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Editorial on the Research Topic

The impacts of anthropogenic activity and climate change on the formation
of harmful algal blooms (HABs) and its ecological consequence
Recent decades have witnessed a marked increase in the intensity of human

activities, including agriculture, aquaculture, and manufacturing, leading to significant

environmental repercussions (Smith and Schindler, 2009; Lu et al., 2021; Priya et al., 2023).

These activities have resulted in the excessive discharge of nutrients, notably nitrogen (N)

and phosphorus (P), into riverine systems, which subsequently transport these nutrients to

estuaries and coastal seas (Seitzinger and Sanders, 1997; Liu et al., 2020; Voss et al., 2021;

Yu et al., 2021; Beusen et al., 2022). The resultant nutrient composition shift towards a

dominance of organic over inorganic nutrients has significant implications for aquatic

ecosystems (Hébert et al., 2023). Eutrophication in estuarine and coastal waters has been

exacerbated by an excess of nutrient runoff, a situation that is predicted to worsen (Sinha

et al., 2017). Concurrently, climate change, characterized by increased atmospheric and

aquatic CO2 levels and rising temperatures, has had profound impacts on biological

processes within marine ecosystems, further complicating the challenges posed by

eutrophication (Brierley and Kingsford, 2009; Boyd et al., 2013; Brandenburg et al.,

2019; Fu et al., 2024).

The frequency, severity, and duration of harmful algal blooms (HABs) in coastal and

estuarine waters worldwide has shown a troubling increase, and is responsible for negative

wildlife and human health effects, ecological disasters, and significant economic losses

(Anderson et al., 2021; Sakamoto et al., 2021; Yu et al., 2023). Understanding the causative

mechanisms and the ecological consequences of HABs is crucial due to the considerable

ecological, economic, and societal ramifications (Anderson et al., 2021; Yu et al., 2023).

Alterations in nutrient content, notably the increase in organic nutrient loads, coupled with
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climate change, significantly affects the growth, species composition,

toxin production, and toxicity of HAB-forming species (Gobler et al.,

2017; Brandenburg et al., 2019; Gobler, 2020; Raven et al., 2020). The

persistence of HABs in an anthropogenically altered marine

environment necessitates a comprehensive understanding of

phytoplankton diversity, growth, physiology, allelochemicals, toxins,

and toxicity of harmful algae, alongside the exploration of

mitigation strategies.

Seven studies in our Research Topic focused on the diversity of

resting cysts and phytoplankton in both marine and freshwater

environments. Wang et al. investigated dinoflagellate cysts,

particularly the distributions of toxic and harmful species along

the Qingdao coast of the Yellow Sea, China, and analyzed the

relationship between contents of biogenic elements and cysts. They

identified a total of 32 cyst taxa, including 23 autotrophic and 9

heterotrophic taxa, among them, 17 of the cyst types identified were

formed by HAB-causing species. The redundancy analysis

demonstrated the influence of biogenic elements on cyst

assemblages, and explained why the three sea areas examined,

each with different degrees of human disturbance, showed

different dinocyst assemblages and abundance. Roche et al. used

amplification of the Pseudo-nitzschia-specific 18S-5.8S rDNA

internal transcribed spacer region 1 (ITS1) in plankton samples

and high throughput sequencing to characterize Pseudo-nitzschia

species composition over a decade in Narragansett Bay, including

eight years before the 2016−17 fisheries closures and two

years following, and found that several species now recur as year-

round residents in Narragansett Bay (P. pungens var. pungens,

P. americana, P. multiseries, and P. calliantha). Various other

species increased in frequency after 2015, and some appeared for

the first time during the closure period. Pseudo-nitzschia australis, a

species prevalent along the US West Coast and known for high

domoic acid (DA) production, was not observed in Narragansett

Bay until the 2017 closure but has been present in several

years since the closures. Annual differences in Pseudo-nitzschia

community composition were correlated with physical and

chemical conditions, predominantly water temperature. Sun et al.

investigated the phytoplankton community and its association with

physicochemical properties in coastal waters of the northern Yellow

Sea in 2016. These authors identified 39 taxa belonging to 4 phyla

and 24 genera. Diatoms and dinoflagellates were the dominant

groups. An algal bloom dominated by Thalassiosira pacifica

occurred in March, effecting a shift in diatom-dinoflagellate

dominance; notably dinoflagellates dominated throughout the

summer but switched to diatom dominance again in September.

Hypoxic zones (<2 mg·L-1) developed in bottom waters in August,

with minimum dissolved oxygen (DO) of 1.30 mg·L-1, as a result of

the diatom bloom in March. The effects of algal blooms on

phytoplankton composition and hypoxia could have a cascading

effect on fisheries sustainability and aquaculture in nearshore waters

of the northern Yellow Sea. Xin et al. identified eight major marine

phytoplankton assemblages, cryptophytes, pelagophytes,

prymnesiophytes, diatoms, and chlorophytes using CHEMTAX

analyses, and 149 species belonging to 96 genera of 6 major

groups (diatoms, prymnesiophytes, pelagophytes, chlorophytes,

cryptophytes, and dinoflagellates) by metabarcoding sequencing
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in the Western Subarctic Gyre during the summer of 2021.Sixteen

out of the 97 identified species were annotated as potentially

harmful algal species, e.g., Heterocapsa rotundata, Karlodinium

veneficum , Aureococcus anophagefferens , etc . Nutrient

concentrat ions were more important in shaping the

phytoplankton community than temperature and salinity.

Two more works focused on freshwater ecosystems. Jiang et al.

investigated the species composition and spatial distribution with

respect to environmental factors in Lake Longhu, China, in July of

2020. They identified a total of 68 phytoplankton species belonging

to 7 phyla, in which Chlorophyta, Bacillariophyta and Cyanophyta

contributed more to the total cell density, while Chlorophyta and

Cryptophyta contributed more to the total biomass. The parameters

including pH, water temperature, nitrate, nitrite, and chemical

oxygen demand were the main environmental factors affecting

the composition of phytoplankton communities in Lake Longhu.

Li et al. investigated the phytoplankton community in the Ashi

River Basin (ASRB), Harbin, China, between April and October

2019, and identified 137 phytoplankton species belonging to seven

phyla. They selected five critical ecological indices (Shannon-

Wiener index, total biomass, percentage of motile diatoms,

percentage of stipitate diatom, and diatom quotient) to evaluate

the biological integrity of phytoplankton in the Ashi River Basin,

and concluded that P-IBI (Phytoplankton Index of Biological

Integrity) was a reliable tool to assess the relationship between

phytoplankton communities and habitat and environmental

conditions in that system. Their findings contribute to the

ecological monitoring and protection of rivers impacted by

anthropogenic pollution.

Four studies made significant contributions to our

understanding of HAB physiology: one characterized the

transcriptome of a species known to form HABs; another

investigated the growth physiology of four harmful raphidophyte

species; a third examined the interactions between bacteria and

algae; and the fourth reviewed existing research on the impact of

picophytoplankton on the carbon (C) and silicon (Si) cycles. Chen

et al. used single-molecule real-time (SMRT) sequencing technology

to characterize the full-length transcript in Akashiwo sanguinea, a

harmful algal species commonly observed in estuarine and coastal

waters around the world. In total, 83.03 Gb SMRT sequencing clean

reads were generated, 983,960 circular consensus sequences (CCS)

with average lengths of 3,061 bp were obtained, and 81.71%

(804,016) of CCS were full-length non-chimeric reads (FLNC).

Furthermore, 26,461 contigs were obtained after being corrected

with Illumina library sequencing, with 20,037 (75.72%) successfully

annotated in the five public databases. This work provides a sizable

insight into gene sequence characteristics of A. sanguinea, and

provides an important reference resource for A. sanguinea draft

genome annotation. Lum et al. compared the growth responses to

temperature and salinity for four harmful raphidophyte species that

coexist in the tropical waters, Chattonella malayana, C. marina,

C. subsalsa, and C. tenuiplastida, using unialgal cultures grown at

ten temperatures (ranging 13.0–35.5°C) and five salinities (ranging

15–35) to better understand how these factors might regulate their

distribution in the environment. They found that their growth rates

with respect to optimal temperature were 28.0, 30.5, 25.5, and 30.5°
frontiersin.org
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C, respectively, and that growth rate maxima with respect to salinity

were similar for C. subsalsa and C. malayana (30), and for

C. marina and C. tenuiplastida (25). The high adaptability of

C. subsalsa to a wide range of temperatures and salinities suggests

it is highly competitive in a range of environments. The ability of

C. marina to thrive in colder waters compared to other species likely

contributes to its wide distribution in the temperate Asian waters.

The narrow and warmer temperature window in which

C. malayana and C. tenuiplastida grew well suggests they are well

suited and growth and distribution are more limited. This study

provides a physiological basis for the relative occurrences and

bloom potential of Chattonella spp. in Asia. Tang et al. isolated

and identified a cultivable bacterium (Alteromonas sp.) coexisting

with Levanderina fissa by the gradient dilution method and

investigated the characteristics of the bacterial interactions with

three diatom species (Chaetoceros curvisetus, Skeletonema dohrnii,

and Phaeodactylum tricornutum) and three dinoflagellate species

(Scrippsiella acuminata, Karenia mikimotoi, and the host alga), and

found that Alteromonas sp. had significant inhibitory effects on the

growth of all the algal species except its host (L. fissa). However,

all the algal species tested, especially their natural hosts, showed

significant stimulatory effects on the growth of Alteromonas sp. This

study implies a highly complicated and variable interaction between

phycosphere bacteria and their host alga. Picophytoplankton have

been found to have significant silica (Si) accumulation, a finding

which provides a new insight into the interaction of the marine

carbon (C) and Si cycles and questions whether large diatoms

(>2 mm) dominate the Si cycle. Wei and Sun found there were few

studies on the physiology and ecology of picophytoplankton,

especially regarding their potential roles in the biogeochemical Si

cycle. These authors extensively reviewed past studies regarding the

influence of picophytoplankton on the C and Si cycles, used this as

the basis for conducting targeted studies on the picophytoplankton

Si pool and its regulation. This work also provides a theoretical

framework for further study of the role of small cells in the global

ocean Si cycle and the coupling of C and Si cycles.

Two studies focused on the effects of algal toxin(s) and

allelochemical(s) on other organisms. Yang et al. investigated the

ability of 10 strains of Margalefidinium polykrikoides with different

geographic origins and ribotypes to cause mortality in two strains of

the dinoflagellate, Akashiwo sanguinea (allelopathy), and the

sheepshead minnow, Cyprinodon variegatus (toxicity). Results

showed that the potency of allelopathy against both strains of

A. sanguinea and toxicity to the fish were significantly correlated

across strains of M. polykrikoides. They concluded that the major

allelochemicals and toxins of M. polykrikoides are identical

chemicals, an ecological strategy that may be more energetically

efficient than the separate synthesis of toxins and allelochemicals as

has been reported for other HABs. Fu et al. investigated the effects of

neurotoxin b-N-methylamino-L-alanine (BMAA) on the early

development of embryos of mussel Mytilus galloprovincialis, oyster

Magallana gigas, and marine medaka Oryzias melastigma. Results

demonstrated that the embryonic development ofmussels and oysters

were significantly inhibited when BMAA concentrations were above
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0.65µMand5.18µM, respectively.The shell growthofmussel embryos

was alsomarkedly inhibited by BMAA at concentrations ≥ 0.65 µM.A

sustained and dose-dependent decrease in heart rate was apparent in

marine medaka embryos at 9-days post fertilization following BMAA

exposure. This study contributes to our knowledge regarding the

sublethal effects of BMAA on early embryonic development of

marine bivalves and medaka.

Lastly, three studies explored the biological and chemical

methods for controlling species that cause HABs. Wang et al.

isolated a strain of algicidal bacterium Pseudoalteromonas sp.

strain LD-B6 with high efficiency against Noctiluca scintillans, the

highest algicidal activity reached 90.5%, and the algicidal activity of

Pseudoalteromonas sp. was influenced by the density of

N. scintillans. This bacterium could also lyse other algal species.

This work provides a candidate algicidal bacterium against N.

scintillans blooms. Chi et al. introduced a modified clay (MC)

method to regulate the nutrients and phytoplankton community in

Litopenaeus vannamei ponds. Compared to the control, they found

that in the MC-regulated pond, there were reduced concentrations

of both organic and inorganic nutrients and a distinct change in the

phytoplankton community composition, with green algae

becoming the most abundant phytoplankton species. This study

provides new insights into an effective treatment for managing

water quality and maintaining sustainable mariculture. Liu et al.

compared the removal capacity of polydimethyl diallyl ammonium

chloride (PDMDAAC) modified clay (MP) and hexadecyl trimethyl

ammonium bromide (HDTMA) modified clay (MH) on the HAB-

forming species Prorocentrum donghaiense. They found that

PDMDAAC could remove microalgae at a low dose (2 mg/L) and

quickly clarify the water by significantly enhancing the flocculation

of algae onto the clay. This study provides support for the

development of organic-modified clay.

In summary, the papers in this Research Topic contribute new

insights into the effects of anthropogenic activities and climate

change on the composition of phytoplankton communities in

marine and freshwater ecosystems. They delve into the ecological

physiology of species that form harmful algal blooms (HABs), the

roles of allelochemicals, and the toxins and toxicity produced by

harmful algae, as well as exploring methods for controlling HABs

through both biological and chemical strategies. These studies offer

valuable contributions to our understanding of ecosystem

complexities and the impact of human activities on HAB-forming

species. Moreover, this topic highlights the urgent need for further

research on HAB species and their adverse effects on various trophic

levels within aquatic ecosystems, alongside mitigation strategies for

these impacts in both marine and freshwater environments.
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