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Marine coastal habitats are often characterized by strong gradients of

anthropogenic disturbance such as pollution, typically most severe at urban

waterfronts. These variations create stress for local organisms leading to their

distribution along the disturbance as a function of their tolerance. non-

indigenous species (NIS) are considered more tolerant to anthropogenic

disturbances than their native counterparts, thriving in urban areas, where

native species are sparser. It is however not yet entirely clear if these

distribution patterns are due to larval behavior and preferential settlement or

post-settlement processes. In the present study, we investigated the abundance

of adults and settlers of two native (Ostrea edulis, Mytilus galloprovincialis) and

two non-indigenous (Magallana gigas, Xenostrobus securis) bivalves along a

strong marine urban environmental gradient. Oysters had sparse abundances of

both adults and settlers at all sites, with no obvious distributional gradients. The

two mussel species showed different settler-adult distributions along the

gradient. Both settlers and adults of the native mussel M. galloprovincialis

strongly decreased moving from the outermost periurban site to the innermost

urban site, consistent with preferential settlement of larvae according to

environmental conditions. The non-indigenous adult mussel X. securis showed

a distribution pattern opposite to that ofM. galloprovincialis, markedly increasing

in abundance from the outermost to the innermost site. This was not paralleled

by the distribution of X. securis settlers, which established over a larger area,

including sites where adults were essentially absent. The mismatch between

settler and adult distributions for X. securis suggests that post-settlement factors

dictate spatial adult distribution.
KEYWORDS

marine urbanization, propagule pressure, invasive species, post-settlement,
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1 Introduction

Coastal urbanization is on the rise, with urban and periurban

marine areas currently making up more than 1.5% of the global

exclusive economic zones (Airoldi et al., 2021; Bugnot et al., 2021).

Urbanization results in the permanent modification of abiotic and

biotic conditions around artificial structures (Dafforn et al., 2015;

Bugnot et al., 2021), often generating a variety of disturbance

sources (Todd et al., 2019). Marine urban areas and other

anthropic (i.e. manmade) habitats are in fact typically

characterized by high levels of chemical pollution (Lam and

Todd, 2013; Gauff et al., 2022), physical disturbance (Atalah et al.,

2007), sediment load and turbidity (Airoldi, 2003), and increased

temperature variability (Menniti et al., 2020) compared to non-

urban areas. This set of specific conditions largely influences the

distribution and functionality of organisms in these habitats.

The fouling communities colonizing the most urbanized

artificial habitats differ from those of less impacted natural

habitats, being characterized by distinct faunal and floral

communities, lower species and genetic diversity (Fauvelot et al.,

2009; Megina et al., 2016), altered ecological interactions (Klein

et al., 2011) and functions (Dafforn et al., 2015) and a notorious

prevalence of non-indigenous species (NIS) over native species

(Mineur et al., 2012; Rondeau et al., 2022). NIS thrive in marine

urban habitats due to their often-higher performance in stressful

environments compared to native species (McMahon, 2002; Lenz

et al., 2011). The underlying drivers of native and NIS distributions

are, however, not yet fully understood (Airoldi et al., 2015; Gauff

et al., 2022; Rondeau et al., 2022). Identifying the ecological forces

and processes shaping marine biodiversity along gradients of

urbanization is considered a priority for a better planning, design,

and management of the most urbanized marine spaces, such as

ports and city waterfronts (Airoldi et al., 2021), especially since NIS

are considered a critical biosecurity issue (Pysěk et al., 2020),

causing loss of biodiversity and ecosystem services (Walsh et al.,

2016), species extinctions (Blackburn et al., 2019), and significant

economic loss (Diagne et al., 2021).

Disturbance in marine urban spaces could be attenuated at the

most flushed areas, where the hydrodynamic conditions create

dilution effects (Schiff et al., 2007; Menniti et al., 2020). Flush

attenuation induces disturbance gradients potentially affecting NIS

prevalence (Floerl and Inglis, 2003; Gauff et al., 2022; Rondeau et al.,

2022) and propagule pressure, which tends to be correlated to

greater settlement and invasion success (Simberloff, 2009). Many

marine taxa show active larval behaviors ranging from substrate

preferences (Pinochet et al., 2020) to actively seeking out biofilm

and/or conspecifics (Scheltema et al., 1981; Von Der Meden et al.,

2010), which could vastly impact recruitment patterns. However,

whether the distribution of NIS and native species along urban

gradients is related to factors affecting the settlement or subsequent

recruitment of propagules is not clear yet.

We took advantage of the urban gradients along the channel

harbor of Ravenna, North Adriatic, Italy to explore whether the

distribution of target adult NIS and native species colonizing

artificial structures is related or not to settlement patterns
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(Walters, 1992). We quantified how the gradient of urbanization

affected a range of relevant environmental parameters, and then

compared the distributions of adult and settlers of two native and

two functionally similar NIS of the same family of bivalves along

that environmental gradient. Based on previous knowledge (see

above), we expected higher abundances of the native species at the

most flushed periurban entrance of the harbor canal and higher

abundance of the two NIS at the most confined inner waterfront.

We hypothesized that these gradients in adult distribution would be

paralleled by settler abundances as environmental constraints

should lead to preferential settlement in suitable habitat.

Alternatively, a larger settlement potential compared to the final

adult distribution would suggest that other post-settlement factors

such as predation or competition (often overlooked in marine

urban areas) could better explain the NIS adult distribution.
2 Materials and methods

2.1 Sampling site

The Ravenna harbor (Figure 1) is one of the largest industrial and

commercial ports in Italy (Airoldi et al., 2016). It is an 11 km long

channel going from the highly urbanized Ravenna city center,

through a large industrial complex to the Adriatic Sea, where urban

influence is diluted by high water circulation. Its entrance is protected

by 2 large 2.4 km long converging jetties. The connection with the

lagoon increases the tidal water flow, reducing the risk of siltation at

the harbor entrance. We selected five study sites (Figure 1) along the

inner-outer gradient representative of the different levels of

urbanization and anthropogenic pressures, as well as different levels

of confinement: the innermost, most confined, fully urban site (S1);

three intermediate sites with decreasing intensity of urbanization and

increased flushing (S2, S3, S4); and the outermost, more flushed,

periurban site S5, which is on a long breakwater leading out to the sea

and thus more distant from the urban center and its disturbances (for

a definition of urban and periurban, see Airoldi et al., 2021). Due to

access prohibition at the industrial harbor S3 and S4 are more

distantly spaced than other sites.
2.2 Study species

We focused on four bivalve species with similar ecological

niches and functions (mussels and oysters) occurring on the

harbor seawalls, two of which were native and two of which were

non-indigenous species (NIS). We expected the NIS to favor the

innermost parts of the canal as seemingly specifically adapted to and

dominant in urban habitats (Gauff et al., 2022; Rondeau et al.,

2022). Mytilus galloprovincialis Lamarck, 1819 is a Mediterranean

native species (Montes et al., 2021). Its non-indigenous counterpart

Xenostrobus securis (Lamarck, 1819), is an Australian mussel

species that was introduced in the north-western Adriatic Sea in

1994 (Garci et al., 2007). The native oyster Ostrea edulis Linnaeus,

1758 is a pan-European oyster species that was originally abundant
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from the low intertidal into water depths of about 80 m, but it was

replaced by the Pacific oyster Magallana gigas (Thunberg, 1793)

introduced for aquaculture purposes. At the end of the dispersal

phase, all four species colonize intertidal and shallow subtidal

habitats, including artificial ones (Bataller et al., 1999; Gomes

et al., 2016; Stagličić et al., 2020; Montes et al., 2021).
2.3 Sampling design and treatment

At each study site, environmental conditions were monitored

through time, mussel and oyster adults were sampled once, and

their settlement was followed through the entire study.

Environmental conditions were monitored at each site from

March to July 2017 on a two-week basis, for a total of eight times

(T0 – T7). Seawater pH, temperature, salinity, chlorophyl-a,

dissolved oxygen, and turbidity were measured using a

multiparametric probe (Hanna Instruments Hi 9828), and water

samples were collected for subsequent analysis of ammonia, nitrate,

nitrite, and phosphate in the laboratory. Six replicates of all

variables were collected, except for T0, where only one replicate

was taken at each site.

At T0 only, six replicated 20 × 20 cm samples were randomly

scraped at each site to quantify the abundances of the four target

species. Due to diving permitting constraints, sampling was

conducted from a small boat, selecting days with low tidal

conditions (average tidal amplitude is ~ 80 cm), to reach and

sample the low intertidal seawall habitats (~0.1-0.3 m above

Mean Low Waterlevel). Each sample was preserved in plastic bags

and rapidly processed in the laboratory. Abundance was defined as
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the number of live specimens belonging to one of the four target

species, identified under a steromicroscope (Garci et al., 2007).

The scraped surfaces at each site were used to deploy six

replicated Artificial Substrate Units (ASU), consisting of

polypropylene kitchen scouring pads serving as bivalve spat-

collectors (see Porri et al., 2006). Each ASU was retrieved and

replaced every 2 weeks from March (T1) to July (T7), for a total of

n = 210 samples (6 replicates per 5 sites per 7 times). Upon retrieval,

each ASU was placed into a sterile plastic bag and processed in the

laboratory following the protocol described by Porri et al. (2006).

Bivalve settlers (~ 360 μm; Porri et al., 2006) were sorted out and

counted under a stereomicroscope (Nikon SMZ 15000), and further

identified and quantified by molecular approaches. On replicates

containing 1 to 4 settlers, individuals were barcoded for species

identification, while on replicates with more than 4 settlers, we used

a metabarcoding approach. In both cases, the cytochrome oxidase

subunit I (COI) gene was targeted, and the number of reads was

considered as proxy for settler abundance. The detailed protocol for

molecular analyses is described in the Supplementary Material.
2.4 Statistical analysis

All statistical analyses were carried out in ‘R’ (R Core Team,

2020) and figures obtained via ‘ggplot2’ (Wickham, 2016). All

logistic regressions were applied and interpreted according to Fox

and Weisberg (2018).

Each environmental variable was plotted for each site and time

(See Supplementary Material, Supplementary Figures 1–10A). To

investigate potential environmental gradients across sites,
FIGURE 1

Map of Ravenna harbor, Italy. The five study sites S1 - S5 are indicated. Land use map source: 2017 land use of Emilia-Romagna Region; Corine Land
Cover classification; coordinate system: WGS84. Geoportal of Emilia Romagna Region; Mediterranean vector map modified from Wikimedia
Commons Mediterranean_map.svg.
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the environmental variables were further scaled and analyzed for

each time using Principal Component Analysis (PCA) via the

‘vegan’ package (Oksanen et al., 2018; Supplementary Figure 11).

Some PCAs required flipping to align the site distribution among

different time steps. The centroid PC1 value was then extracted for

each site at each time, and the overall gradient was represented

through this PC1 value as a function of the site. Further details can

be found in the Supplementary Material. Subsequently, a logistic

regression was employed to test for the effect of site (ordered

discrete factor) on the PC1 value.

The abundances (number of adult individuals) of M.

galloprovincialis (Native), X. securis (NIS), O. edulis (Native), and

M. gigas (NIS) per sample were box-plotted for each site at T0, and

logistic regressions (with site as ordered discrete factor) were used

to identify their distributions among sites. If the overall model for

any species was significant, the fitted model with all terms of the

logistic regression (i.e., linear L, quadratic Q, cubic C, 4th degree)

was superimposed onto the box plot distribution of the species.

Similarly, the numbers of newly settled larvae were plotted and

analyzed as for the adults. As virtually no oyster settlers were found

(see Results), these analyses were run only for mussel settlers. Since

settlers were sampled seven times, we used a logistic linear mixed-

effects model (LMM) via REML from the ‘lme4’ package (Bates

et al., 2015) to account for time as random factor.
3 Results

Environmental factors varied across sites and times

(Supplementary Figures 1–11). In general, the urban innermost

site S1 was characterized by the highest temperature (1 to 3 degrees

higher compared to the most external site S5, depending on the time

of the year), salinity, and turbidity, which decreased moving

towards the outermost periurban site, while nutrient levels tended

to peak at the most industrial sites S3 and S4. When all the

environmental data were combined, the PCAs for each time

showed that overall, a temporally stable environmental gradient

structure was present, with a high differentiation across sites from

S1 to S5 (Supplementary Figure 11). The PC1, based on the 10

environmental variables, explained between 31.2% and 50.2% of the

data distribution, and the boxplot of the PC1 centroid value showed

an ordered structure of the sites (Figure 2). The logistic regression,

testing for the effect of site on the PC1 centroid value, revealed a

significant linear decrease (L: t-val. = -9.06; Pr (> |t|) < 0.001;

Figure 2) with deceleration moving towards the outermost site (Q:

t-val. = 2.714; Pr (> |t|) = 0.01; Figure 2). The overall model

significance was high (Adj. R² = 0.7; F-value = 23.4; 35 DF;

p < 0.001).

Oysters were sparse at all study sites, with O. edulis virtually

absent in most samples, andM. gigas sparsely occurring at only few

plots at sites S2, S3, and S4 (Supplementary Figure 12). Like adult

abundances, oyster settler abundances were unexpectedly low/

absent based on molecular data. During the 7 sampling times, a

total of only two settlers ofM. gigas and no settlers of O. edulis were
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found on the ASUs, which prevented further analyses for

these species.

The adults of the two mussel species (M. galloprovincialis and X.

securis) significantly varied across sites, showing opposite patterns

along the gradient (Adj. R² > 0.66; F-value > 15.27; 25 DF; p < 0.001;

Figures 3A, B; Table 1). A significant increase of the native M.

galloprovincialis was observed moving from the innermost

waterfront to the outermost periurban areas (L: t-val. = 9.5; Pr (>

|t|) < 0.001; Figure 3A; Table 1) accelerating (Q: t-val. = 6.47; Pr (> |

t|) < 0.001; Figure 3A; Table 1) towards the outermost periurban

site. In this model, the cubic term was significant (C: t-val. = 3.26; Pr

(> |t|) = 0.003; Figure 3; Table 1) indicating the presence of a

threshold at which the acceleration starts centered between S3 and

S4. For the non-indigenous X. securis, the distribution of adults was

opposite to that of M. galloprovincialis, with a significant linear

decrease from the innermost waterfront to the outermost periurban

areas (L: t-val. = -7.2; Pr (> |t|) < 0.001; Figure 3B; Table 1).

The distribution of M. galloprovincialis settlers over 7 sampling

times paralleled the adult distribution, while there was a notable

mismatch between adult and settler abundance for X. securis. Like

for adults, M. galloprovincialis settlers had an increasing (L: t-val. =

4.78; Pr (> |t|) < 0.001; Figure 3C; Table 1) and accelerating (Q: t-

val. = 2.99; Pr (> |t|) = 0.003; Figure 3C; Table 1) abundance towards

the outermost periurban site. For X. securis, on the other hand, only

the quadratic polynomial had significant effect (Q: t-val. = -2.83; Pr

(> |t|) = 0.005; Figure 3D; Table 1) reflecting maximum abundances

in the middle portion of the gradient and very low abundances at

the periurban site. This notably deviates from the adult abundances,
FIGURE 2

Boxplot of the PC1 centroid values (proxy of a comprehensive
environmental gradient derived from 10 different parameters when
projected into a PCA for each sampling time; see Supplementary
Figure 11 for more detail) at each of 5 sites (S1 innermost urban to
S5 outermost periurban). The logistic regression estimate
(Supplementary Table 1A) is superimposed (Adj. R² = 0.7; p < 0.001).
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which were highest in the two innermost sites. This mismatch is

especially striking for the innermost waterfront site, which had the

highest adult abundances, but second lowest settler abundances

(after the periurban site).
4 Discussion

In the present study, we investigated whether a gradient of

increasing urbanization structured the distribution and abundances

of adult populations of four target bivalves and their settlers. The

periurban-urban gradient observed at the harbor of Ravenna was

reflected in a temporally stable, significant gradient in relevant

environmental parameters, including temperature, salinity,

turbidity, and nutrient concentration, with consistent

dissimilarities among the outermost and inner sites (Figure 2).

This occurred despite strong temporal fluctuations in the individual

parameters (Supplementary Figures 1–10). Only two of the four

tested adult bivalve species were significantly influenced by this

gradient, however, the distribution profiles align with our

hypothesis: the NIS was more abundant in the inner parts of the

canal, while the native species dominated the entrance. For settlers,

only one species (M. galloprovincialis) exhibited a distribution
Frontiers in Marine Science 05
profile that overlapped with adult distribution, indicating

preferential settlement in habitats suitable for recruitment.

Xenostrobus securis displayed a notable mismatch between adult

and settler abundances, potentially linked to more indiscriminate

recruitment owing to its resistance to disturbance.

Environmental conditions in the canal changed between March

and July, as expected for both natural and urban areas (Lacroix et al.,

2017). However, in accordance with hypotheses focusing on the

importance of hydrodynamics and water exchange with the open sea

(Floerl and Inglis, 2003; Schiff et al., 2007; Menniti et al., 2020), we

observed a gradient structure in environmental conditions. This

gradient was found to be temporally stable for individual

parameters such as temperature (T S1 > T S5; Supplementary

Figure 1), but also for the multivariate distribution of combined

environmental conditions, with consistently high dissimilarity

between S1 and S5 on the PC1 axis (Figure 2; Supplementary

Figure 11). This gradient structure was however not entirely linear,

as a slight deceleration trend for differences between sites was

observed between the middle and the outermost site (Figure 2;

Table 1), indicating that environmental conditions exhibit steeper

spatial variations at the innermost part of the canal.

In Ravenna harbor, oysters showed surprisingly low abundance

compared to similar marine urban areas in the northern Adriatic
A B

C D

FIGURE 3

Boxplots of the abundances (number of individuals per sample) of (A) adults of Mytilus galloprovincialis (Native), (B) adults of Xenostrobus securis
(NIS), (C) settlers of Mytilus galloprovincialis (Native), and (D) settlers of Xenostrobus securis (NIS) at each site. The settler abundances are an average
over 7 sampling times, from March to July 2017. Logistic regression estimates (see Table 1) are superimposed when a model was significant.
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(see photographic comparison with an urban substrate from the

Venice Lagoon: Supplementary Figure 12). In total, only 35 live

adult oysters were sampled, with the majority (27) being M. gigas.

Oyster settlers were virtually absent during the study, despite the

study period coinciding with their spawning period (Bataller et al.,

1999; Massapina et al., 1999). Both oyster species have been

documented in estuaries, harbors, and marinas (Stagličić et al.,

2020), including in the study area and nearby lagoons (Airoldi et al.,
Frontiers in Marine Science 06
2016), and should be able to resist the environmental conditions in

the area. Transient disturbances could have nevertheless led to mass

mortality of oysters, possibly replaced by faster-growing mussels, X.

securis, in the innermost sites, and M. galloprovincialis in the

outermost sites respectively.

Expectedly, adult distributions reflected their status (NIS vs

Native), with M. galloprovincialis (Native) increasing towards the

periurban part of the canal (S5), and X. securis (NIS) decreasing.
TABLE 1 Summary of the logistic regressions and the linear mixed effect models testing for the effect of site (ordered discrete factors) on different
response variables of interest.
For Mytilus galloprovincialis settlers and Xenostrobus securis settlers, time was computed as a random factor to account for different sampling dates.
Significant p-values in bold.
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This dichotomous distribution aligns with observations made by

Montes et al. (2021) in a Spanish harbor, where a combined effect of

spatially organized features (i.e., environmental gradients) and

seasonal dispersal barriers were hypothesized as underlying

drivers. In our study, for M. galloprovincialis, a linear trend was

accompanied by an acceleration setting at a threshold (Quadratic

term; Table 1), centered between S3 and S4. Between S3 and the

canal’s entrance, the abundance of adults increased at a high rate.

The distribution pattern of its settlers closely mirrored this trend.

Given that the length of the canal falls well within the typical

dispersal distance of M. galloprovincialis (Gomes et al., 2016), this

may indicate a preferential settlement as it tightly matched the adult

distribution. Mytilus galloprovincialis adults and larvae are known

to be controlled by their tolerance to environmental parameters,

including temperature, salinity (Olabarria et al., 2016; Vasquez

et al., 2022), and some sources of pollution (Serrano et al., 1995;

Boukadida et al., 2016). Environmental conditions between S1 and

S3 may not be favorable toM. galloprovincialis and may constitute a

limiting factor for their settlement and survival. The distribution

profile of M. galloprovincialis adults and settlers was similar to the

PC1 value profile used as a proxy to outline the environmental

gradient, with S4 and S5 markedly different from S3, S2 and S1

(Table 1; Figure 1). It is likely that M. galloprovincialis distribution

was mostly influenced by its inability to thrive in the environmental

conditions of inner urban areas and its preference for more suitable

environments for settlement.

Decreasing from the innermost waterfront to the periurban site,

the abundance of X. securis adults was consistently high at the two

innermost sites, while it was almost absent at the outermost ones

(Figure 2; Table 1). Unlike M. galloprovincialis, where the

distribution of settlers closely mirrored that of the adults, X.

securis displayed a significant discrepancy between the abundance

of settlers and adults. Settlers of X. securis were consistently spread

out in the canal, with the highest abundance found in the middle

areas, where adult populations were already decreasing. The

mismatch between adult and settler abundances could indicate

that for this species, post-settlement processes could drive the

adult population distribution patterns as settlers colonize a

broader range than that to what the adult population was limited.

One such post-settlement process could be predation from boring

snails, crabs, and fish, which depending on the environmental

conditions and characteristics of the mussel aggregates, can

reduce X. securis survival (Gestoso et al., 2014), and consequently

adult populations. Another post-settlement process affecting X.

securis distribution could be competition with the native species

M. galloprovincialis at the outermost part of the canal. Despite in

aquaria experiments revealing a high resistance to a wide range of

temperatures, pH, and salinities (Garci et al., 2007; Gestoso et al.,

2016; Olabarria et al., 2016) in situ, X. securis seems restricted to the

upper estuarine sites with low salinities (Garci et al., 2007; Montes

et al., 2021). The general high resistance of NIS to multiple and

variable environmental stressors (Lenz et al., 2011), which also

applies to X. securis (Gestoso et al., 2016; Olabarria et al., 2016;

Astudillo et al., 2017) could explain its high abundance at the inner

canal sites. However, stress resistances come with costly metabolic
Frontiers in Marine Science 07
trade-offs (Pook et al., 2009; Gauff et al., 2022). This metabolic

challenge could lead to decreased competitivity in environments

with lower disturbance and may explain why numerous NIS thrive

in high disturbance habitats like anthropic habitats or estuaries but

are far less common in nearby natural sites (Airoldi et al., 2015;

Gauff, 2021). Other species could also compete with X. securis, but

keystone bivalves were selected for this study because they are the

most abundant species in the study area, thus it seems unlikely that

other species compete too strongly with X. securis.

Overall, our data support the hypothesis that NIS are more

prevalent in disturbed habitats (Piola and Johnston, 2008; Megina

et al., 2016; Rondeau et al., 2022), potentially due to unfavorable

post-settlement competitive matchups against similar native species

in less disturbed environments (Montes et al., 2021; Gauff et al.,

2022), and/or due to specialization into resistant life strategy traits

implying certain metabolic trade-offs (Gauff, 2021; Gauff et al.,

2022). Future work on larval stages and settlers of a greater range of

species is worth pursuing to test the generality of this hypothesis

and to identify the underlying drivers, by disentangling biotic

interactions from abiotic parameters like temperature, salinity,

and chlorophyl-a, which considerably varied in our experiment

and could have impacted both species (Gestoso et al., 2014;

Olabarria et al., 2016; Montes et al., 2021). This should include

tests on competition between native and NIS with similar niches, as

well as other post-settlement processes like predation or seasonal

post-settlement mortality (Montes et al., 2021), which could also

lead to the discrepancies observed here.
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Pysěk, P., Hulme, P. E., Simberloff, D., Bacher, S., Blackburn, T. M., Carlton, J. T.,
et al. (2020). Scientists ‘ warning on invasive alien species. Biol. Rev. 95(6), 1151–1534.
doi: 10.1111/brv.12627

R Core Team (2020). R: A language and environment for statistical computing.

Rondeau, S., Davoult, D., Lejeusne, C., Kenworthy, J. J. M., Bohner, O., Loisel, S.,
et al. (2022). Persistent dominance of non-indigenous species in the inner part of a
marina highlighted by multi-year photographic monitoring. Mar. Ecol. Prog. Ser. 690,
15–30. doi: 10.3354/meps14052

Scheltema, R. S., Williams, I. P., Shaw, M. A., and Loudon, C. (1981). Gregarious
settlement by the larvae of hydroides dianthus (Polychaeta: serpulidae). Mar. Ecol.
Prog. Ser. 5, 69–74. doi: 10.3354/meps005069

Schiff, K., Brown, J., Diehl, D., and Greenstein, D. (2007). Extent and magnitude of
copper contamination in marinas of the San Diego region, California, USA.Mar. pollut.
Bull. 54, 322–328. doi: 10.1016/j.marpolbul.2006.10.013

Serrano, R., Hernández, F., Peña, J. B., Dosda, V., and Canales, J. (1995). Toxicity and
bioconcentration of selected organophosphorus pesticides in Mytilus galloprovincialis
and Venus gallina. Arch. Environ. Contam Toxicol. 29, 284–290. doi: 10.1007/
BF00212491

Simberloff, D. (2009). The role of propagule pressure in biological invasions. Annu.
Rev. Ecol. Evol. Syst. 40, 81–102. doi: 10.1146/annurev.ecolsys.110308.120304
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