Skip to main content

ORIGINAL RESEARCH article

Front. Mar. Sci.
Sec. Marine Ecosystem Ecology
Volume 11 - 2024 | doi: 10.3389/fmars.2024.1397721
This article is part of the Research Topic Copepod connected research and new technology: better knowledge for a changing environment View all articles

The modified artificial cohort method for three dominant pelagic copepods in the northern North Pacific revealed species-specific differences in the optimum temperature

Provisionally accepted
Takumi Teraoka Takumi Teraoka Shuya Nagao Shuya Nagao Kohei Matsuno Kohei Matsuno Atsushi Yamaguchi Atsushi Yamaguchi *
  • Hokkaido University, Sapporo, Hokkaidō, Japan

The final, formatted version of the article will be published soon.

    The most concerning recent ocean changes in temperature issues are known as marine heat waves. Under these conditions, it is important to evaluate the effects of temperature on zooplankton. In this study, we investigated the growth rates of three dominant copepod species (Eucalanus bungii, Metridia pacifica, and Neocalanus plumchrus) in the northern North Pacific under three different temperature conditions (3, 7, and 11°C) using an artificial cohort method. Experimental conditions for 42 hour incubations were set to light intensity and photoperiod corresponding to 50 m depth. The dissolved oxygen solubility after rearing ranged from 69.2% to 102.1%, suggesting sufficient conditions for copepod growth. Chlorophyll a increased in 83% of the experiments, indicating that the food conditions were sufficient for the copepods. The mean proportion of dead specimens evaluated using neutral red was 10.2%, corresponding with the reported values in the field. Thus, it can be concluded that the laboratory-rearing conditions used in this study provided sufficient food, and the only effect evaluated would be that of the three different temperatures. Since the developmental time for each stage is longer than the rearing period, it is important to conduct experiments with a large number of individuals to obtain accurate growth rate results. The specific growth rates of E. bungii and M. pacifica increased with increasing temperature. In contrast, N. plumchrus showed the highest growth rate under moderate water temperature conditions. In terms of weight units (dry, carbon, and nitrogen), the carbon weight-specific growth rates were higher than those of the other two units, a common characteristic of the three species. This reflected lipid accumulation during the late copepodite stages. The interspecies differences in growth rate responses to water temperature reflect species-specific differences in temperature tolerance or the optimum temperature for each species. As E. bungii and M. pacifica reproduce near the surface layer through income breeding, their temperature tolerance or optimum temperature is expected to be high. However, because the reproduction of N. plumchrus occurs in the cold deep layer by using capital breeding, its temperature tolerance and optimum temperature would be lower than those of the former two species.

    Keywords: Artificial cohort method, Marine heat wave, growth rate, Eucalanus bungii, Metridia pacifica, Neocalanus plumchrus

    Received: 08 Mar 2024; Accepted: 03 Sep 2024.

    Copyright: © 2024 Teraoka, Nagao, Matsuno and Yamaguchi. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence: Atsushi Yamaguchi, Hokkaido University, Sapporo, 060-0808, Hokkaidō, Japan

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.