More recently, several of the

underwater acoustic studies that have taken detection range and

its variability into account have done so via estimation of call

densities (e.g. Helble et al., 2013; Harris et al., 2018; Miksis-Olds
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et al., 2019; Oedekoven et al., 2021; Warren et al., 2021), though

none of these studies have focused on the calls of ABWs in the

extremely variable Antarctic environment.

Call densities are one-step removed from acoustic estimates of

animal density in that call densities do not account for vocal

behaviour of animals. Therefore, call densities should be

interpreted as indicative of a potential combination of animal

density and animal behaviour. Call densities are similar to

detection rates (call-counts per unit time), which have been

commonly reported in many prior passive acoustic studies of

ABWs (Širović et al., 2009; Samaran et al., 2013; Balcazar et al.,

2015; Leroy et al., 2016; Thomisch, 2017; Dréo et al., 2019;

Shabangu et al., 2020). However, unlike detection rate, call

density is standardised by detection area yielding units of calls

per unit area per unit time. Detection range of low-frequency whale

sounds can be highly variable across sites and over time (Samaran

et al., 2010a; Harris et al., 2018; Shabangu et al., 2020), so by

accounting for all the main factors that influence detection,

including the performance of an automated detector (i.e. false

positives and missed-detections), resulting call densities do not

suffer from one of the biggest hindrances to interpreting detection

rates from these previous studies.

Here we describe a method to estimate seasonal call densities of

ABW sounds, and results are standardized and suitable to assess

trends in space and time. We also describe and apply methods to

estimate the coefficient of variation (CV) of each of our call density

estimates, and this in turn facilitates statistically robust comparisons

among different regions and/or timespans.
2 Methods

2.1 Data collection

Acoustic recordings for our application come from the

Australian Antarctic Division’s long-term acoustic monitoring

dataset (Miller et al., 2021c), which is part of the Southern Ocean

Hydrophone Network (Opzeeland et al., 2013). We focus on the site

located on the Southern Kerguelen Plateau (62.38°S, 81.79°E) and

the year 2014, as this site and year contain near-continuous acoustic

recording, and already contained a representative subset of 4298

ground-truth annotations of ABW song calls made by an expert

analyst (Miller et al., 2020, 2021a). Recording for the full dataset

started on February 10, 2014 and ended on February 7, 2015,

totalling approximately 8700 hours of underwater sound.
2.2 Analysis

In general we follow the methods described in Harris et al.

(2024, submitted), which were in turn extended from Küsel et al.

(2011) to use auxiliary data to estimate the probability of detecting a

call, which is a key parameter in density estimation methods. We

apply the density estimation formula (Equation 1) for a single-

sensor (a single fixed listening station with a single hydrophone)

with call-counts, nc, generated from an automated detector that has
frontiersin.org
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a false discovery rate f̂ , such that:

D̂ c =
nc(1 − f̂ )
Ap̂aT

(1)

Here D̂ c is the estimated call density; A is the sum of the area for

each transect; T is the duration of recording (in h); p̂ a is the

probability of detection in the study area; and the circumflex or “hat

operator” (^) indicates that a quantity is an estimated parameter.

The following sections describe how each of these quantities

were obtained.

2.2.1 Duration of recording (T)
Here we were interested in determining whether there were

seasonal differences in call density, and how these compared to

seasonal estimates of detection rate. To facilitate this we split the

dataset into five time periods: four seasonal estimates and one

annual estimate. Seasons were defined as summer comprising

months: Dec, Jan, Feb; autumn: Mar, Apr, May; winter: Jun, Jul,

Aug; and spring: Sep, Oct, Nov, and ‘full year’ included all of the

data from each season. We opted for a conventional definition of

seasons to enable comparisons with other ecological and biological

studies using this approach, rather than relying on a physical

oceanographic method, which can be region-specific. Each of the

following quantities were then estimated independently for each

time period, with T measured directly as the duration of recorded

audio for each period.

2.2.2 Number of calls (nc)
To count the number of calls we applied a spectrogram

correlation detector to the entire duration of recorded data. This

detector targets ABW song calls, also known as “Z-calls” (Širović

et al., 2004), which are made up of unit A (the constant tone

comprising the top of the Z), unit B, (the downsweep that connects

units A & C), and unit C (the near-constant or slightly downswept

tone comprising the bottom of the Z, Rankin et al., 2005). The

detector we used is the same as the Antarctic blue whale “ABZ” call

detector described byMiller et al. (2021a). According to the ground-

truth detections (i.e., manual annotations made by an expert

analyst), this spectrogram-correlation detector had mediocre

performance (Miller et al., 2021a), but was capable of detecting

calls composed of stand-alone unit-A, calls with only units A & B

visible, and full Z-calls that contained all three units: A, B, and C

(Figure 1). We chose a detection threshold that had a low false

positive rate (approximately 2.5 false positives per hour), but also

had a low true positive rate of approximately 0.27 for this site-year.

Here, the true positive rate (AKA recall) was defined as the

proportion of manually annotated detections found by the

automated detector.

2.2.3 False discovery rate (f̂ )
False discovery rate for each season was calculated by expert

inspection of every 50th automated detection throughout the dataset.

We applied a fixed interval for manual inspection to ensure a

consistent examination of a subset of automated detections across

the dataset. The expert analyst, author FRC, viewed a spectrogram of
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the detection, and then determined whether or not that detection was

true positive, or a false positive. The total number of true positives,

TP, and false positives, FP, were then tabulated for each time period

in order to estimate the false discovery rate (Equation 2):

f̂ = FP=(FP + TP) (2)
2.2.4 Probability of detecting a call within the
study area (p̂a)

Detection probability was estimated with a Monte Carlo

simulation using elements of the passive sonar equation. The

method is described in full in Harris et al. (2024, submitted) and

a summary is provided here. There were two main parts to the

analysis: first, detection probability was modelled as a function of

call signal-to-noise ratio (SNR) using a shape-constrained

generalised additive model (GAM). Second, a Monte Carlo

simulation was used to estimate the average detection probability

p̂ a needed for Equation 1. The simulation was populated with

virtual blue whale calls around a single omnidirectional

hydrophone. All virtual calls were assigned source levels (SL),

ambient noise levels (NL) and a transmission loss (TL), given

their virtual position was known in relation to the hydrophone.

The SNR (in dB) for unit-A of each simulated call was calculated

using the expression from the passive sonar equation (Equation 3):
FIGURE 1

Examples of Antarctic blue whale song calls. Top: two detections of
stand-alone unit-A. Middle: two detections that appear to consist
solely of units A and B. Bottom: two Z-calls containing units A, B, &
C. Image reproduced from (Miller et al., 2021a) under a creative-
commons licence.
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SNR = SL−TL −NL (3)

A predicted detection probability for each call was estimated

using the GAM results, and then the average detection probability,

p̂ a, was estimated from all the simulated calls (see section Monte

Carlo method below for additional details).
2.2.4.1 Detector characterisation curves
(SNR-detection functions)

The data from the IWC-SORP annotated library (Miller et al.,

2020) for the site-year S. Kerguelen Plateau-2014 were used to

estimate the probability of detection as a function of SNR (AKA

detector characterisation curves, Figure 2), which illustrates the

estimated relationship between SNR and probability of detection,

essential for assessing how effective and reliable a detection system

is under different levels of noise interference. As in Miller et al.

(2021a) the 4298 detections of unit-A, units A-B and Z-calls from

the manual analyst were treated as ground-truth, and false-positive

detections from the automated detector were removed prior to

modelling the relationship. The model here was similar to that

presented by Miller et al. (2021a), however, here we estimated the

SNR as SNR=RL-NL (in dB) and we did not divide by the variance

of the noise as in the previous work (Miller et al., 2021a).

Furthermore, here the relationships between SNR and automated

detections were modelled independently for each season and the full

year, whereas in the previous work only a single model was created

for the full year. The detector characterisation curves were modelled

as binomial shape-constrained GAMs with logit link functions and

5 ‘knots’ using the package ‘scam’ (Pya, 2022) in R version 4.2.0

(R Core Team, 2019) using the formula (Equation 4):
Frontiers in Marine Science 04
detected ∼ s(SNR) (4)

Here, “detected” was a Boolean response variable with value 1

or 0 depending on whether or not the automated detector had any

temporal overlap with a ground-truth manual annotation; SNR was

the predictor variable, measured from the acoustic data as

defined above.

2.2.4.2 Source levels

For the Monte Carlo simulation, SL was modelled as normally

distributed (in dB), with a mean of 189 dB re 1 mPa @1m and

standard deviation of 8.0. There have been very few studies of SL of

ABW sounds, but they all report mean SL of unit-A that are very

close to this value (Širović et al., 2007; Samaran et al., 2010b;

Bouffaut et al., 2021; Miller et al., 2021b), despite these studies all

being conducted in different seasons. Thus, the same distribution of

SL was used for all time periods. The standard deviation of SL used

was that reported by Miller et al. (2021a), which has the largest

sample size of all these studies in terms of both number of calls

(350) and likely number of whales.

2.2.4.3 Transmission-loss modelling

Transmission-loss (TL) was modelled by applying the parabolic

equation method via the RAMGeo acoustic propagation algorithm

(Collins, 2002, Figure 3). This was implemented via the software

package AcTUP (Duncan, 2005), which is a user interface to the

2005 version of the Ocean Acoustics Library (Porter, 2020). TLs

were modelled for a frequency of 26 Hz (corresponding to unit A of

ABW calls) along 24 evenly-spaced radial transects originating at

the recorder, and ending at distance w along each bearing with a
FIGURE 2

Probability of detecting a call given a signal-to-noise ratio (SNR) using a separate shape-constrained generalised additive model (GAM) for each time
period. The grey area around each curve depicts the 95% confidence limits.
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distance increment of 2 m following the principle of reciprocity of

TL between source and receiver (Nghiem‐Phu and Tappert, 1985;

Jensen et al., 2011).

Parameters for the TL model included the depth at which the

call was produced and received, bathymetry, seabed acoustic

properties, and water-column sound-speed profile (Figure 4). The

depth of the recorder was estimated to be 1800 m using the ship’s
Frontiers in Marine Science 05
echosounder during deployment, and the depth of calling was

estimated to be 25 m, identical to that for which SL estimates

were made (Miller et al., 2021b). We assumed that the effects of

small variations in the depth of the calling whale, which can have

large effects on the TL, were potentially counterbalanced by the SL

adopted in this study, since such effects were taken into account in

the SL estimation. Bathymetry was extracted for each transect from
FIGURE 3

Transmission loss, TL, model per profile: 0-345° in 15° increments, respectively plotted for each season. TL were modelled at a frequency of 26 Hz assuming
whale depth of 25 m and recorder depth of 1800 m.
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the etopo1 database at 10 km distance increments (Amante and

Eakins, 2009). Seabed acoustic properties were modelled as large-

grain with a compressional sound speed of 1520 m/s and a density

of 1200 kg/m3. These properties were similar to typical parameters

for a homogenous seabed made of “clay” (Lurton, 2010). Only

limited in-situ spatial information on geoacoustic properties of the

seabed in the region could be found, but a ‘clay’ seabed seemed to be

a reasonable choice according to the few data products available

(Dutkiewicz et al., 2015) (Figure 4).

A single sound-speed profile (SSP) for each season (summer,

autumn, winter, spring), and a single SSP for the full year was

created from the World Ocean Atlas 2018 (Boyer et al., 2018) using

the respective seasonal and yearly salinity and temperature water

column profiles nearest in location to the instrument. The GSW

Oceanographic Toolbox was used to calculate sound-speeds from

salinity, temperature, and depth (McDougall and Barker 2011).

Atmospheric seasons were chosen instead of physical

oceanographic seasons as they are typically observed when

discussing seasonality in marine mammals. However, the
Frontiers in Marine Science 06
difference in SSP between atmospheric and oceanographic

seasons, which are offset by a month, was not expected to

substantially affect TL in this application and region. This is

because Antarctic SSPs are upward refracting and contain shallow

sound speed minima throughout the year, and thus are relatively

stable across seasons compared to more temperate regions.

2.2.4.4 Noise levels

Noise levels were estimated for each manually annotated

detection by calculating the mean power in dB re: 1 µPa in the

25-29 Hz frequency band of the spectrogram (i.e. the frequency

band of SL measurements of unit-A of ABW song calls). The NL

was measured 26 seconds (25 seconds + 1 second) prior to the onset

of manual detection. When the annotation was at the beginning of

the file, without 26 seconds of preceding audio, the noise was

measured immediately following the detection. NL were measured

for each call regardless of the presence or absence of other calls, and

regardless of the presence or absence of a ‘chorus’ (i.e., elevated

levels in the call band that arise from the hydrophone receiving
FIGURE 4

Maps of recording location (red circle) and transects used to estimate probability of detection in the study area (red lines). Top Left: bathymetry in m
from etopo1 (Amante and Eakins, 2009). Top Right: sediment type from the Census of Seabed Sediments (Dutkiewicz et al., 2015) illustrating that the
most common sediments are “clay” and “diatom ooze.” Bottom: seasonal sound-speed profiles at the recording location as a function of depth
derived salinity and temperatures from the World Ocean Atlas 2018 (Boyer et al., 2018). Bottom left panel shows full depth range, while the bottom
right panel shows the same information, but focused on the first 250 m to better illustrate the details of this region.
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multiple overlapping calls from many non-localisable and/or

distant animals). This decision can be viewed as a choice to

explicitly include the effects of the ‘chorus’ and the potential

effects of masking from other calls as noise in our estimates of

call density. The mean and standard deviation of measured NL for

each season and the full year were then used as input parameters

(i.e., to generate normal distributions of NL) for Monte-Carlo

simulations for the respective time-periods.
Frontiers in Marine Science 07
2.2.4.5 Monte Carlo method

A Monte Carlo simulation similar to the method described in

Harris et al. (2024, submitted) was used to estimate average

detection probability, and is summarised here. The simulation has

two stages referred to as the outer- and inner loops. The two stages

are necessary to appropriately account for all sources of variability

in the simulation.

In the outer loop, different source level and ambient noise level

distributions were simulated, as well as a detector characterisation

curve using parametric bootstraps. Normal distributions were

assumed for the source- and noise level distributions with mean

and standard deviations as described above, as the dB values were

normally distributed in Miller et al. (2021b). A multivariate normal

distribution was assumed for the model coefficients from the GAM.

The estimated coefficient parameters were used as the mean values

and the variance was derived from the GAM covariance matrix. The

outer loop was run 1000 times, generating 1000 separate

distributions for source- and noise level and 1000 detector

characterisation curves. Each combination of simulated source-

and noise level distributions, and the detector characterisation

curve, were used to run the inner loop. The parametric bootstrap

in the outer loop was intended to conservatively preserve variability

and expand the range of uncertainty, particularly for SL. Though we

used the best available estimates of SL, these estimates still came

from a small number of whales and locations. The bootstrap aims to

expand the 8 dB standard deviation around the mean SL to better

model the uncertainty of these estimates.

In the inner loop, virtual whale calls were placed at 100 m range

steps along each transmission loss transect (maximum range = 980

km, with land truncating some transects), resulting in a maximum

of 9,800 virtual whale calls per transect. Each call was assigned a

source level and an ambient noise level using a random draw from

the simulated source- and noise level distributions. Then the

relevant transmission loss value was used to estimate the

simulated SNR of the call as expected at the hydrophone. The

detector characterisation curve was then used to estimate the

detection probability for each call, given their SNR values. An

average detection probability, p̂ a, was then estimable for each

transect for each run of the inner loop (averaged across the

maximum number of calls per transect, weighted by range, to

account for the increasing area represented by calls at increased

ranges along the radial). Additionally, we computed the overall

detection probability as a weighted mean, with weights based on the

area of each transect.

2.2.4.6 Estimation of CV

The delta method (Seber, 1982) was used to estimate an

associated CV for each density estimate. For this, the CVs of each

component of the analysis that contributed to the uncertainty in the

eventual density estimate were combined to produce an overall CV

for the Dc. These components were the probability of detection, the

encounter rate and the false discovery rate. A CV is defined as the

standard deviation divided by the mean estimate. Therefore, given p̂ a

was a mean value, the standard error of p̂ a was divided by p̂ a. The CV

for f̂ was estimated in the same way. For nc, the standard deviation
TABLE 1 Inputs into the call density equation for each season: number
of detections (nc), time of recording (T) in h, false discovery rate (f),
probability of detection (pa), and parameters for the distribution of noise
level (NL) in dB re 1 µPa2 RMS.

season nc f T pa NLmean NLsd

summer 13248 0.464 2075.4 0.0658 92.4 2.6

autumn 19123 0.243 2199.7 0.0192 96.8 3.7

winter 32631 0.265 2197.3 0.0701 87.5 3.5

spring 12903 0.388 2167.8 0.1836 81.0 2.4

year 77905 0.314 8640.2 0.0789 88.6 5.9
FIGURE 5

Top: Noise level (NL) and bottom: signal-to-noise ratio (SNR)
distributions measured for unit-A of the manually annotated
Antarctic blue whale A, B, and Z-calls (25-29 Hz band). Violin plots
show the distributions of values from ground-truth detections, while
error-bars show the standard deviation centred on the mean value.
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was used since the encounter rate was not considered to be a mean

estimate. For f̂ , CV was estimated computing the variance of a

weighted mean following the definition of Cochran (1977).
3 Results

3.1 Pre-processing of data for call
density estimates

The automatic detector yielded 77905 detections, across 8640.2

hours of recording, corresponding to the total time of deployment.

Of these, 1559 automated detections were used to estimate false
Frontiers in Marine Science 08
discovery rate, f̂ , with 313 from summer, 453 from autumn, 563

from winter, and 230 from spring. For the full year of deployment, f̂

was 0.314. The detections per season, and other seasonal inputs into

the call density estimates are presented in Table 1.

Noise levels showed strong differences over time yielding

differences in seasonal mean NLs and respective standard

deviations (Table 1; Figure 5). These seasonal differences in NL

are in accord with what would be expected due to the seasonal

effects of Antarctic sea-ice on underwater noise levels (Miller et al.,

2016; Menze et al., 2017; Shabangu et al., 2020; Yun et al., 2021).

However, the distribution of SNR of the annotated calls was

relatively consistent over time (Figure 5). In contrast to NL, the

SNR-detection functions for autumn, winter, and spring were all
FIGURE 6

Probability of detection, p̂ a , within study area for each radial transect.
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fairly similar to each other, but different than that for summer

(Figure 2). In particular, the SNR-detection function for summer

had a shallower slope than other seasons, and substantially wider

confidence intervals.

The probability of detection produced by the Monte Carlo

simulation decreased to a negligible value at the adopted maximum

range of 980 km (Figure 3). Following the pattern set out by NL, the

probability of detection within the study area, p̂ a, varied substantially

across the different time periods (Figure 6; Table 1). The lowest p̂ a
Frontiers in Marine Science 09
occurred in autumn and the highest p̂ a values were in spring and, as

would be expected, these were inversely correlated with NL.
3.2 Seasonal density estimates

Seasonal call densities, D̂ c, ranged from 0.007 calls/h/1000 km2 in

spring to 0.128 in autumn. The CV of call density was highest in

autumn (CV=0.153), and lowest in summer (CV=0.112), but with

only small differences in CV among time periods (Figure 7; Table 2).

Detection rate peaked in winter at approximately 15 calls/h. In

other seasons, these ranged from 5-8 calls/h (Figure 7). In contrast,

maximum call densities occurred in autumn, followed by winter,

and minimum call densities occurred in spring.
4 Discussion

4.1 Call density vs. detection rate

Here we present the first estimates of seasonal call densities of

Antarctic blue whale song-calls from acoustic recordings made in

the Antarctic. Previous passive acoustic studies of ABW calls in the

Antarctic have focused on detection rate, and this has made it

challenging to understand ecological and biological trends in

detections over time and space. Our estimates of call density are

more easily interpreted than estimates of detection rate – even if

obtaining them is more complicated. By accounting for detection

range and detector performance, we ensure that our call densities

can be interpreted as some combination of animal density and

animal behaviour – factors that are purely biological/ecological in

nature. Detection rates, as they are usually presented, are simpler to

estimate than call densities. However, within the detection rate the

biological factors of interest are confounded with covariates from

the physical environment (noise, propagation, detection range) and

the detection process (detector performance). Accounting for

variability in detection range and detector performance and

propagating this variability throughout our call density estimate

also provides a means of estimating the CV (and corresponding

confidence intervals) of our seasonal call densities.

Plotting our seasonal call densities with confidence intervals

reveals differences across seasons, without overlap in 95%
FIGURE 7

Top (A): mean detection rate (in units of calls/h) of Antarctic blue
whale tonal calls at S. Kerguelen Plateau 2014 for each time period.
Mean detection rates were calculated by dividing the total number
of detections by the total duration of monitoring in each time
period. Bottom (B): call densities (in units of calls/h/1000 km2) for
each time period with error-bars showing the 95% confidence
intervals for each time period.
TABLE 2 Results of call density estimation for each season including:
density of calls (Dc) in units of calls/h/1000 km2, coefficient of variation
for the parameters nc, f, pa, and Dc.

Season Dc CV.Nc CV.f̂ CV.pa CV.Dc

Summer 0.017 0.0022 0.010 0.110 0.110

Autumn 0.109 0.0010 0.014 0.164 0.165

Winter 0.050 0.0014 0.012 0.125 0.125

Spring 0.006 0.0034 0.012 0.100 0.100

Year 0.025 0.0010 0.003 0.111 0.111
fro
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confidence intervals. Furthermore, the seasonal pattern of call

densities that we found was different from that of detection rate.

Detection rate showed a maximum in the winter, with middling

detection rates for summer, autumn, and spring that were all

relatively indiscernible (within 2.5 in units of calls/h) from each

other since they were confounded by greatly varying noise levels

and thus p̂ a. Our call densities peaked at a maximum in autumn,

falling to a clear minimum in spring. Thus, our data demonstrate

that there is a quantifiable seasonal difference in call density, and

that this difference was driven by some combination of seasonal

changes in ABW density, and/or acoustic behaviour.

The apparent seasonal pattern in call density can serve,

alongside other independently derived knowledge of blue whale

life history, to develop and test further hypotheses about the

biological function of these sounds. For example, it has long been

hypothesized, with no evidence to the contrary, that blue whale

song calls are produced by males (Oleson et al., 2007; Lewis et al.,

2018), and are linked to breeding. Furthermore, there is some

evidence from early studies that ABWs have a prolonged and

temporally diffuse breeding season over autumn and winter, and

that this correlates with a prolonged and temporally diffuse

migration to lower latitudes in these seasons (Brown, 1954;

Mackintosh, 1966). The seasonal pattern of call density from our

high-latitude Southern Indian Ocean site in 2014 appears to be in

accord with these facets of ABW life-history, whereas detection

rates would at best be considered ambiguous or inconclusive for

testing this hypothesis.

Our interpretation of our acoustic data is that the peak in call

density in autumn corresponds to the start of the (relatively

prolonged) breeding period. We suspect the second-highest call

densities in winter correspond to a potential behavioural peak in

calling. However, this behavioural peak has a lower call density

because fewer animals are within the detection range of our

Antarctic recording site, potentially because the site is heavily ice-

covered during winter, and potentially because a large proportion of

calling animals have already migrated to lower latitudes, beyond even

the very large detection range afforded by lower winter noise levels.

The lowest call densities in spring correspond to time periods when

ABWs switch their behaviour from breeding (and calling) to

returning to the Antarctic to feed, and this reduced calling

behaviour combined with largest values for p̂ a, and high-detection

range (due to reduced noise level from ice-covered seas, e.g. observed

by Shabangu et al. (2020), and from reduction in the blue and fin

whale choruses), results in a minimum call density at our Antarctic

recording site. The higher call densities in summer would correspond

to a time when most of the population have returned to the Antarctic

feeding grounds and more are in proximity to our recording site. As

the summer progresses into autumn and the breeding season

approaches their energetic needs are met, and then some of the

animals begin to alter their behaviour from feeding (and not calling

much) back towards calling again. Further studies of seasonal calling

behaviour, particularly estimates of the acoustic-cue rate (call

production rate of an individual), and the proportion of individuals

that are making calls, could serve to help test these hypotheses.

Furthermore, collection of these data would provide for estimation of

ABW (animal) density from our call densities.
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4.2 Variability and confidence intervals

The CVs of our seasonal call densities ranged from 0.11 - 0.15.

These are reasonable CV values and are lower compared to other

methods of estimating abundance of Antarctic blue whales. For

example, line-transect abundance estimates of ABWs reported by

Branch and Butterworth (2001) from circumpolar sightings surveys

ranged from 0.41- 0.52. However, the CVs from Branch and

Butterworth were for estimates of global population abundance,

whereas our CVs were for local call density where variability over a

shorter time period and study area may be inherently reduced.

Further, information on the relationship between call density and

animal density (e.g., the Z call production rate of ABW, and the

proportion of the ABW population that make Z calls) would be

required to convert our call densities into animal densities. Previous

studies have shown that the CV associated with such behavioural

parameters can contribute the largest amount to an animal density

CV (e.g., Harris et al., 2018). So, the relatively good CVs from our

call density estimate could still increase by a large amount when

scaling up the study area and time period to population abundance,

and including the additional behavioural parameter(s) (see Fregosi

et al., 2022, for another example).

Variability in p̂ a appeared to be the overwhelmingly dominant

driver of the overall CV for our call densities (Table 2). The CV of

p̂ a was driven by variability in NL, SL and TL, but predominantly by

the distributions of SL. For our study, the same SL distribution was

used across all seasons with a mean of 189 dB and standard

deviation of 8 dB. The high variability in our SL distribution

comes from a study that applied the sonar equation and modelled

TL in a similar manner: i.e. using the software RAMGeo to model a

deep water Antarctic environment similar to that of our site. The

variability in SL thus includes both localisation error, and model

mismatch including errors in TL. So as not to double count the

uncertainty in TL, we assumed that it was already included amongst

our highly variable SL. While variability in SL was the main driver

of the CV of our call densities, the seasonal differences in our mean

call densities were driven by noise.

Our distributions of NL showed substantial variability by season

(Figure 5), with NL variation primarily linked to ice cover and

chorusing. Autumn had the largest CV (of Dc and p̂ a), with the

remaining seasons CVs relatively similar (within 0.02).

We chose shape constrained GAMs because our dataset

produced GAMs that exhibited unrealistic behaviour at very high

and low SNR without constraints. In future studies, it would be

worth testing whether annotating a larger amount of data would

improve the precision of our SNR-detection function, and

subsequent estimates of CV of p̂ a and of call density. This could

be achieved in practice by adaptively annotating additional hours of

summer recordings to supplement the distribution of summer SNR.

Additionally, the spectrogram correlation detector that we used had

poor recall for an acceptable level of precision, see (Miller et al.,

2021a), so it would be worth exploring in a future study the extent

to which using a better (i.e., less variable) detector could lower the

CVs. The use of deep learning algorithms in conjunction with

closed population capture-recapture models (Miller et al., 2022) has

emerged as a novel approach to achieving improved results in call
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detection. Also, Schall et al. (2024), presented a deep learning

benchmark for the detection of blue and fin whale vocalizations

in marine long-term PAM dataset.
4.3 Further exploration and advancement
of call density methods

The analysis that we presented here represents an initial first-

step toward a standardized measure of bioacoustic detections of

ABWs recorded on single instruments that is suitable for

comparison across different timespans, in addition to sites. Future

work can focus on transforming extant estimates of detection rates

into call densities, but we also expect that there will be further

modifications and hopefully improvements to the various steps that

comprise this method. Such improvements and modifications

might include: improved detectors with better recall, lower f̂ , less

variability in SNR-detection curves. A natural extension might also

be to investigate call density over shorter time periods than annual

& seasonal: e.g. monthly or weekly (though care has to be taken

regarding sharing parameters between smaller time periods).

Further, a key limitation of our method is that we have to assume

a uniform call density across the area, thus it would be preferable to

account for heterogeneity in spatial distribution of calls, if a priori

knowledge is available (e.g., Harris et al., 2018). For example, in

winter, large portions of our study area are covered by sea ice. Fully

ice-covered areas may be less likely to contain whale calls than open

water, so a simulation that included such effects of ice-cover and

any other spatial covariates would be an important improvement.

Additionally, there is scope for improvement in estimation of

TL, particularly via populating TL models with more accurate and

higher-resolution environmental parameters, and accounting for

uncertainty in model inputs where necessary. For example: higher-

resolution and more accurate bathymetry than etopo1 could be

used where available. Similarly, more accurate local SSPs than those

derived from decadal & broad-spatial averages could also be used

where available. Ideally, this would involve using in-situ data from

argos floats and scientific surveys that occur in the vicinity of the

monitoring sites (spatially and in time). Furthermore, it might also

include modifications to vary the SSP spatially along each radial (in

the same manner as bathymetry). And lastly, our assumption of

homogenous seabed geoacoustics could be improved upon. In the

Antarctic, little is known about density and sound-speed of the

seabed at any location, but once measures are made at a location,

these are likely to remain stable for a long time, so such data do have

good potential for longevity/legacy, as well as retrospective re-

analysis of call density should they become available. Such

analysis would be important when comparing across different

sites, but is less important for analyses comparing different time

periods at a single site (like our seasonal analysis here) since these

properties are not likely to vary much over time.

Compared to the potential improvements in estimating TL,

there are fewer avenues for improvements in measuring NL. The

main NL-related modification that would be useful to consider in
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future studies would be excluding times with very high noise from

call density estimates. This would be analogous to going ‘off-

effort,’ when conditions are unsuitable for detection, as is

commonly done when estimating animal abundance with

distance sampling. For example, during at-sea line-transect

distance sampling surveys, visual observers stop data collection

when the sightability is poor (e.g. sea-state is > Beaufort 5). This

saves them time looking for animals in conditions where they

would be very unlikely to detect anything, and costs little in the

way of a reduction in number of detections. More importantly it

also reduces variability of their density estimates. Applying this

analogy to acoustics would involve identifying periods when high

levels of noise prohibit reliable detection, and then excluding these

periods from the estimates of call density.

Finally, there appears to be some scope to modify and improve

upon estimation of SNR, detector characterisation, and false

discovery rates. Estimation of SNR is an often overlooked and/

or over-simplified aspect of passive acoustics, and so further

investigation into how best to estimate SNR for call density

estimation may be warranted. Questions for such investigation

might include the timeframe over which to estimate noise and

signal, and whether level measurements should focus on measures

of central tendency (e.g. RMS, L50 measurements), or maxima

(e.g. peak, L90). For the tonal calls of ABWs in this study the

frequency band of interest was narrow and clearly defined, but for

frequency-modulated calls, like blue whale D-calls it may not be

appropriate to calculate signal and noise levels over a simple

rectangular time-frequency box. Thus, there may be further need

to better define the call in the time-frequency plane, e.g. by tracing

a contour, for such calls. Another potential improvement related

to SNR would be to better understand the effects of floating

ground-truth on detector characterisation. For example,

adjudicated mark-recapture methods, like those proposed by

Miller et al. (2022), might be better able to address issues of

variability and subjectivity in the human analysts annotations, and

reduce potential biases that flow through to the SNR-detection

function and f̂ .
4.4 Implications for long-term
monitoring (conclusions)

The methods that we have presented here represent a pathway

to extract even more value from the increasingly large body of

knowledge generated from worldwide long-term single sensor

recordings of low-frequency baleen whales. These methods

should be directly applicable not just to ABWs, but any

subspecies or population of blue whales, fin whales. These

methods potentially the low-frequency omnidirectional calls of

minke, sei, and right whales, where other standard density

estimation methods such as distance sampling and spatial-

capture recapture cannot be applied. Further adaptations to the

propagation modelling and source-level estimation could make

these methods suitable for broadband calls of baleen whales, like
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humpback whales – similar to the methods proposed by Helble

et al. (2013), and the Monte Carlo simulation method using

odontocete clicks has been applied in several studies (Küsel

et al., 2011; Hildebrand et al., 2015; Frasier et al., 2016).

For ABWs, application of this method across a wider

geographic and temporal span of sites throughout the Southern

Hemisphere would represent a pathway to deliver a cost-effective,

statistically-robust, and intuitively-interpretable, long-term, global

investigation of bioacoustic trends for this critically endangered

subspecies. The method would be cost-effective since there have

already been millions of hours of long-term underwater recordings

that have been collected worldwide over the past two decades, and

this sort of data is continuing to become more affordable to collect

and analyse as technology progresses. The results of this method are

statistically robust, with variability of each component propagated

through to the final estimates of call density. But most importantly,

the method produces results, call densities, that can be directly

compared independent of the recording equipment, site-specific

environmental factors, and detection methods, and that are driven

by biological factors: animal density and behaviour.

As large-scale changes occur in the global ocean, these can have

potential impacts on the distributions and abundance of pelagic

prey and the whales species that feed upon it e.g (Moore, 2008;

Moore and Huntington, 2008). Monitoring baleen whale call

densities across large areas and timescales, including the use of

existing passive acoustic datasets like those collected by the

Southern Ocean Research Partnership (Opzeeland et al., 2013;

Miller et al., 2021c), the Preparatory Commission for the

Comprehensive Nuclear-Test-Ban Treaty Organization, or the

Global Ocean Observing System, can be a valuable source of

information for understanding the dynamics of changing pelagic

ecosystems and is a step forward for global ocean observation.
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