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Droughts and deluges: changes
in river discharge and the
carbonate chemistry of an
urbanized temperate estuary
Lauren J. Barrett*, Penny Vlahos*, Mary A. McGuinness,
Michael M. Whitney and Jamie M.P. Vaudrey

Department of Marine Sciences, University of Connecticut, Groton, CT, United States
Long Island Sound (LIS) is a highly urbanized estuary that receives high inputs of

nitrogen pollution leading to summertime hypoxia in the bottom waters of its

western region. Though LIS hypoxia has been well-studied for decades, there is a

paucity of information regarding eutrophication-induced acidification due to the

challenges of obtaining high-precision observations of the marine carbonate

system. In this work, we established a time-series of carbon dioxide (CO2) system

observations in LIS through measurements of dissolved inorganic carbon (DIC)

and total alkalinity (TA) during thirteen sampling events between March 2020 and

August 2022. This time span captured both seasonal and interannual variation,

including the contrast between two historic drought years (2020 and 2022) and

one high-freshwater flow year with significant tropical storm activity (2021).

Observations revealed reduced acidification in western LIS (WLIS) (minimum

aragonite saturation state, War > 1.5) during the high-river discharge summer of

2021, corresponding to a decrease in the DIC/TA ratio of the Housatonic River.

By contrast, LIS bottom water DIC and DIC/TA were higher during the drought

summers of 2020 and 2022 (bottom DIC/TA = 0.9-1.0 and 0.85-0.9 in 2020 and

2021, respectively), leading to more acidified conditions and persistent aragonite

undersaturation (minimum War <1.0 and 1.1 in 2020 and 2022, respectively).

Increased river discharge mitigated respiration-induced acidification in WLIS,

likely due to a combination of decreased estuarine residence time and reduced

riverine DIC/TA. These results motivate future studies of the carbonate chemistry

of LIS and its freshwater endmembers in relation to hypoxia dynamics, with

consideration of climate related shifts in physical and biological dynamics of the

estuary with time.
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1 Introduction

The global ocean has absorbed ~25% of anthropogenic carbon

dioxide (CO2) emissions over the past ~200 years (Friedlingstein

et al., 2022), leading to a long-term decrease in marine pH, or

“ocean acidification” (Doney et al., 2009). While this problem is

observable and well-documented in the open ocean (Feely et al.,

2009; Orr, 2011), in coastal systems there are additional processes

that can either exacerbate or relieve acidification resulting from

atmospheric CO2 (Cai et al., 2011; Duarte et al., 2013; Wallace et al.,

2014). In many estuaries with substantial anthropogenic influence,

nutrient pollution stimulating algal growth and microbial

respiration leads to the co-occurrence of low-oxygen conditions

(hypoxia, dissolved oxygen concentration < 3 mg L-1 or 94 mmol

L-1) and enhanced acidification (Laurent et al., 2017; Brodeur et al.,

2019; Xiong et al., 2020).

The temperate estuary Long Island Sound (LIS) borders the

New York City metropolitan area, the Connecticut coast, and Long

Island’s north shore. Nitrogen enters LIS from point sources such as

wastewater discharge and from nonpoint sources such as

atmospheric deposition and fertilizer use. Nitrogen pollution

leads to surface water eutrophication in LIS, stimulating intense

spring and summertime primary productivity (Goebel et al., 2006;

Vaudrey, 2017). As the water column becomes density stratified in

the summer and phytoplankton biomass sinks, microbial

respiration depletes oxygen in bottom waters (Anderson and

Taylor, 2001). As a result, hypoxic conditions of varying extent

and duration have consistently been observed in the bottom waters

of Long Island Sound during the summertime since the late 1980’s

(Wilson et al., 2008; Duvall et al., 2023). Implementation of

nitrogen total maximum daily loads (TMDL) in 2000 (NY DEC

and CT DEEP, 2000) included substantial efforts to upgrade

wastewater treatment systems. The primary goal of reducing

nitrogen input to LIS by 58.5% relative to pre-TMDL values was

achieved in 2016. The reduction of nitrogen pollution to LIS has led

to a marked decrease in hypoxic area of up to 60% of the pre-TMDL

value (Long Island Sound Study, 2022). However, hypoxia remains

a persistent issue in LIS and is regularly monitored by the

Connecticut Department of Energy and Environmental Protection

(CT DEEP) and the Environmental Protection Agency (EPA) Long

Island Sound Study (LISS).

Though acidification co-occurs with hypoxia in LIS (Wallace

et al., 2014), inorganic carbon dynamics have received much less

attention than dissolved oxygen. This is despite the knowledge that

estuarine acidification imposes ecological and economic concerns

(Ekstrom et al., 2015) and contributes to a multi-stressor

environment for marine organisms (Gobler and Baumann, 2016).

The paucity of carbonate system information in LIS is in part due to

the historical practical and financial barriers to obtaining high-

quality data. Potentiometric pH measurements were added to

monthly routine monitoring of LIS by CT DEEP in 2011.

However, pH alone is not sufficient to define the ocean carbonate

system, which has two degrees of freedom, meaning two of four

measurable parameters (total alkalinity, dissolved inorganic carbon,

pH, and partial pressure of CO2) are required to compute all

variables in the system (Dickson et al., 2007). Additionally,
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potentiometric pH observations, though more accessible than

high-precision measurements, are subject to large uncertainties

(McLaughlin et al., 2017).

In this study, we established a time-series of carbonate system

observations in LIS in collaboration with routine water quality

monitoring by CT DEEP and LISS. We aimed to address the

knowledge gap of baseline carbonate chemistry characteristics to

achieve a more complete understanding of LIS biogeochemical

cycles, the degree of aragonite undersaturation during seasonal

hypoxia, and the confounding stressors to the LIS ecosystem.

With these insights we can improve our predictions of how LIS

and other temperate estuaries may be impacted by anticipated

climate changes to inform strategies for sustainable ecosystem

management. Carbonate chemistry trends were evaluated in

relation to hydrodynamics and other seasonal influences via

endmember sampling and comprehensive seasonal and

interannual surveys. Surface and bottom water total alkalinity

(TA), dissolved inorganic carbon (DIC), and hydrographic data

were collected across the estuary during thirteen sampling events

between March 2020 and August 2022, capturing seasonal and

interannual variations and refining the understanding of the

relationship between acidification and hypoxia in LIS. This

information is placed in context with similar northwestern

Atlantic estuaries to examine the ways in which LIS does and

does not align with biogeochemical dynamics in other regions.
2 Methods

2.1 Study area and sampling approach

LIS is an urbanized, seasonally eutrophic estuary on the east

coast of the United States (Figure 1). The macrotidal estuary is

bordered by Connecticut to the north, by Long Island, NY to the

south, and by New York City to the west. Most of the seawater

exchange occurs through the mouth of the estuary in eastern LIS

(ELIS) where it is connected to the Mid Atlantic Bight (O’Donnell

et al., 2014; Whitney et al., 2016). A much smaller exchange also

occurs in WLIS where the head of the estuary is connected to the

East River, a tidal strait connected to the Hudson River estuary (Gay

et al., 2004). The Connecticut River is the largest freshwater source,

accounting for 75% of annual freshwater delivery, and enters near

the estuary mouth. The next largest freshwater source is the

Housatonic River in western LIS, accounting for 10% of annual

river discharge to the estuary (Gay et al., 2004). Due to the

circulation patterns in LIS, the Connecticut River comprises >50%

and >70% of the freshwater in western and eastern LIS, respectively,

while the Housatonic River comprises >25% and >10% of the

freshwater in western and eastern LIS, respectively (Deignan-

Schmidt and Whitney, 2018). The residence time of freshwater in

LIS ranges from 3-6 months, depending on river discharge

(Deignan-Schmidt and Whitney, 2018).

Carbonate system, nutrient, and hydrographic parameters were

observed at ten stations across thirteen sampling events between

March 2020 and August 2022 aboard the R/V John Dempsey

(Supplementary Table S1). Each sampling event spanned at least
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three days, with one day each dedicated to the eastern, western, and

central Sound, normally in that order. The sampling frequency is

always greatest in the summer (typically biweekly) to allow CT

DEEP to better assess patterns of hypoxia, with monthly sampling

occurring year-round. Thus, a full seasonal comparison between

spring, summer, and autumn was captured for 2020 and 2021.
2.2 Discrete water column samples

Discrete samples for TA and DIC were collected at each station

in Figure 1 for both surface (2 m depth) and deep waters (~2 m

above bottom). DIC samples were collected in triplicate from 10L

Ni sk in bo t t l e s in to 20 mL boros i l i c a t e v i a l s w i th

polytetrafluoroethylene (PTFE) and aluminum crimp tops and

preserved with 10mL saturated mercuric chloride to a final

concentration of 0.05% (v/v). DIC was measured using a
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Shimadzu TOC-L analyzer (USGS, 2019) calibrated using CO2

certified reference materials (CRMs) (Dickson et al., 2003) with

an average precision of 4.76 mmol kg-1 (< 0.3%). TA samples were

collected in 250 mL high density polyethylene (HDPE) bottles and

preserved with 100 mL of saturated mercuric chloride. TA was

analyzed using a Contros HYDROFIA TA Analyzer (Seelmann

et al., 2019) calibrated with CO2 CRMs with an average precision of

2.5 mmol kg-1 (< 0.2%). Orthophosphate and silicate samples were

collected and analyzed by CT DEEP following EPA methods 365.1

and 370.1, respectively (EPA, 1978, 1993).
2.3 Continuous surface water observations

Temperature (± 0.01°C), salinity (practical salinity scale, ± 0.1),

dissolved oxygen (DO) (± 3.1 mmol kg-1), pH (NBS scale, ± 0.1), and

partial pressure of CO2 (pCO2) (± 2-5 ppm) were measured across
FIGURE 1

Location of Long Island Sound on the USA east coast and locations of surface and bottom water sample collection for the thirteen sampling events
in this study. Station labels are consistent with those utilized by CT DEEP and LISS over thirty years of monitoring.
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LIS surface waters. These parameters were measured continuously

in seawater pumped onto the ship from a ~2-m depth intake.

Temperature, salinity, and pH were measured once per minute

using a YSI Exo2 multiparameter sonde. A three-point pH

calibration (4.01, 7.00, and 10.01, all ± 0.01) and one-point

salinity calibration (50 mS cm-1 conductivity, Ricca) were

performed at 25°C before each cruise. pCO2 was measured once

per second in the flow-through surface water using a Turner C-

Sense pCO2 probe and then averaged across 5-minute intervals. The

probe was calibrated annually by the manufacturer and displayed

no drift over the study period.
2.4 Computations

Carbonate system computations including error propagations

were carried out in Python using the PyCO2SYS package

(Humphreys et al., 2022) with inputs of TA and DIC along with

salinity, temperature, and pressure. The empirical constants used

were those of Lueker et al. (2000), Dickson (1990), Dickson and

Riley (1979), and Lee et al. (2010). For all cruises labelled “WQ”

(water quality, Supplementary Table S1), nutrient data were

available from CT DEEP and phosphate and silicate were

included in calculations. However, nutrient observations were not

available for “HY” (hypoxia, Supplementary Table S1) cruises, so

concentrations were assumed to be 0. This assumption was made

based on high rates of surface nutrient uptake in the summer, as

well as the relatively low error associated with omitting the

alkalinity contribution from nutrients (0.5 to 1.5 mmol kg-1),

which was propagated into the calculations of the carbonate system.

Apparent oxygen utilization (AOU) was calculated in Python

using the Gibbs Seawater package (McDougall and Barker, 2011).

In-situ salinity, temperature, and depth data were used to calculate
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potential temperature, from which the oxygen solubility was

calculated via the equations of Garcia and Gordon (1993).
3 Results

3.1 Precipitation and river discharge

The precipitation conditions in Connecticut, and more broadly

the northeast US, are highly relevant to the hydrological dynamics of

LIS, as > 85% of freshwater input to the estuary occurs from rivers

traversing the state. Figure 2 shows the 2020 – 2022 monthly average

discharge of the two major tributaries to LIS, the Housatonic River in

the center/west (accounting for 10% of total freshwater input to LIS),

and the Connecticut River in the east (accounting for 75% of total

freshwater input to LIS, Gay et al., 2004). The monthly river discharge

climatology shows that in summer 2021, the discharge of both rivers

exceeded that of 2020 and 2022 by 3-4 times. This was reflected in the

salinity of WLIS, as summertime (August) salinity was ~1 unit lower

in 2021 than in 2020 and 2022 (Supplementary Figure 1).

This study captured the contrast between two historic drought

seasons (summer and fall of 2020 and 2022) and one high-

precipitation season (summer 2021). In August and September

2020, up to 60% of the state of Connecticut experienced a

standardized precipitation index (SPI) < -1.6, indicating extreme

drought conditions relative to the climatological mean for the region

(NIDIS, 2023). SPI remained < -0.5 for much of the state from July

2020 through April 2021. During May 2021 – February 2022,

exceptionally wet conditions prevailed, with ~40% of Connecticut

experiencing an SPI > 2 (NIDIS, 2023). Four tropical storm systems

made landfall in Connecticut between July and September of 2021

(Elsa, Fred, Henri, and Ida), accounting for much of the excess

rainfall. The wet conditions of 2021 were followed by an even more
A B

FIGURE 2

Monthly-averaged discharge for the (A) Housatonic and (B) Connecticut Rivers. The Housatonic River discharges into WLIS in Bridgeport, CT, and
accounts for ~10% of freshwater input to LIS (Gay et al., 2004). Discharge data shown here are from Stevenson, CT, 30 km inland (USGS, 2022a). The
Connecticut River discharges into ELIS in Old Lyme, CT, and accounts for ~75% of freshwater input to LIS (Gay et al., 2004). Discharge data shown
here are from Thompsonville, CT, 100 km inland (USGS, 2022b). Note the different y-axis scales for the two subplots.
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extreme drought in 2022, where from April to August 60% of the

state had an SPI < -1.6, and 20% < -2.0 (NIDIS, 2023).
3.2 Water column carbonate chemistry

For all sampling events, TA was generally highest in ELIS at the

estuary mouth and decreased westward to the estuary head

(Supplementary Figure 2), consistent with salinity trends (p <

10-35, R2 = 0.59, n = 178, Figure 3A) and seawater exchange.

Throughout the study period, surface and bottom water TA

ranged from 1862 – 2113 and 1840 – 2133 mmol kg-1,

respectively. For all three sampling years, the highest TA values

tended to occur in the fall (late August – October). Summer and

autumn TA values were lower in 2021 as compared to 2020 and

2022, especially in surface waters. The maximum surface TA value

in August/September 2021 was 2017 mmol kg-1, as compared to

2070 and 2069 mmol kg-1 in 2020 and 2022, respectively. In eastern

LIS (ELIS), the influence of increased Connecticut River discharge

in September 2021 is clear, as the region near the river mouth was

locally depleted in TA, with a value of ~1875 mmol kg-1 as compared

to surrounding values 50-100 mmol kg-1 higher.

Because DIC includes the concentration of CO2, it is more

strongly affected by biological activity than TA. WLIS is highly

productive in the summer, so DIC displayed more spatial and

seasonal variation than TA, but still correlated strongly with salinity

(p < 10-21, R2 = 0.38, n = 200, Figure 3B). During the study period,

DIC in surface and bottom waters ranged from 1678 – 1908 and

1704 -1984 mmol kg-1, respectively, generally increasing with depth

and towards the estuary mouth. The vertical gradient in DIC had a

strong seasonal variation, with the largest gradient occurring in the

stratified summer months and the smallest gradient in the fall

(Supplementary Figure 3). In the summer, high productivity in the

surface waters depressed DIC, while comparatively, DIC was

elevated in deeper waters, consistent with intense stratification

and subsurface respiration of organic matter. As with TA, the

interannual variation of DIC was dominated by autumn minima

in 2021 as compared to 2020 and 2022. In October 2020 and August
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2022, surface DIC values were ~1850-1900 mmol kg-1. By contrast,

in September and October of 2021, DIC was always less than 1800

mmol kg-1 and was as low as 1680 mmol kg-1 in WLIS.

Aragonite saturation state (War) was calculated from TA and

DIC measurements, yielding a mean propagated error of 0.04 units.

War is an important acidification metric to consider for calcifying

organisms sensitive to carbonate ion concentrations (Waldbusser

et al., 2015), though species-specific thresholds are not well-defined

in this region. In general, War < 1 (aragonite undersaturation) is

considered deleterious to calcifying organisms, as aragonite

dissolution is thermodynamically favored. However, War < 1.5 or

higher can still be a detrimental condition depending on the

organism and its life stage (Ekstrom et al., 2015). The trend in

Ωar (Supplementary Figure 4) closely followed that of DIC, with a

strong summertime along-estuary gradient in surface waters. War

ranged from 0.87 – 3.01 and 0.59 – 2.77 in surface and bottom

waters, respectively. Notably, the lowest War values were observed

during summer 2020, during which much of WLIS bottom waters

were aragonite undersaturated for at least three sampling events

spanning six weeks in July and August.War was low, but exceeded 1,

in WLIS during summer 2022. In summer 2021, a year with

anomalously high precipitation rates, bottom water War always

exceeded 1.3. Despite lower summertime estuary-wide TA due to

increased freshwater discharge, War remained oversaturated in

bottom waters due to concurrent low DIC, and thus a low ratio

of DIC to TA.

Assuming that War is primarily biologically mediated (via

photosynthesis/respiration and calcification/dissolution), we

expect a strong relationship with apparent oxygen utilization

(AOU), especially during the stratified summer season. AOU

describes the difference between the observed dissolved oxygen

(DO) concentration and that at saturation. Positive and negative

AOU values indicate DO under- and over-saturation, respectively.

The use of AOU as a proxy for photosynthesis and respiration has

the limitation that oxygen equilibrates rapidly in the surface mixed

layer and can be advected from adjacent water parcels, so the AOU

of a given water parcel does not solely reflect oxygen production or

utilization in that location. However, AOU is still useful for a coarse
A B

FIGURE 3

The relationship between salinity and (A) total alkalinity (R2 = 0.59, p < 10-35, n = 178) and (B) dissolved inorganic carbon (R2 = 0.38, p < 10-21,
n = 200) across the study period. The marker color represents different sampling events, and marker shape represents the month of sampling. Note
the different y-axis scales for each subplot.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1398087
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Barrett et al. 10.3389/fmars.2024.1398087
estimate of biological oxygen consumption and production.

Figure 4 shows the relationship between War and AOU during

this study period. While the two parameters showed strong

correlation in 2020 (R2 = 0.70, p < 10-16, n = 68) and 2022 (R2 =

0.51, p < 0.001, n = 23), the relationship was less significant during

2021 (R2 = 0.07, p < 0.10, n = 48). Longer estuarine residence times

enhance subsurface oxygen depletion and CO2 accumulation (e.g.,

Vlahos andWhitney, 2017; Zeldis et al., 2022), which likely explains

the reduced correlation between AOU and War during high-

discharge conditions leading to shorter residence time. For the

entire dataset, the relationship between War and AOU was

significant (R2 = 0.26, p < 10-9, n = 139).

The ratio of DIC to TA (DIC/TA) is another proxy for

acidification that is more straightforward and precise than War, as

it relies on simple division of two measured parameters rather than

calculations using empirical constants. DIC consists of CO2,

bicarbonate, and carbonate, while TA consists of carbonate

(contributing twice as much to TA as to DIC), bicarbonate, and

other proton acceptors. Thus, higher DIC/TA indicates a greater

proportion of CO2 and thus more acidified waters, while lower DIC/

TA indicates a more buffered water mass. For context, the seawater

endmember of DIC/TA is ~0.87 (Cai et al., 2020). In this study,

DIC/TA ranged from 0.86 (WLIS surface, September 2021) to 1.00

(ELIS bottom, July 2020). The highest DIC/TA values (most
Frontiers in Marine Science 06
acidified) were generally observed during 2020 (0.88 – 1.00,

median 0.94, n = 69) and the lowest values (least acidified) during

2021 (0.86 – 0.95, median 0.91, n = 48), with 2022 falling in the

middle (0.90 – 0.96, median 0.92, n = 23), indicating that LIS was

overall better buffered during the high-precipitation summer (2021)

than in the drought summers (2020 and 2022). DIC/TA and War

were strongly negatively correlated for the entire study period

(Figure 4B, R2 = 0.98, p < 10-100, n = 139).
3.3 Interactions with hypoxia

Hypoxia (defined as DO < 3 mg L-1 or ~94 mmol kg-1 in LIS) has

decreased in duration and extent due to mandated reductions in

nitrogen emissions to the estuary (Whitney and Vlahos, 2021; Long

Island Sound Study, 2022). The hypoxic duration and extent in

2020 (43 d and 163 km2, respectively) were among the lowest

observed in LIS since the implementation of the nitrogen TMDL in

2000. In 2021, hypoxic duration and extent were 47 d and 368 km2,

respectively, while in 2022, hypoxic duration and extent were 57 d

and 225 km2, respectively. The hypoxic area of LIS during all three

years represented in this study was below the 539 km2 average for

the entire time series from 1991-2021. Table 1 summarizes

these trends.
A B

FIGURE 4

The relationship between aragonite saturation state (War) calculated from TA and DIC and (A) apparent oxygen utilization (AOU) (R2 = 0.26, p < 10-9,
n = 139), (B) DIC/TA (R2 = 0.98, p < 10-100, n = 139) from March 2020 – August 2022. Marker color represents different sampling events, and marker
shape represents the month of sampling.
TABLE 1 Western LIS (west of longitude -73.0) summertime (July – September) average bottom water hypoxic area, Housatonic River discharge, DIC,
TA, DIC/TA, and War by year.

Year
Hypoxic

Area (km2)a
Hypoxic
Duration

(d)a

Housatonic
River

Discharge
(m3 s-1)b

Average DIC
(mmol kg-1)

Average TA
(mmol kg-1)

Average
DIC/TA

Average War

2020 163 43 17 ± 13 1909.7 ± 31.0 1933.3 ± 11.8 0.977 ± 0.014 0.88 ± 0.22

2021 368 47 137 ± 118 1789.2 ± 34.8 1951.6 ± 18.6 0.914 ± 0.012 1.98 ± 0.23

2022 225 57 15 ± 7 1927.9 ± 20.1 1999.5 ± 12.0 0.963 ± 0.000 1.09 ± 0.00

1990-
2021

538 52 – – – – –
aHypoxic area and duration from Long Island Sound Study (2022). bHousatonic River discharge from USGS (2022a).
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In many cases, estuarine eutrophication leads to concurrent

low-DO and high-CO2 conditions (Cai et al., 2011; Wallace et al.,

2014; Shen et al., 2022), though these conditions may be temporally

and spatially decoupled (Shen et al., 2023). While the most intense

hypoxia was consistently observed at WLIS station A4 in August for

the three study years, the co-occurring acidification trends were

more variable. In 2020, a drought summer, though TA and thusWar

data were not available for bottom waters during August, the lowest

DO observed (55.3 mmol L-1, station A4, WQAug20) was

concurrent with a bottom-water DIC maximum (1984.2 mmol

kg-1) and pHnbs minimum (7.6). In 2021, the high-precipitation

summer, the lowest observed DO (58.1 mmol L-1, station A4,

HYAug21) was similar to the concentration observed in 2020, but

DIC was much lower (1839.7 mmol kg-1) while War was 1.79, well

above saturation conditions. Finally, in 2022, the lowest observed

DO (44.7 mmol L-1, station A4, WQAug22) occurred with low War

(1.09) and elevated DIC (1946.2 mmol kg-1). Supplementary

Figure 5 shows the cross-sectional distribution of DO for each

sampling event. In summary, the co-occurrence of hypoxia and

acidification was clear for times of drought in 2020 and 2022, but

not for the summer with high precipitation (2021).
4 Discussion

4.1 Freshwater endmember variability

Though the spatial extent of this study captured both western

and eastern LIS, this discussion primarily focuses on western LIS

(WLIS), as that is the region where the most severe hypoxia and

acidification have been observed.

Of the three study years, the carbonate system dynamics of 2020

and 2022 were comparable, while 2021 showed a divergent pattern.

2020 and 2022 were both drought years, with especially low

freshwater discharge during the summer, while in 2021 there was

increased freshwater input, primarily due to tropical storms. In

some estuaries, lower river discharge is associated with reduced

hypoxia, as reduced freshwater flow leads to less nutrient loading,

lower primary productivity, and less organic material fueling

microbial respiration (Zheng et al., 2016; Shen et al., 2022). By

contrast, in LIS low-flow years have been shown to be net

heterotrophic, as longer estuarine residence time leads to DO

depletion, despite the reduced source of allochthonous organic

material (Vlahos and Whitney, 2017). Despite the slightly greater

hypoxic area observed in 2021 (368 km2) relative to 2020 and 2022

(163 and 225 km2, respectively), the entire study period had hypoxic

conditions well below the mean area (538 km2) for the monitoring

period 1991-2021 (see Table 1). However, the westernmost

sampling station A4 still displayed hypoxic conditions in bottom

waters for several weeks of monitoring during each sampling year.

Thus, freshwater discharge conditions did not appear to

substantially impact summertime hypoxia in LIS during the

study period.

During the timing of minimum DO concentration (July-

August), hypoxic conditions were relatively similar in the bottom

waters of WLIS (Supplementary Figure 5) for all three years, but
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DIC was nearly 100 mmol kg-1 higher in the drought summers 2020

and 2022 as compared to the wet summer in 2021 (Table 1;

Supplementary Figure 3). War was also substantially higher in

2021 than in 2020 and 2022 (Table 1; Supplementary Figure 4).

This indicates that the variation in freshwater discharge had more

influence on bottom-water acidification than on hypoxia. We

propose that these differences are due to differences in the

chemistry of the freshwater endmember, variable proportions of

fresh- and seawater endmembers, the differing equilibration times

for oxygen and CO2, and variability in estuarine residence time.

DIC and TA data are available for freshwater endmembers in

the Connecticut and Housatonic Rivers during 2020 and 2021

(McGuinness, 2022), overlapping with two of the three years in

this study. These two rivers account on average for ~55 and 25% of

the freshwater content in WLIS, respectively (Deignan-Schmidt and

Whitney, 2018). The Housatonic River, which discharges near the

eastern boundary of WLIS, has relatively higher TA (averaging

1578 ± 236 mmol L-1 during 2020-2021) than the Connecticut River,

likely due to the presence of carbonate rock formations in the

watershed (Robinson and Kapo, 2003). However, the main geologic

formation of the Housatonic watershed is composed of slates and

pelitic metasedimentary rocks. By contrast, the Connecticut River

has relatively lower TA (averaging 531 ± 110 mmol L-1 during 2020-

2021) as it primarily flows through granite and gneiss bedrocks,

though there are some carbonate-containing formations in central

Connecticut (Robinson and Kapo, 2003). WLIS may have a more

substantial source of freshwater alkalinity, especially under high-

flow conditions, as it contains a greater proportion of Housatonic

River outflow than ELIS.

While river TA was variable among sampling events, there was

no statistically significant relationship with discharge (Connecticut:

R2 = 0.06, p = 0.52, n = 8, Housatonic: R2 = 0.05, p = 0.59, n = 8).

However, river DIC was negatively correlated with discharge for

2020-2021 (Connecticut: R2 = 0.72, p = 0.004, n = 9, Housatonic:

R2 = 0.64, p = 0.02, n = 8), and thus DIC/TA was also negatively

correlated with discharge (Connecticut: R2 = 0.45, p = 0.07, n = 8,

Housatonic: R2 = 0.81, p = 0.01, n = 6). River DIC likely decreased

under elevated river discharge because of a shorter residence time

for organic matter respiration and CO2 accumulation.

The increased buffering capacity of the Housatonic and

Connecticut Rivers under high discharge conditions, as indicated

by decreased DIC/TA, influenced the acid-base chemistry of WLIS

during summer/fall 2021 (Figure 5). Though bottom-water TA was

relatively consistent in WLIS during the study period, DIC and thus

DIC/TA were much lower in 2021 than in 2020 and 2022. This

explains the relatively higher War (> 1.5) in WLIS bottom waters

during peak hypoxia in 2021, relative to the undersaturated

(War < 1) and near saturated (War < 1.1) conditions in the

drought summers of 2020 and 2022, respectively. In 2012,

Wallace et al. (2014) also showed summertime aragonite

undersaturation in the bottom waters of WLIS co-occurring with

hypoxic conditions. Hypoxic extent was relatively high (747 km2) in

2012 relative to the 1991-2021 average of 538 km2. 2012 was also a

historic drought year in Connecticut, on par with the conditions of

2020 and 2022. Though river chemistry data is not available for the

2012 study, it is likely that low river discharge increased the DIC/TA
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value of the freshwater endmember, reducing the buffering capacity

of WLIS. The increased water residence time associated with

drought likely also contributed to the depletion of O2 and the

accumulation of CO2. Our observations during a high-flow year

(2021) indicate that the conditions leading to hypoxic conditions in

LIS do not always simultaneously induce acidification. The

buffering capacity of the incoming freshwater appears to play a

role in mitigating or exacerbating summertime acidification.

Though precipitation in the northeast US is expected to increase

under climate change, most of this increase is predicted to occur in

the winter and spring, with little change in the summer (USGCRP,

2018). By contrast, late summer and fall streamflow are expected to

decrease due to a greater chance for summertime drought (Demaria

et al., 2016). If these regional projections hold true for the LIS

watershed, a decrease in alkalinity loading from the Housatonic

River and an increase in freshwater DIC may exacerbate late

summer acidification in WLIS.
4.2 Comparison to other major
US estuaries

The unique hydrodynamics of LIS can complicate comparisons

to other estuaries. While most US east coast estuaries have deltaic

features, with the main freshwater source at the head mixing
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gradually with seawater towards the mouth, LIS was formed

through the glacial deposition of Long Island, and the largest

freshwater source (Connecticut River) is near its mouth. Despite

these unique physical characteristics, valuable comparisons can be

made regarding the summertime stratification, hypoxia, and

acidification displayed in other major US estuaries including the

Delaware Bay and Gulf of Mexico. These estuaries are discussed due

to their data availability and comparable dynamics to LIS.

Delaware Bay is a drowned river valley or coastal plain estuary

which is a tributary of the mid-Atlantic Bight and receives its largest

freshwater input from the Delaware River at the estuary head.

Delaware Bay has a similar seasonal weather pattern as LIS, and the

chemistry of both the fresh- and seawater endmembers are

relatively similar, though TA is higher in the Housatonic River

(1578 ± 236 mmol kg-1) than in the Delaware River (~750-1000

mmol kg-1, Joesoef et al., 2017). An analysis of the relationship

between seasonal discharge and the resulting acidification of

Delaware Bay showed that high discharge decreased both DIC

and TA and increased the DIC/TA ratio (Joesoef et al., 2017).

This directly contrasts with observations in LIS, wherein the DIC/

TA ratio was lower under high-discharge conditions due to a

decrease in DIC, but no significant change in TA. Joesoef et al.

(2017) suggested that DIC/TA increased under high-flow

conditions in Delaware Bay because of enhanced uptake of soil

organic matter and reduced CO2 outgassing. This contrast points to
A

B

C

FIGURE 5

Time series of (A) Connecticut (solid line) and Housatonic (dash-dotted line) River discharge, (B) Connecticut (black circles) and Housatonic (gray
diamonds) River DIC/TA ratios, and (C) area-averaged DIC/TA ratios for and WLIS surface (white squares) and bottom (gray squares) DIC/TA ratios
during the study period. Here, E and WLIS are separated at the -73° meridian. Surface waters samples were collected ~2 m from the surface, while
bottom water samples were collected ~2 m from the bottom, which is variable from ~15-45 m across LIS. The orange and blue shaded boxes
indicate periods of drought (SPI < -1.6 for at least 50% of Connecticut land) and wet (SPI > 1.6 for at least 50% of Connecticut) conditions (NIDIS,
2023). For readers in greyscale, refer to the symbols above each banded section (‡ = drought, * = wet).
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differing hydrodynamic and biogeochemical processes in LIS than

those observed for Delaware Bay, which should be investigated in a

pan-watershed approach to further understanding of LIS

acidification dynamics.

The Louisiana Shelf of the Gulf of Mexico undergoes seasonal

hypoxia due to agricultural nutrient pollution in the Mississippi

River watershed (Rabalais and Turner, 2019). While subsurface

acidification is prevalent in these coastal waters (Wang et al., 2020),

the high alkalinity of the Mississippi River (~2400 mmol kg-1, Savoie

et al., 2022) provides resilience against acidification. Despite similar

eutrophic and low-oxygen conditions in the Gulf of Mexico as in

LIS, the associated changes to pH and War are less dramatic than in

LIS due to alkaline river water input and warmer waters that hold

less CO2 (Cai et al., 2020). Due to the high alkalinity of the

Mississippi River, Savoie et al. (2022) observed that under high-

flow conditions (opening of a spillway), surface water TA and War

increased in the Mississippi Sound, while subsurface War decreased

in association with stratification and hypoxia. In our observations in

WLIS associated with increased Housatonic River discharge, we

observed similar surface water dynamics. However, TA and War

were higher throughout the water column in WLIS. This divergence

may be attributed to the greater depth of LIS (~40m compared to

4m in the Mississippi Sound) and its partially well-mixed

characteristics, especially during the multiple storm events of

summer 2021 which brought both increased precipitation

and winds.

Comparisons of LIS to Delaware Bay and the Gulf of Mexico

provide context to inform future studies, despite clear differences

between the estuaries. For example, the decrease in bottom water

DIC/TA under conditions of high freshwater input appears unique

to western LIS among these estuaries.
4.3 Conclusions and recommendations for
future work

In this study, we demonstrated seasonal and interannual

variations in carbonate chemistry dynamics through observations

of TA and DIC across LIS from 2020-2022 on monthly to seasonal

intervals. Both TA and DIC were highly correlated to salinity and

increased from the head to the mouth of LIS. Seasonal trends were

dependent on river discharge conditions. Generally, TA was highest

in the fall and winter and decreased to a minimum during spring

and early summer. DIC was high and well-mixed during winter but

had a strong vertical gradient in the summer due to surface

productivity and subsurface respiration.

The sampling frequency employed here captured the contrast

between two drought years with low river discharge (2020 and 2022)

and one year with anomalously high precipitation and river discharge

(2021).While late summer hypoxia dynamics inWLIS were relatively

similar among all three sampling years, coincident acidification was

greatest under low-flow conditions. During high-flow conditions, the

DIC/TA ratio of the Housatonic River was lower, estuarine residence
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time decreased, and WLIS was better buffered against pH and War

decreases related to microbial respiration.

Late summer and autumn river discharge in the northeast US is

expected to decrease in the coming decades, which may decrease the

summertime buffering capacity of WLIS and increase estuarine

residence time, leaving the estuary more vulnerable to acidification.

It is unclear why a higher river discharge rate decreased riverine

DIC but not TA. This motivates more detailed studies of the

carbonate chemistry of the open LIS and its freshwater

endmembers in relation to hypoxia dynamics as the physical and

biological dynamics of the estuary change with time.
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