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Sediment bacterial communities are decisive drivers of nutrient cycling

processes in aquaculture ecosystems and are readily affected by surrounding

environmental factors. However, the knowledge of sediment nutrient

accumulations and bacterial community structure is limited in the emerging

polyculture systems. Herein, we investigated the profiles of sediment properties

and bacterial communities in six typical polyculture ponds and primarily explored

the influence of total nitrogen and phosphorus on the bacterial species and

diversity. In almost all sediment samples, Proteobacteria, Chloroflexi, and

Bacteroides were the dominant species at the phylum level, and the five most

abundant bacterial genera were Sulfurovum, Woeseia, Ilumatobacter,

Robiginitalea, and Cyanobium_PCC-6307. A clear different bacterial

community was observed with the most dominant bacterial phylum Firmicutes

and the lowest bacterial diversity in TZ1 pond sediment; meanwhile, the TZ1 pond

also showed the highest TN and TP concentrations. Notably, sediments from

WZ1 and WZ2 ponds in low-latitude regions exhibited higher bacterial richness

and diversity. Based on Pearson’s correlation analysis, bacterial a-diversity
indices showed significant negative correlation with sediment TP content, and

TN content contributed the most to the abundance of sediment dominant

bacterial genus, indicating that the bacterial community is highly associated

with sediment nutrient concentrations. Moreover, co-occurrence network

analysis further revealed some keystone taxa that exhibited high correlations

with other bacterial species, especially the high-abundance genus Robiginitalea

bridging a large number of connections. Compared to traditional mono-

mariculture pattern, our study provided direct evidence of lower nutrient

loadings and different bacterial communities in the polyculture ponds. This

could assist polyculture practitioners in developing effective strategies for

detailed nutritional management.
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1 Introduction

The global aquaculture industry has expanded rapidly in the

past two decades and contributes dramatically to the socioeconomic

development (Kim et al., 2022; Naylor et al., 2021). China as the

world’s largest aquaculture producer reached approximately 62.8

million tons of aquatic products in 2020, accounting for more than

57% of global yield. Because of the ever-increasing demand for

high-quality seafood, intensive and high-density aquaculture has

shown a rapid upward trend in China (Chang Z. Q. et al., 2020).

Correspondingly, it has also led to some inevitable environmental

issues, such as water quality deterioration and eutrophication,

greenhouse gas emission, hazardous chemical residues, and

bacterial antibiotic resistance (Mavraganis et al., 2020; Lin and

Lin, 2022). In particular, excessive emission of aquaculture tailwater

rich in nitrogen (N) and phosphorus (P) severely threatens the

offshore marine ecosystem health (Jing et al., 2023). Meanwhile,

increased breeding density and unscientific strategies could lead to

the deterioration of fishery water, further poisoning aquaculture

animals (Li et al., 2018). Water pollution has been recognized as the

most important factor hindering the sustainable development of

fisheries (Ahmad et al., 2022). Thus, in recent years, an integrated

multi-trophic aquaculture (IMTA) mode named “polyculture” has

been quietly emerging (Fernandez-Gonzalez et al., 2018; Omont

et al., 2020). Aquaculture practice also confirmed that polyculture

can produce higher-quality aquatic products and gain more

considerable economic benefits than conventional mode (Biswas

et al., 2020). Aquaculture organisms for polyculture in coastal areas

of China are usually composed of shrimp (Penaeus vannamei or

Exopalaemon carinicauda), crab (Portunid or Scylla Serrata), and

shellfish (Sinonovacula constricta, clam, or Arca granosa) (Guan

et al., 2020; Zhang et al., 2020), and in most circumstances, shrimp

are the major economic species. The large quantity of high protein

feed input for the diet of shrimp was directly related to pond water

quality. Conversely, crabs and shellfish as benthic organisms

typically play vital roles in ingesting the excessive nutrients and

metabolic waste, thereby improving pond water environment.

Undeniably, polyculture as an eco-friendly aquaculture model has

been widely popularized around the world (Khanjani et al., 2022).

Large amounts of commercial feeds introduced to ponds end up

depositing into the pond sediments (Boyd et al., 2010; Gál et al.,

2016), and thus, pond sediments are regarded as a net reservoir of

nutrients originated from feed remnants, excrement, and dead animal

bodies (Liu et al., 2021; Zhang et al., 2021b). It is well known that

pond sediments are the ideal setting for species-driven nutrient

cycling. In polyculture ponds, benthic organisms (e.g., crab and

shellfish) are the most affected by excessive nutrient accumulation

sediment via directly exposing to sediment and ingesting

contaminated particles (Adámek and Maršálek, 2013). Moreover,

both biological and abiotic matter are frequently exchangeable

between sediment and aquatic habitat and may lead to pollutants

in the sediment migrating and transforming into an aquatic

environment (Murphy et al., 2016; Wu et al., 2019), which could

increase potential disease risks to fish, shrimp, and other aquatic

organisms. Therefore, sediment eco-environmental quality could

greatly represent the health status of the aquaculture pond ecosystem.
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Sediment N and P as essential biogenic elements play important

roles in pond system functions by affecting sediment properties,

organism growth, and microbial activities (Li et al., 2015; Xu et al.,

2022). However, the undesirable and excess N and P stored in pond

sediments can enter the cultural water body through nitrification,

ammonification, dissolution, and mineralization; consequently lead

to water quality deterioration; and could even cause eutrophication,

endangering pond aquaculture organisms (Bouwman et al., 2013;

Kroupová et al., 2018). Microbes are an important component for

driving the biogeochemical cycling of carbon (C), N, and P in

aquaculture ecosystems (Nho et al., 2018; Shen et al., 2020).

Simultaneously, it has been reported that sediment bacterial

communities contribute significantly to regulate sediment quality

and maintain pond ecological functions (Zhang et al., 2021b).

Notably, some pathogenic bacterial species, such as Vibrio

parahaemolyticus, Vibrio alginolyticus, Vibrio splendidus,

Aeromonas hydrophila, and Aeromonas caviae, are frequently

associated with disease outbreak of shrimp, crab, and shellfish

(Hong To et al., 2020; Liao et al., 2022; Zhou et al., 2019).

Bacterial community composition and diversity in pond sediment

are thereby recognized as potential indicators for pond ecosystem

health (Su et al., 2018; Wu et al., 2023).

In the long-running polycu l ture pond, sed iment

physicochemical characteristics and bacterial community

structure are the important factors that assess the impact on the

health and sustainability of pond ecosystems, especially during the

later culture stages (i.e., maturation and harvesting periods) due to

the large amount of nutrient input (Shen et al., 2020). In this study,

we focus on the sediment ecological environment of polyculture

ponds after shrimp growth at a maturation period, and the

objectives are as follows: (1) to analyze the several critical

sediment parameters for six typical polyculture ponds of the

Zhejiang Province, southern China; (2) to investigate their

dissimilarities in bacterial community composition and diversity

from a geographical perspective; and (3) to explore the relationships

between selected nutrient contents and sediment bacterial

communities. The results of this study can provide fundamental

data and a valuable reference for sediment nutrient accumulations

and bacterial response in polyculture patterns, which could help

managers to optimize the stocking densities and improve the

aquaculture yield maximally.
2 Materials and methods

2.1 Sample collection and preparation

In August 2022, a total of 18 sediment samples were obtained

from six shrimp–crab–shellfish polyculture ponds situated in

eastern coastal cities of Zhoushan, Taizhou, and Wenzhou in

Zhejiang province, China (Figure 1). All surface sediments during

the shrimp maturation and harvesting stages were collected with a

metallic core sampler. For each pond, sediment taken from the nine

locations was thoroughly mixed into a composite sample. Each

pond sampling was performed in triplicate. All collected sediments

were placed in sterile plastic bags and transported to the laboratory
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in a cooler within 24 h. Each sample was divided into two parts. One

part for C, N, and P analysis was dried with a vacuum freeze dryer

(FreeZone®, Labconco, USA), passed through a stainless-steel sieve

after impurity removal and ground in a porcelain mortar. The other

part for bacterial 16S rRNA analysis was placed in a 50-mL sterile

centrifuge tube and stored at −80°C after liquid nitrogen freezing.
2.2 Analyses of sediment
physicochemical characteristics

Total nitrogen (TN) was measured by the potassium persulfate

(K2S2O8) oxidation analysis method (Feng et al., 2023). A digestion

module was constructed to handle approximately 0.05 g of sediment

sample, 10 mL of ammonia-free water, and 5 mL of 50 g·L−1 K2S2O8

solution in a 25-mL colorimetric tube. The solution was digested at

121°C for 30 min and then flushed into 1.0 mL of 3.0 mol·L−1 HCl

solution after cooling down the sample. The mixture was diluted to

25 mL with ammonia-free water and was subsequently shaken.

After natural settlement for at least 2 h, the suspension was

extracted to determine TN using an ultraviolet spectrophotometer

(Cary 50, VARIAN, USA).

Likewise, the total phosphorus (TP) content was analyzed by

using the K2S2O8 oxidation method (Feng et al., 2023). A total of

0.05 g of sediment was added to 25 mL of distilled water and 4 mL

of 50 g·L−1 K2S2O8 solution in a 50-mL colorimetric tube. After

high-temperature digestion and natural cooling, the extracting

solution was adjusted to a final volume of 50 mL, mixed well,

and settled. The final concentration of TP in the supernatant

was detected by applying a V-1600PC spectrophotometer

(MAPADA, China).

Total organic carbon (TOC) of the sediments was determined

using the potassium dichromate oxidation–reduction method (Tian

et al., 2020). Briefly, 0.4 g of freeze-dried unground sediment was

reacted with 0.1 g of Ag2SO4 and 10 mL of 0.4 mol·L−1 K2Cr2O7-

H2SO4 standard solution for 5 min in a 175°C oil bath to convert
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TOC into CO2. The cooled reaction mixture was transferred to a

250-mL Erlenmeyer flask and was then diluted to 60–70 mL volume

with distilled water. Phosphoric acid solution (5 mL; H3PO4:H2O =

1:1) was added and 0.2 mol·L−1 FeSO4 solution was used to remove

the remaining K2Cr2O7. When the yellow has faded almost

completely, two to three drops of the N-phenylanthranilic acid

indicator was supplemented and the solution continued to be

titrated with FeSO4 solution until a color change from purple to

green is reached. Finally, the TOC content was calculated according

to the K2Cr2O7 consumption.

The pH of the sediment samples was measured in situ using a

TP310 pH meter (TIMEPOWER, Beijing, China). The

determination of heavy metals (Pb, Cd, Cr, Cu, and Zn) in the

sediments was carried out according to the specification of the

marine monitoring part 5 (GB 17378.5–2007, China). Cu, Zn, and

Cr were detected using the flame atomic absorption spectrometry

(FAAS) after acid digestion, while Pb and Cd were determined by a

graphite furnace atomic absorption spectrometer at their respective

wavelengths. Analysis of the metal Ni in the sediment was

conducted using inductively coupled plasma mass spectrometry

(ICP-MS) according to the standard method described by Zhang

et al. (2021a).
2.3 Bacterial DNA extraction and
PCR amplification

Genomic DNA was extracted from the sediment samples using

HiPure Soil DNA Isolation Kits (Magen, Guangzhou, China)

according to the manufacturer’s guidelines. The specific primer

pairs of 341F (5′-CCTACGGGNGGCWGCAG-3′) and 806R (5′-
GGACTACHVGGGTATCTAAT-3′) were designed to amplify the

V3–V4 hypervariable regions of bacterial 16S rRNA genes.

Polymerase chain reaction (PCR) was conducted as follows: 5

min at 95°C (initial denaturation); 30 cycles of 1 min at 95°C

(denaturation), 1 min at 60°C (annealing), 1 min at 72°C
FIGURE 1

Location of six polyculture ponds distributed across Eastern Zhejiang Province.
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(elongation); and 7 min at 72°C (final extension). The PCR reaction

mixture (50 mL) contained template DNA (50 ng), 5× reaction

buffer (10 mL), 5× high GC enhancer (10 mL), 2.5 mM dNTPs (1.5

mL), 10 mM oligonucleotide primers (each 1.5 mL), and High-

Fidelity DNA polymerase (0.2 mL). PCR products were separated

by 2% agarose gel electrophoresis, purified using the AxyPrep DNA

Gel Extraction Kit (Axygen Biosciences, Union City, CA, USA)

following the manufacturer’s protocol, and further quantified in an

ABI StepOnePlus Real-Time PCR System (Life Technologies, Foster

City, USA).
2.4 Illumina NovaSeq sequencing and
quality control

The paired-end sequencing (PE250) for purified amplicons was

conducted by using the Novaseq 6000 platform (Illumina, San

Diego, CA, USA) by Genedenovo Biotechnology Co. Ltd.

(Guangzhou, China). A strict quality control process was

performed as follows: (i) raw reads with >10% of unknown

nucleotides and ≥50% of bases (Phred quality score ≤ 20) were

quality-filtered; (ii) filtered reads with >10 bp of overlap and <2% of

nucleotide mismatch ratio were merged as raw tags; (iii) low-quality

raw tags were further filtered to obtain clean tags under specific

conditions as described by Bokulich et al. (2013); and (iv) pre-

processed clean reads were clustered into operational taxonomic

units (OTUs) with 97% similarity cutoff, chimeric tags were

removed, and finally effective tags were obtained for further

bioinformatics analysis. An accession number of PRJNA1064545

was acquired after submitting raw data to the National Center for

Biotechnology Information (NCBI) Sequence Read Archive

(SRA) database.
2.5 Bioinformatics and statistical analysis

FASTP software (v.0.18.0) was used to filter the raw sequence

reads (Chen et al., 2018), and paired-end clean reads were merged

by FLASH software (v.1.2.11) (Magoč and Salzberg, 2011). The

UPARSE (v.9.2.64) pipeline was used to define OTUs (Edgar, 2013),

and then chimeric tags were identified and removed using

UCHIME algorithm (Edgar et al . , 2011). The OTUs ’

representative sequences were screened and annotated for

taxonomic information with the SILVA (v.132) and UNITE

(v.8.0) databases using the Ribosomal Database Project (RDP)

tool based on a confidence threshold value of 80% (Wang et al.,

2007). The taxonomic a-diversity (Sobs, Chao1, ACE, Shannon,

Simpson, and PD whole tree) was calculated with the QIIME

(v.1.9.1) (Caporaso et al., 2010) and picante (v.1.8.2) software

(Kembel et al., 2010). Non-metric multidimensional scaling

(NMDS) analysis of the Bray–Curtis distance was used to identify

the differences in the bacterial community structure among all

sediment samples. The ANOSIM test was performed for a better

understanding of statistically different characteristics among

biological samples. The correlations among physicochemical

properties, bacterial communities, and a-diversity were analyzed
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via Pearson’s analysis (SPSS Institute, Chicago, USA). Origin Pro

2018 was used to draw the correlation heatmap and abundance

circle graph. The other figures (bubble plots, NMDS, RDA, and

network diagrams) were conducted with the igraph and ggplot2

packages in R software. For all statistical analyses, p-values lower

than 0.05 were considered statistically significant.
3 Results

3.1 Sediment physicochemical properties

The characteristics of sediments from six polyculture ponds are

summarized in Supplementary Table S1. The concentrations of TN

and TP varied from 513.37 to 676.56 mg N·kg−1 and from 404.64 to

686.45 mg P·kg−1, respectively. Sediment TOC ranged from 3.73 to

6.88 g C·kg−1, wherein the highest TN and TP contents were found

at the TZ1 pond, and WZ2 had the maximum TOC content and the

minimum TP content. The minimum TN and TOC values were

obtained at ZS2. Pearson correlation analysis of all sediment

measured factors was performed, and the results are shown in

Figure 2. TOC exhibited a significant negative correlation with TP

(coefficient = −0.59, p < 0.05) and yet was significantly positively

correlated with TN (coefficient = 0.62, p < 0.05). The pH displayed

significant positive correlations with TN and TOC. Moreover, TP

and TOC significantly negatively correlated with many heavy

metals (Zn, Cr, Cu, and Ni).
3.2 Sedimentary bacterial
community composition

A total of 84,170 OTUs were classified into 67 phyla, 192 classes,

399 orders, 484 families, and 667 different genera in 18 sediment

samples. At the phylum level (Figure 3A), Proteobacteria,

Chloroflexi, and Bacteroidota were the three most dominant

phyla in all samples, accounting for 12.52%–23.79%, 5.68%–

18.93%, and 4.70%–15.72%, respectively. Chloroflexi was the most

abundant phylum in the three polyculture ponds, with proportions

of 18.93% in ZS1, 17.33% in ZS2, and 15.33% in TZ2. However,

Proteobacteria had the largest relative abundance in WZ1 (23.48%)

and WZ2 (23.79%). Notably, the phylum Firmicutes with the

highest relative abundance of 21.38% was identified in TZ1. These

results indicated that much differences of dominant phyla were

found among sediments obtained in different regional

polyculture ponds.

At the genus level (Figure 3B), the relative abundances of the

top five genera were 1.56%–9.48% for Sulfurovum, 1.83%–5.16% for

Woeseia, 0.46%–3.43% for Ilumatobacter, 0.61%–1.79% for

Robiginitalea, and 0.11%–2.01% for Cyanobium_PCC-6307.

Woeseia belonging to phylum Proteobacteria was the most

abundant and largest genus species in ponds WZ1 and WZ2,

displaying consistent community distributions at the phylum

level. In contrast, Sulfurovum affiliated with the phylum

Campilobacterota was the most dominant genus in other

sediments, which showed a slight inconsistency with the
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composition of the dominant bacterial phyla. Additionally, some

composition variation details of bacterial genera among different

sediment samples were also obtained; for example, Robiginitalea

was more abundant in ponds WZ1 and WZ2, while

Cyanobium_PCC-6307 was more prevalent in sites ZS1 and TZ2.
3.3 a- and b-diversity of sediment
bacterial community

To explore the bacterial diversity in the studied polyculture

ponds, six a-diversity metrics (Sobs, Chao1, ACE, Shannon,

Simpson, and PD whole tree) were calculated, and the profile is

shown in Supplementary Table S2. Good’s coverage for all samples

exceeded 98%, suggesting that the 16S sequencing results with

sufficient depth had covered the majority of the bacterial

community. The richness indices, Sobs, Chao1, and ACE, were

3,992–5,237, 4,142–5,360, and 4,244–5,475, respectively. Richness

and evenness indices Shannon and Simpson were 8.755–10.440 and

0.9795–0.9967, respectively. The PD whole tree index representing

for phylogenetic diversity ranged from 657.1 to 864.2. The highest

values of all indices were observed in pond WZ1, followed in site

WZ2, and in contrast, the least diverse bacterial communities were

consistently detected in site TZ1. The results well reflected that

pond sediments from ponds WZ1 and WZ2 located in low-latitude

regions had higher bacterial diversity and richness. In addition,

Pearson correlation analysis (Figure 4A) between physicochemical

factors and bacterial a-diversity metrics demonstrated that diversity

indices significantly negatively correlated with the TP and showed

strong positive relationships with some heavy metal (Cr and Cu)

contents. Meanwhile, several physicochemical properties (i.e., TOC,

Pb, Ni, and Zn) displayed the weak and positive correlations with a-
diversity indices.

The variation in the bacterial community among the different

pond sediments was visualized by NMDS based on a Bray–Curtis
Frontiers in Marine Science 05
distance with the stress of 0.046 (Figure 4B). Bacterial community

compositions were distinctly separated into three clusters, including

cluster I (ZS1, ZS2, and TZ2), cluster II (WZ1 andWZ2) and cluster

III (TZ1). Generally, samples with high similarity among bacterial

communities were clustered together, and apparently, sediment

bacterial community structure in pond TZ1 was significantly

distinct with other sites, which was consistent with the dominant

bacteria distributions. The ANOSIM test further demonstrated the

obvious variance between the sediment groups with r = 0.9078,

p = 0.001 (Figure 4C).
3.4 Relationships between
physicochemical properties and
microbial communities

To reveal the environmental parameters that shape microbial

community structures, four representative factors (pH, TN, TP, and

TOC) and bacterial communities of different pond sediments were

used for the redundancy analysis (RDA) (Figure 5A). The first two

axes (RDA1 and RDA2) explained 61.59% of the total variation,

indicating that the bacterial community structure of different

sampling sites can be clearly separated from each other. Sediment

TP (envfit analysis, r = 0.74, p < 0.005) and TN (envfit analysis, r =

0.53, p < 0.005) were considered to be the principal environmental

factors influencing bacterial communities. TOC was positively

correlated with the bacterial communities in WZ1 and WZ2. TP

had a weak positive correlation with the bacterial community

structure in ZS1, ZS2, and TZ2; however, bacterial communities

from ZS1, ZS2, and TZ2 were strongly negatively correlated with

TN. Regarding bacterial communities in TZ1, they were marginally

influenced by sediment pH.

Heatmap plot was further used to visualize the correlation

between four chemical indices and the top 35 bacterial genera,

which were classified into 11 phyla (Figure 5B). The results
FIGURE 2

Associations among sediment physicochemical properties based on Pearson correlation analysis. The color intensity and elliptic size represent the
correlation coefficients, *p < 0.05.
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indicated that bacterial communities might be most sensitive to the

TN content. Notably, TN strongly positively correlated with the

dominant genus Ilumatobacter, and significantly negatively

correlated with the dominant genera Subgroup_10 and

Candidatus_Thiobios. TP and pH were considered as the other

two important parameters that influence bacterial communities,

because the highly abundant species Cyanobium_PCC-6307,

Ruegeria, and Draconibacterium showed significant correlations

with TP, and pH had a significantly negative correlation with the

dominant genera Subgroup_10 and Candidatus_Thiobios.

Moreover, the significantly negative correlation with the TOC and

the dominant genera Subgroup_10 was also observed in this study.
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3.5 Co−occurrence network analysis

Co-occurrence network was constructed to describe sediment

bacterial interactions and ecological assembly rules. A total of 95

nodes and 265 edges were registered in the network (Figure 5C).

The nodes were divided into 20 phyla, of which 3 dominant phyla

(Proteobacteria, Bacteroidota, and Firmicutes) at all sediment

samples accounted for 21.05%, 14.74%, and 11.58% of all the

nodes, respectively. Keystone taxa were defined as critical

bacterial species with a high degree (>2% of total interactions).

Results of network analysis showed some keystone taxa, including

Silicimonas, RBG-16–49-21, Robiginitalea, Altererythrobacter,
A

B

FIGURE 3

Relative abundance of sediment bacterial communities in six polyculture ponds: (A) circle diagram at the phylum level; (B) bubble plots at the
genus level.
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SC103 , Vallitalea , Blvii28_wastewater-sludge_group , and

Dethiosulfovibrio. There were high correlations between these

keystone bacteria, for example, the correlation between SC103

and RBG-16–49-21 (r = 0.91, p < 0.001), SC103 and

Dethiosulfovibrio (r = 0.94, p < 0.001), and Blvii28_wastewater-

sludge_group and Vallitalea (r = 0.97, p < 0.001). Notably, the genus

Silicimonas (with relative abundances ranging from 0.15% to

0.95%) was the core keystone taxon, bridging the maximum

number of nodes (n = 16) in the network. Robiginitalea (n = 12)

with the ability to reduce N2O to N2 (El Hamouti et al., 2023) had

the highest relative abundance among these keystone taxa

identified, and thus might be considered as a potential indicator

bacterium. However, there were low correlations between keystone

and the top 10 most abundant bacteria, except for Robiginitalea and

Woeseia (r = 0.77, p < 0.001), Silicimonas and Woeseia (r = 0.74,

p < 0.001), and Altererythrobacter andWoeseia (r = 0.72, p < 0.001).

In particular, the bacterial genus Sulfurovum, which is the most

abundant for all sediment samples. was only directly linked to the

other two genera, Desulfobacter and Desulfosarcina.
4 Discussion

The polyculture pond is a complex and interactive ecosystem in

which aquaculture animals, phytoplankton, benthic organisms, and

microorganisms interact with each other to regulate the overall

ecological balance (Dong et al., 2023). The intensive cultivation with

high protein feed input threatens the ecosystem stability, since the

majority of nutrients cannot be assimilated by aquaculture animals

(Avnimelech and Ritvo, 2003; Pouil et al., 2019). As a result, the
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aquaculture pattern leads to heavy nutrient loading and large

amounts of uneaten feeds rich in nitrogen and phosphorus

are deposited on the pond sediment (Chatvijitkul et al., 2017;

Sugiura, 2018), which eventually may cause contamination and

eutrophication of aquaculture environments (Shen et al., 2020). In

the present study, sediment nutrient contents showed significant

differences in six polyculture ponds. The highest concentrations of

TN and TP in TZ1 pond sediment may reflect more nutrient

accumulations, which were largely attributed to aquaculture

practices with the highest rate of commercial feed input (more

than 200 kg per pond per day). Compared with the traditional

shrimp ponds (Hou et al., 2021; Wu et al., 2023), the polyculture

pond has a relatively lower nutrient loading because of a lower

determination content in pond sediments. Not surprisingly, low

nutrient accumulations in sediments from polyculture ponds are

associated with filter-feeding benthic shellfish that can consume

excess nutrients to optimize environmental quality (Waite, et al.,

2014). Our results provided direct evidence that polyculture is an

eco-friendly aquaculture model with a high efficiency of

nutrient utilization.

Microorganisms as primary participants in biogeochemical

cycling of essential nutrients in the aquaculture pond are closely

associated with the stability of the pond ecosystem (Deng et al.,

2020; Dai et al., 2021). As an indispensable part of the pond

ecosystem, sediment bacterial communities have proved to be

important indicators of the health status of the aquaculture

ecosystem (Nho et al., 2018; Zhang et al., 2021b). Many previous

studies have indicated that bacterial phyla Proteobacteria,

Chloroflexi, and Bacteroidota were the most common and most

abundant species in the aquaculture sediments (Shen et al., 2020;
A B

C

FIGURE 4

Analyses of bacterial a- and b-diversity in the different sediment samples. (A) The correlation heatmap illustrates the relationship between
physicochemical variables and bacterial a-diversity metrics. *p < 0.05, **p < 0.01. (B) NMDS analyses of bacterial communities based on a Bray–
Curtis distance algorithm at OTU levels. (C) ANOSIM test reveals clear differences between the different groups.
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Wu et al., 2023; Xu et al., 2022), and the dominant phyla for

polyculture pond sediments are also the case in this study. Although

the majority of abundant bacterial phyla were highly similar in six

pond sediments, small differences were also observed. For instance,

Firmicutes, which often plays an important role for organic

decomposition and fermentation (Chen et al., 2016), was

determined as the most predominant phylum in TZ1 pond

sediment. It could be attributed to the higher nutrient content

that was significantly distinct from other ponds. Sulfurovum and

Woeseia were the two most abundant bacterial genera in six

polyculture sediments, which displayed great differences in

bacterial community structure with the traditional mono-

mariculture pattern (Hou et al., 2021). Most of two genera are

chemoautotrophic bacteria (Wang et al., 2023). Members of

Sulfurovum can oxidize–reduce sulfur compounds to gain energy

(Inagaki et al., 2003; Sun et al., 2020), and the genus Woeseia is
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widely involved in dissimilatory sulfur oxidation and denitrification

(Du et al., 2016; Mußmann et al., 2017). Therefore, the results

implied that the polyculture ponds possessed a high degree of S and

N metabolic functional potential.

The bacterial diversity and community composition in

aquaculture sediments are an essential basis for sediment nutrient

decomposition and utilization, which are extremely susceptible to

variations of sediment nutrient levels (Moncada et al., 2019;

Santander-de Leon et al., 2017; Wang et al., 2021). Several factors

such as feed, antibiotics, cultivated species, and density in

aquaculture practices have be confirmed to affect sediment

microbial communities by altering sediment properties (Liu et al.,

2020). The results of the correlation analysis revealed that bacterial

a-diversity was negatively correlated with sediment TP content, in

accordance with the observations of Ling et al. (2017) that N and P

input could result in the decline in richness and diversity. Evidently,
B C

A

FIGURE 5

Correlation analysis and co-occurrence network tests. (A) Redundancy analysis (RDA) showing the contribution of sediment environmental factors to
bacterial community structure. (B) Pearson correlation heatmap illustrating the relationship between the top 35 bacterial genera and environmental
factors. *p < 0.05, **p < 0.01. (C) Co-occurrence networks identifying the bacterial interactions. A connection was based on the criteria with a
strong (Pearson’s coefficient r > 0.7) and significant (p < 0.05) correlation; the size of the node represents the abundances of each bacterial genus,
and nodes of the same color indicate the members from the same bacterial phylum; yellow and green lines represent positive and negative
correlations, respectively.
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sediments in TZ1 showed the maximum nutrient content and

minimum bacterial diversity, which was also supported by the

previous report (Lin and Lin, 2022) that microbial community

richness and diversity in coastal wetland sediment were significantly

lost with the increasing bait input via enhancing a series of sediment

properties (including sediment TN, sulfide, and TOC). Hence, TZ1

aquaculture practitioners should pay more attention to nutrition

supply management because the loss of bacterial diversity poses a

great threat to the health of aquaculture and adjacent ecosystems.

Different sediment chemical properties also cause remarkable

differences in the bacterial community assembly. The present

study indicated that the top 35 genera in pond sediments were

mainly affected by sediment TN content, followed by TP. TN and

TP in other sediment environments had frequently exhibited close

relationships with the dominant bacterial taxa. For example, Chang

W. et al. (2020) found that the most abundant bacterial genus in the

lake sediments was positively associated with TN and TP. Xie et al.

(2016) reported that the “core” bacterial communities in the river

sediments showed a negative correlation with the amount of TN

and TP. Herein, increasing concerns regarding nitrogen and

phosphorus input and output in this polyculture ecosystem need

to be addressed, which will be conducive to guide aquaculture

practices through scientific management including nutrient load

regulation, antibiotic drug usage, and water management.

Nitrogen metabolism is a key process in intensive polyculture

ecosystems, and sediment functional microbes involved in N fixation,

assimilation, and mineralization are directly related to N cycling
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functional potential (Deng et al., 2020). A previous study (Zhang

et al., 2023) has shown that intensive mariculture activities can lead to

seasonal deoxygenation, which exerts a profound impact on sediment

functional microbial communities involved in nitrate reduction

processes. Our study also revealed that the TN content was largely

associated with sediment bacterial diversity and many predominant

bacterial taxa, including Ilumatobacter and Subgroup_10, which are

part of the top 10 genera. Here, we further investigated the common

nitrification and denitrification functional microbes that drive

ultimate nitrogen removal. The results indicated that 12 main

bacteria and archaea were found to be active in nitrification and

denitrification processes (Figure 6). Nitrospina and Nitrospira as

nitrite-oxidizing bacteria (NO2
−→NO3

−) were present in high

abundance. The low-abundance bacteria Nitrosomonas and

Nitrosospire that can oxidize ammonia (NH4
+) to nitrite (NO2

−)

are evenly distributed across all the polyculture ponds. Notably, the

archaea Candidatus_Nitrosopumilus was the statistically

predominant ammonia-oxidizing microorganisms in pond WZ1,

implying a higher ammonia-oxidizing potential for AOB than

AOA in this pond system, and the similar findings were also

supported by other researchers (Lu et al., 2015; Deng et al., 2020).

Additionally, the majority of sediment-denitrification bacteria were

affiliated with the phylum Proteobacteria, which is consistent with

previous results (Ji et al., 2015). Pseudomonas and Bacillus, both

highly abundant, were considered as the dominant bacterial genera

driving denitrification in polyculture pond sediments. However, there

are potential limitations in our present research to elucidate the
FIGURE 6

Relative abundances of nitrification and denitrification bacteria and archaea in six polyculture ponds. Circles of the same color indicate the members
from the same bacterial phylum.
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feedback mechanisms of bacteria to detailed nutrient changes in pond

sediments. Further studies will attempt to conduct comprehensive

investigations of microorganisms and functional genes associated

with the cycling of C, N, and P for the polyculture pond.
5 Conclusion

The present study proposed a new framework that describes

sediment bacterial community responses to the different nutrient

concentrations in shrimp, crabs, and the shellfish polyculture system.

Our results indicate that the concentrations of C, N, and P nutrients

in the polyculture pond sediments are significantly lower than those

in traditional ponds, which may be largely attributed to the sensible

nutrient utilization by multi-trophic cultured species. Immoderate

nutrient availability from aquaculture practices might result in

excessive nutrient accumulation in pond sediments and decreased

bacterial richness and diversity, just as this study revealed in the TZ1

pond sediment. The principal contribution to differences in sediment

bacterial diversity may derive from TP content, which exhibited a

significant negative relationship between them. However, TN is the

decisive factor affecting the abundance of sediment bacterial

communities. Many nitrification and denitrification functional

microbes with high abundance in sediment, such as Nitrospina,

Nitrospira, Pseudomonas, and Bacillus, play major roles in N

removal processes in the polyculture ecosystem. Overall, our

findings provide a deep understanding on sediment microbial

ecology and facilitate nutrient management for a healthy polyculture.
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