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The mesoscale eddies are prevalent oceanic circulation phenomena, exerting

significant influence on various aspects of the marine environment including

energy transfer, material transport and ecosystem dynamics in the Northwest

Pacific Ocean. However, due to sparse vertical observational data, the

understanding of the three-dimensional temperature structure of individual

cases of mesoscale eddies remains limited. In recent years, utilizing surface

remote sensing observations to estimate subsurface temperature anomaly has

been crucial for comprehending the intricate multi-dimensional dynamic

processes in the ocean. Consequently, this paper proposes an eddy residual

multi-channel attention convolution network (ERCACN) with the adaptive

threshold and designs the combination of various surface features to estimate

the eddy subsurface temperature anomaly (ESTA). By integrating results with

climatic temperature, thermal structures containing 46 levels at depths up to

1000 m could be obtained, achieving excellent daily temporal resolution and

0.25° spatial resolution. Validation using independent Argo profiles from 2016 to

2017 reveals that the combination of multiple surface variables outperforms

univariate methods, and the ERCACN model demonstrates superior

performance compared to other approaches. Overall, with an 8% error

deemed acceptable, the ERCACN model achieves a precision of 88.08% in

estimating ESTA. This method provides a novel perspective for other essential

oceanic variables, contributing to a better perception of the global

climate system.
KEYWORDS

deep learning, mesoscale eddies, satellite observations, convolutional neural network,
attention mechanism, temperature structure
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1 Introduction

Mesoscale eddies are widely distributed in the global oceans,

with the horizontal radius primarily ranging from 50 km to 300 km

and vertical depths exceeding 1000 m (Chelton et al., 2011a; Dong

et al., 2014; Zhang et al., 2014b; Li et al., 2024). They play crucial

roles in the mid- to long-distance water mass exchange, material

and energy transport, and vertical dynamic enhancement (Liu and

Tang, 2018; Chen et al., 2023b). As one of the most complex regions

in the ocean circulation system, the Northwest Pacific Ocean has a

significant number of mesoscale eddies, exerting profound impacts

on the distribution of temperature, salinity, and chlorophyll (Xu

et al., 2016; Dong et al., 2017; Sun et al., 2022; Yuan and Hu, 2023).

For instance, mesoscale eddies induce heat flux anomalies at the sea

surface, weakening the upper ocean thermal structure in the

Kuroshio Extension region, resulting in a notable decrease in the

sea surface temperature (SST) and corresponding reductions in

vertical heat transfer (Yang et al., 2018; Shan et al., 2020). In

addition, mesoscale eddies alter the reproductive patterns and

migration behaviors of marine organisms by influencing nutrient

redistribution (Bibby et al., 2008; Dobashi et al., 2022; Ueno et al.,

2023; An et al., 2024). Previous studies have investigated the

horizontal structure, lifetime, and trajectories of mesoscale eddies

through the comprehensive integration of multi-source data,

aiming to elucidate their complex impacts on various physical

dynamic processes in the marine environment (Chelton et al.,

2011b; Yang et al., 2013; Dong et al., 2022).

During the development of satellite sensors, ocean surface data

with high spatiotemporal resolution can be continuously obtained,

providing abundant information for researching mesoscale eddy

surface features (Zhao et al., 2021; Huo et al., 2024). However, due

to the lack of high-resolution in-situ observational data, our

understanding of the generation and dissipation mechanisms of

the vertical three-dimensional temperature structure of specific

mesoscale eddies remains limited (Zhang et al., 2016; Chen et al.,

2023b). Zhang et al. (2013) utilized satellite sea surface information

and Argo float-measured data to obtain the universal structure of

mesoscale eddies by normalization method and composite analyses.

Zhang et al. (2014a) combined high-resolution satellite altimeter

data with temperature-salinity data observed by Argo to reconstruct

the potential density field of mesoscale eddies and estimated the

volume transport of water masses through comprehensive analysis

methods. Nencioli et al. (2018) reconstructed the specific three-

dimensional structure of mesoscale eddies using similar methods

and studied the transport and exchange of water masses. Yang et al.

(2019) analyzed the horizontal and vertical heat and salinity

transport caused by mesoscale eddies by combining observation

data, satellite data, and ocean model data. Considering the influence

of eddy currents and background flows, He et al. (2021) enhanced

the universal three-dimensional reconstruction of mesoscale eddies

and explored their role in the redistribution of water masses and

heat transfer. Despite the increase in various in-situ observational

data over time, the impact of uneven spatial distribution and long

data collection period still exists. Previous studies have mainly

focused on the mean three-dimensional structure of eddies or

conducted composite analyses of individual eddies. However, it
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remains challenging to acquire continuous and high-resolution

three-dimensional temperature structures of different specific

mesoscale eddies in the Northwest Pacific Ocean. In addition, the

temperature structure of mesoscale eddies exerts profound

ecological impacts, influencing the distribution of heat and

nutrients within oceanic regions (Shan et al., 2020). The

magnitude and direction of heat fluxes can be quantified more

effectively with the accurate temperature structure of mesoscale

eddies, thereby refining global climate models and predictions.

Moreover, understanding how temperature gradients impact

particle advection and diffusion can aid in predicting pollutant

dispersal, tracking the migration patterns of marine species, and

assessing ecosystem resilience to environmental changes (Ueno

et al., 2023). Next, variations in temperature structure can alter

marine organism metabolic rates, reproductive cycles, and habitat

preferences, ultimately influencing marine ecosystem composition

and function (An et al., 2024). Clarifying the thermal characteristics

of mesoscale eddies can contribute to predicting species

distributions, evaluating habitat suitability, and informing marine

conservation strategies. Therefore, estimating the continuous and

high-resolution temperature structure of mesoscale eddies holds

significant scientific and practical implications.

Currently, the combination of various satellite ocean surface

data and Argo profiles constitutes an effective method for accurately

estimating the subsurface three-dimensional temperature structure

(Chen et al., 2023d; Chen et al., 2024). Firstly, relatively

straightforward univariate or multivariate linear regression (MLR)

is one of the most common approaches. For instance, Guinehut

et al. (2012) described the temperature field at a spatial resolution of

1° for the period from 1993 to 2009 by combining satellite

observations of sea level anomaly (SLA) and SST data with Argo

profiles using the MLR method. Jeong et al. (2019) also utilized the

MLR approach to estimate the subsurface temperature structure by

incorporating SLA, SST anomaly (SSTA), wind stress anomaly and

Argo observational data. In addition, a combination of dynamic and

statistical methods has been applied to reconstruct the three-

dimensional temperature structure. Yan et al. (2020) estimated

the subsurface density field using an improved surface quasi-

geostrophic method with sea surface height (SSH) and sea surface

density (SSD) data, and the ocean temperature field can be achieved

by applying the least squares multivariate algorithm combined with

SST and sea surface salinity (SSS) data. In recent years, significant

advancements have been made in the inversion of the three-

dimensional temperature structure using artificial intelligence

methods. Ali et al. (2004) employed artificial neural networks,

integrating various sea surface information including SST, SSH,

and sea surface wind (SSW) to estimate the temperature structure in

the Arabian Sea. Wu et al. (2012) reconstructed the temperature

anomaly of the North Atlantic at a spatial resolution of 1° using a

self-organizing map neural network approach with SSH anomaly

(SSHA), SSTA and SSS anomaly (SSSA). Lu et al. (2019) partitioned

and predicted temperature fields in different regions of the global

ocean by combining pre-clustering and neural networks,

demonstrating better performance compared to methods without

pre-clustering. Xie et al. (2022) estimated the ocean temperature

field at a spatial resolution of 0.5° by applying an improved U-net
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network with satellite data including SLA, SSW, SST, wind stress

curl and Argo profiles. Chen et al. (2023a) proposed an algorithm

combining deep evidence regression networks with empirical

orthogonal functions to reconstruct global ocean temperature

profiles using sea surface information and Argo observational

data. Various machine learning methods have also been applied

to estimate the subsurface temperature structure, including the

random forest regression (RFR) (Su et al., 2018), support vector

machine (Su et al., 2015), multilayer perceptron network

(Sammartino et al., 2020), extreme gradient boosting (Su et al.,

2019) and convolutional neural network (CNN) (Su et al., 2021).

These demonstrate the feasibility of utilizing multiple sea surface

information and observational data to estimate subsurface three-

dimensional temperature fields.

However, compared to the estimation of temperature profiles in

the global ocean, mesoscale eddies exhibit more intricate three-

dimensional structures, diverse shapes and pronounced

nonlinearity (McGillicuddy, 2016). Yu et al. (2021) devised a

method applying the Eddy CNN method for ESTA with SLA and

Argo observational profiles. But this network relies on SLA alone,

which contains limited surface feature information, and the

relatively simplistic structure of Eddy CNN poses challenges in

dynamically adjusting attention weights and reducing noise to

capture mesoscale eddy features. In addition, SST and SSW play

pivotal roles in the lifecycle of mesoscale eddies. Hence, this study

proposes an effective combination of various remote sensing

features, including SLA, SSTA, SSW speed anomaly (SSWSA),

and its u and v components (referred to as UWA and VWA,

respectively), and designs the ERCACN method with the adaptive

threshold for residual multi-channel attention module. Integrating

Argo observational data, this algorithm adopts a data-driven

approach to bypass complex physical modeling, aiming to

efficiently estimate the three-dimensional temperature structure of

mesoscale eddies in the Northwest Pacific Ocean with a spatial

resolution of 0.25° and a temporal resolution of 1 day, reaching

depths of up to 1000 m across 46 levels vertically. Section 2

introduces the used satellite observational data, mesoscale eddy

data, Argo observational data and climatological data in the study

area. Section 3 elaborates on the architecture and configuration of

the ERCACN algorithm model. Section 4 discusses the comparative

performance of the ERCACN algorithm with other methods in

estimating ESTA in the Northwest Pacific Ocean, which

demonstrates the effectiveness in temperature estimation for

anticyclonic and cyclonic eddies at various depths and different

time. Finally, section 5 presents the conclusions.
2 Materials

2.1 Satellite data

Various satellite data products, containing SLA, SSTA, SSWSA,

UWA and VWA, are applied for a more effective estimation of

ESTA. A gridded SLA with a spatial resolution of 0.25°, named

SEALEVEL_GLO_PHY_L4_MY_008_047 and produced by Ssalto/
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Duacs, is available for free download from the Copernicus Marine

and Environmental Monitoring Service (Capet et al., 2014).

Subsequently, the 0.25° resolution SSTA data used is derived from

the Optimum Interpolation SST (OISST) product, developed by the

National Oceanic and Atmospheric Administration (NOAA).

OISST v2.1 integrates data from ships, buoys, satellites, and Argo

floats using optimal interpolation methods (Huang et al., 2021). The

surface wind field is obtained from gridded data provided by the

Cross-Calibrated Multi-Platform (CCMP) product, which utilizes a

variational analysis method to merge data from multiple microwave

radiometers and scatterometers (Mears et al., 2019). SSWSA is

computed by subtracting the monthly average wind speed

magnitude from the current-day wind field velocity. Similarly,

UWA and VWA are also acquired.
2.2 Mesoscale eddy trajectory dataset

The dataset of mesoscale eddy trajectories is extracted from

daily gridded sea-surface height anomaly data produced by two

satellites, initially provided by the Archiving, Validation, and

Interpretation of Satellite Oceanographic (AVISO+) (Chen et al.,

2023c). The dataset contains information about the position,

amplitude, radius, and temporal evolution of mesoscale eddies.

The algorithm identifies mesoscale eddies characterized by

connected pixels, with a diameter ranging from 100 to 300 km,

an amplitude exceeding 1 cm and a lifespan exceeding 4 weeks

(Chelton et al., 2011b). The selected data ranges from 2001 to

2017, with a temporal resolution of 1 day and a spatial resolution

of 0.25°.
2.3 Argo data

This article utilizes Argo data obtained from French Research

Institute for the Exploitation of the Seas (IFREMER), a well-

established global dataset (Wang and Liu, 2024). Figures 1A, B

illustrate all the selected Argo profiles that have undergone quality

control. The study area is defined as the region between 0° ~ 60° N

and 105° ~ 165° E. The downloaded dataset spans 17 years from

2001 to 2017. Before utilizing the Argo data, a comprehensive

quality control process was conducted to ensure data reliability

(Pun et al., 2014). The Argo data encompass a wide range of

parameters, including the initial temperature data points recorded

in the Argo profiles, minimum depths observed, minimum number

of effective observations, and maximum depth and minimum

temperature differences. The detailed quality assurance process

for Argo profiles is outlined in Table 1. Initially, the eddy center,

size, time and location for mesoscale eddies within the study region

are obtained from the eddy dataset. Subsequently, Argo profile

locations must fall within the eddy center and radius regions of any

identified eddy to filter the appropriate Argo profiles. Then, Argo

profiles from 2001 to 2015 are utilized for training ERCACN.

Subsequently, the accuracy of the ERCACN method is verified by

using Argo profile data from 2016 and 2017.
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2.4 Climate state data

This study utilizes historical temperature and salinity data from

the World Ocean Atlas 2018 (WOA18). The WOA18 calculates the

10-year average climate fields from 1955 to 2017, which serves as a

standard for objective analysis (Purkiani et al., 2022). Each average

field includes a large amount of observation data, with a high spatial

resolution of 0.25°and vertical resolution of 0–5500 m with 102

levels, including 47 levels above 1000 m. The data has been

smoothed and mesoscale signals are significantly suppressed,

making it suitable for testing the anomalous temperature and

salinity structures caused by mesoscale processes as a background

field. In this paper, WOA18 temperature data from 5 to 1000 m,

comprising 46 levels, are utilized for model training. Meanwhile, to

ensure the accuracy of observations in ocean temperature and

salinity profiles, CTD sensors equipped on Argo cease operation

when ascending to a depth of approximately 5 m from the ocean

surface to avoid interference caused by floating debris. This

limitation results in Argo’s ability to observe depths ranging from

roughly 5 to 10 m from the ocean surface. Therefore, daily SST with

a spatial resolution of 0.25°from the OISST data product is used as a
Frontiers in Marine Science 04
substitute to complete the analysis of the thermal structure

of eddies.

The temperature anomaly Ya(lon,lat,level) is calculated by

subtracting the climatological temperature of WOA18 from the

temperature measured by the Argo profiles near the eddy, which

indicates the deviation of the point’s temperature from the inter-

annual average temperature. Subsequently, this temperature

anomaly value at the given location is used as the label variable

for training. The Equation 1 is presented below:

Ya(lon,lat,level) = YArgo(lon,lat,level) − YWOA(lon,lat,level), (1)

where YArgo(lon,lat,level) represents the temperature measurements

of various levels at the longitudinal and latitudinal positions of

eddies from Argo observations, and YWOA(lon,lat,level) denotes the

temperature data at corresponding positions from the WOA18.
3 Methods

3.1 Eddy residual muti-channel attention
convolution network

3.1.1 The residual module
The CNN model is particularly applied to handle data with grid-

like structures, such as images and videos. Features are extracted by

using convolutional kernels to local regions of input data, and the

spatial dimensions and quantity of feature maps are gradually refined

through stacked layers of convolutional and pooling operations. The

residual network is introduced to maintain smooth gradient flow and

enhance generalization capabilities by incorporating skip connections

between network layers (Shankar Manche et al., 2024). This structure

effectively mitigates gradient dispersion and explosion during

backpropagation optimization. The residual connections enhance
TABLE 1 The detailed quality assurance process for Argo profiles.

Quality control procedures Filter criteria

The range of temperature data points
initially recorded

0°C -35°C

Minimum depths observed >200 m

Minimum number of
effective observations

>10

The maximum depth difference <300 m

The temperature difference <1°
FIGURE 1

The distribution of selected and quality-controlled Argo locations from 2001 to 2017. (A) Argo observations of anticyclonic eddies; (B) Argo
observations of cyclonic eddies. The blue area indicates water depth, the red points denote the locations of Argo used from 2001 to 2015 for the
training dataset, and the yellow points represent the locations of Argo selected from 2016 to 2017 for the testing dataset.
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the smooth propagation of feature information, ensuring the

expressive capability of output feature maps and improving the

network’s receptive field without altering the output feature maps.

The residual connection method has found broad applications in

diverse domains such as ocean temperature reconstruction and image

recognition, achieving satisfactory results (Ping et al., 2021; Mahaur

et al., 2023). To effectively utilize information from multiple satellite

signals and achieve a real-time, stable and efficient estimation of

ESTA, we have designed and improved this structure by

incorporating various activation functions and modifying the

network structure at different layers.
3.1.2 The residual multi-channel attention
module with the adaptive threshold

The attention mechanism (Shi et al., 2022; Zhao et al., 2022) has

been a hot topic of research in recent years, with the squeeze-and-

excitation network (SENet) being recognized as a classic attention

algorithm (Zhao et al., 2023). Figure 2 illustrates the architecture of

the traditional SENet. Initially, the input feature map h×w×c is

processed by the convolution layer and global average pooling

(GAP) Fsq(xc) operations to derive a global information feature

vector for each channel, resulting in the feature map with a size of

1×1×c as shown in Equation 2. Subsequently, the features map is

performed by connecting two fully connected (FC) layers to

establish the correlation between different channels. The output is

normalized to a value between 0 and 1 using a sigmoid layer, as

depicted in Equation 3, to obtain the weight of each channel as

1×1×c. The initial input features are multiplied completely with

these weights, resulting in a feature layer with different channel

weight percentages. It utilizes a small network to learn a set of

weight coefficients by assessing the importance of each feature

channel and assigns suitable weights to each feature channel

based on its significance.

Fsq(xc) =
1

h� wo
h

i=1
o
w

j=1
xc(i, j), (2)

Sigmoid(xc
0 ) =

1

1 + e−xc
0 , (3)

where xc represents the cth element in the squeeze operation to

generate channel statistics through GAP, while h and w denote the

height and width of the feature map, and xc
0 indicate the feature

channel after undergoing the squeeze and excitation operations.
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However, SENet for channel attention suffers from complexity,

and fully connected layers resulting in excessive computational

load. In addition, marine data often contain noise and redundant

information, impacting the inversion of mesoscale eddy

temperature structure. Not all information from each channel

data is usable, leading to adopt an adaptive thresholding strategy

for each channel. This approach has been widely employed in the

signal and image recognition fields (Zhao et al., 2020), and shrinks

input data towards zero. Figure 3 illustrates the structural diagram

of the residual multi-channel attention module proposed in this

paper. The threshold generated by the sigmoid function is not only

positive but also appropriately scaled, ensuring normal gradient

iteration. Below are the computational method and derivative of

adaptive thresholding in Equations 4 and 5:

y = soft(x, t) =

x − t ,     x > t ,

0,           xj j ≤ t ,

x + t ,   x < −t :

,

8>><
>>: (4)

∂y
∂x

=

1,      x > t ,

0,      xj j ≤ t ,

1,    x < −t :

,

8>><
>>: (5)

where the features of the input and output are respectively

denoted by x and y, and the adaptive threshold t is determined

based on the pre-extracted feature map.

The attention mechanism module can be integrated with an

end-to-end training method and various deep neural networks. In

this paper, we implement the fusion of mixed attention and multi-

channel attention with the residual module of the network. Due to

the smaller input data, the convolution kernel size of 2 × 2 with a

stride of 1 is applied to extract spatial and multi-channel features.

Edge padding is used to fill the missing areas of the matrix, and the

size of the output feature map generated is the same as the input

feature map. The residual channel attention module consists of two

main steps: the first step involves processing the input feature map

through the residual connection, while the second step is to obtain

multi-channel adaptive weights. Firstly, the input feature map

through two convolution layers to extract features. Next, the

multi-channel channel weights are determined using the adaptive

threshold method based on two fully connected layers with the

sigmoid activation function and multiplied by the GAP matrix to

obtain channel weights. Batch Normalization (BN) is a commonly
FIGURE 2

The attention mechanism of the traditional SENet.
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employed feature normalization strategy in various deep-learning

models to reduce the internal covariate shift.

3.1.3 ELU activation function
The exponential linear unit (ELU) activation function has the

same positive axis as the rectified linear unit (ReLU) activation

function but introduces soft saturation for the negative axis instead

of zero output (Kim et al., 2020). Equations (6, 7) provide the

mathematical expressions for the ELU function and its derivative.

ELU offers the same advantages as ReLU for the positive axis, but it

also defines the negative axis, resulting in an overall output close to

zero. In comparison to LeakyReLU, which also activates the negative

axis, ELU has a soft saturation region with a decaying slope,

providing certain robustness to models. Additionally, the parameter

a controls the slope change of the function, with gradients closer to

natural gradients, further accelerating the learning process.

ELU(x) =
x,              x ≥ 0

a(ex − 1), x < 0

(
(6)

dELU
dx

=
1,  

aex ,

  x ≥ 0

  x < 0
,

(
(7)

where x represents input features, while a is a hyperparameter

that is adjusted in the same way as other hyperparameters, typically

set to 1.

Figure 4 illustrates the comprehensive architecture of ERCACN,

which is a variant of the residual network and includes residual multi-

channel attention modules (RCAM), canonical processing modules

(BN), active modules (ELU), GAP and FC. Initially, the input data
Frontiers in Marine Science 06
undergoes the convolution layer with 10 filters of the size 2 × 2,

followed by the BN and activation function layer, resulting in a 5 × 5 ×

10 feature map. The feature map is subsequently processed sequentially

through three blocks of residual multi-channel attention modules with

the adaptive threshold. By using both channel and spatial attention

mechanisms, it concentrates on the “what” (channels) and “where”

(spatial) aspects of the input data, which optimizes the feature

extraction by dynamically adjusting the contribution of each channel

according to its relative significance. Consequently, the feature map

dimensions change to 16, 24 and 32. The extracted high-dimensional

features are processed by a final fully connected layer with 800 neurons,

leading to the prediction of ESTA. The Mean Square Error (MSE) loss

function is selected for training due to its smooth, continuous curve,

making it conducive to rapid convergence with gradient descent

algorithms. The Equation 8 is as follows:

MSE = o
n
i=1(Yobs,i − Ypre,i)

2

n
(8)

where Yobs,i indicates the temperature anomaly observed by

Argo, and Ypre,i represents the temperature anomaly predicted by

the model at the corresponding location. Table 2 presents the

hyperparameters and the optimal value determined through

experimental trials conducted during the model training process.

In order to prevent overfitting, the ERCACN model incorporates

several techniques, including L2 regularization, dropout, and early

stopping. The tanh function is applied for initial low-dimensional

feature extraction, while the ELU function is used as the activation

function for subsequent layers. Adaptive Moment Estimation

(Adam) is chosen as the optimizer for model training, enabling

automatic adjustment of the learning rate without being impacted
FIGURE 4

The structure of ERCACN.
FIGURE 3

The structure of the residual multi-channel attention module with the adaptive threshold.
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by gradient scaling transformations (Liu et al., 2023; Pasta

et al., 2023).

Figure 5 illustrates the comprehensive process of estimating ESTA

utilizing the ERCACN model. Firstly, the temperature profiles of

mesoscale eddies are extracted by combining the mesoscale eddy

trajectory dataset from 2001 to 2017 with Argo profile data. Next,

ESTA from Argo observations is generated by subtracting the

temperature background field from WOA18 as the label data for the
Frontiers in Marine Science 07
ERCACN model. The SLA and SSTA data are closely linked to the

temperature structure of the water column caused by mesoscale eddies

and wind stress can impact the mesoscale eddy motion and mixing

processes (Wang et al., 2023; Yao et al., 2023). Therefore, multiple

scales and variables of satellite remote sensing data, including SLA,

SSTA, SSWSA, UWA and VWA, are selected based on the location

information of mesoscale eddies and Argo profiles, and applied as the

input of training and testing datasets for the ERCACN model. The

datasets of mesoscale eddies, Argo and satellite data are matched in

both temporal and spatial aspects. The data from 2001 to 2015 are

classified into 13,161 anticyclonic eddies and 13,971 cyclonic eddies

based on the properties of mesoscale eddies as training datasets. Since

mesoscale eddies typically have a range of hundreds of kilometers and

the satellite data has a spatial resolution of 0.25°, approximately five

pixels matching mesoscale eddies, the 5 × 5 satellite data matrix

centered around Argo profiles is meticulously chosen, containing

abundant spatial information features. In the training dataset, diverse

satellite variable data are individually subjected to data processing and

normalization procedures. The resulting input data are subsequently

arranged into the 5 × 5 × 5 matrix, which contains multivariate satellite

data obtained from both the observation points and their

surrounding areas.

Next, the ERCACN models are trained on the training set to

acquire appropriate weights for ESTA estimations. Multivariate
FIGURE 5

The overall flowchart of estimating ESTA based on ERCACN models.
TABLE 2 Hyperparameter settings during the model training.

Selected parameters Optimal strategy

Batch size 256

Epoch 1000

Loss function Mse

L2 Regularization 1×10-4

Optimizer Adam

Dropout 0.5

Early stopping True

Initialize weights Xavier

Learning rate 1×10-3
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satellite remote sensing data and observed temperature anomaly

data are used as the input and target output, respectively. Based on

the different levels of WOA18 data, models are divided into 46 levels

spanning depths from 5 m to 1000 m. Eventually, distinct models

are individually trained for the anticyclonic and cyclonic mesoscale

eddies, leading to the generation of 92 models.

Multivariate surface data at the locations of eddies with Argo

profiles from 2016 to 2017, consisting of 2772 anticyclonic

mesoscale eddy and 2706 cyclonic mesoscale eddy samples, are

inputted into the 92 trained ERCACN models to estimate

temperature anomalies at corresponding depths during model

testing. The predictions are combined with WOA18 background

temperature data to derive inversion results for the mesoscale eddy

structures. Subsequently, the temperature values at the 0m level of

SST data are utilized to fill the temperature structures, producing

temperature structures for both anticyclonic and cyclonic mesoscale

eddies from 0 to 1000 m.
3.2 Compared models

Various machine learning and deep learning methods

commonly used in ocean temperature estimation are compared

with the proposed the ERCACN model to evaluate its effectiveness.

Among them, machine learning models such as MLR and RFR,

have been previously employed in ocean temperature estimation

(Guinehut et al., 2012; Su et al., 2018; Jeong et al., 2019). In addition,

significant progress has been achieved in deep learning

methodologies like the CNN architecture in this field (Su et al.,

2021; Yu et al., 2021). These models are selected for comparison

in es t imat ing ESTA, with parameters and var iab les

adjusted accordingly.

MLR: Based on ordinary least squares, this algorithm fits a

linear model to predict the relationship between the dependent

variable and multiple independent variables. Since the MLR model

assumes a linear relationship, its effectiveness is usually limited

when dealing with multivariate nonlinear relationships.

RFR: It is an ensemble learning algorithm based on decision

trees, which constructs multiple decision trees and combines

them into a powerful regression model for estimating ESTA. It

has the capability to capture nonlinear relationships between

different variables. However, the model structure is relatively

simple, and it may encounter performance bottlenecks when

dealing with high-order features in complex nonlinear

data relationships.

CNNs: The sequential CNN model is designed, including CNN,

batch normalization, the ELU activation function and fully

connected layers. Through a data pipeline, the output of the

previous layer serves as the input to the next layer. To validate

the performance, the identical convolutional layer parameters and

fully connected layer parameters are selected for comparison with

the ERCACN model, along with the same parameter settings and

loss functions. Finally, the extracted high-dimensional features are

also inputted into a fully connected layer with 800 nodes to

predict ESTA.
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4 Results and discussion

In this section, the ESTA values estimated by the ERCACN

model are compared and evaluated with Argo profiles including

anticyclonic and cyclonic eddies in the observation region.

Furthermore, the estimation performances of other methods

using different combinations of sea surface features are compared

under the same regional and training dataset conditions. In

addition, the selected test dataset spans from 2016 to 2017.

To effectively evaluate the performance of various models,

commonly used evaluation metrics were selected to analyze the

accuracy of results in estimating ESTA.

(1) The Root Mean Square Error (RMSE), an important

statistical metric utilized across various domains including

meteorology, geographic information systems and machine

learning, serves as a crucial tool for assessing the accuracy of the

models. It quantifies the disparity between actual observed values.

Yobs,i and model predictions Ypre,i, enabling the evaluation of

predictive capability and accuracy. The Equation 9 is as follows:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(Yobs,i − Ypre,i)
2

n

s
: (9)

(2) The correlation coefficient (R), a statistical metric, is

employed to measure the relationship between two variables. It

evaluates the strength and direction of the association between Yobs,i

and Ypre,i, which holds significant importance in data analysis and

decision. The Equation 10 is presented below:

R = on
i=1(Yobs,i − Yobs,i)(Ypre,i − Ypre,i)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

on
i=1(Yobs,i − Yobs,i)

2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

on
i=1(Ypre,i − Ypre,i)

2
q : (10)

(3) Error indicates that the RMSE of temperature anomalies

estimated by models at each depth layer occupies the ratio of the

average temperature measured by Argos. The Equation 11 is as follows:

Error =
1

Ypre,i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(Yobs,i − Ypre,i)
2

n

s
� 100% : (11)
4.1 Comparison of different methods

4.1.1 Feature combinations and evaluations
Table 3A summarizes the performance of the anticyclonic

estimations on the test dataset from 2016 to 2017 for all methods.

Consistent conclusions are found for all other methods. With the

gradual increase in the number of surface variables in the training

model, there is a corresponding enhancement in the optimization of

the regression model performance. In Case 1, utilizing only the SLA

data for training the ERCACN model without additional

parameters, the overall RMSE on the test set is 0.8571°C and the

R value is 0.7507. Among them, Case 4, incorporating all training

variables included in the model training process, demonstrates the

best performance with an RMSE value of 0.8328°C and an R value

of 0.7758. The comparison of Cases 1 to 4 indicates that these
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surface values play a positive role in the ESTA prediction of the

anticyclonic eddy during the estimation process. Furthermore,

despite utilizing the ERCACN method with different variable

combinations, the RMSE and R values consistently remain below

0.8767°C and above 0.7342, providing the stability and robustness

of our proposed method.

Similarly, compared to the linear Case 5 MLR, Case 4 exhibits

remarkably better performance, which can be attributed to the

method utilized to capture the nonlinear relationship between

inputs and outputs. While MLR can fit the smooth characteristics

of large-scale ocean temperature anomalies, the inherently

nonlinear dynamics of mesoscale eddies impede the application of

linear regressors such as MLR, leading to incapable of effectively

capturing the nonlinear characteristics (Chelton et al., 2011b). In

addition, compared to the RFR method applied in Case 6 (Su et al.,

2018) and the CNNs method used in Case 7 (Yu et al., 2021), the

performance of Cases 1 to 5 demonstrates lower RMSE and higher

R values. As mentioned above, our approach, which employs the

foundational architecture of convolutional neural networks, shares

some similarities with the method used in Case 7. However, the key

difference lies in the residual multi-channel attention module with

the adaptive threshold in our proposed ERCACN model, enabling
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adaptive weight adjustments by considering the mutual

interdependence between different features. Therefore, it shows

that ERCACN outperforms other methods.

Table 3B presents the outcomes of the cyclonic eddy

estimation under various parameters and methods, indicating

similar performances with anticyclonic eddies. In Case 4, the

RMSE is 0.8404°C, and the R value is 0.7540, which are the best

results among all Cases. This highlights the superiority of our

proposed ERCACN method over other approaches, whether

applied to cyclonic or anticyclonic eddies. In addition, despite

Case 1 only utilizing SLA as training input, it achieves an RMSE of

0.8604°C and an R value of 0.7343. In Case 5, although

multivariable parameters are employed as input data, the

utilization of MLR makes it challenging to capture the nonlinear

information of mesoscale eddies, resulting in an RMSE of 1.2018°

C and an R value of 0.5353. This significantly lower performance

of Case 5 compared to other methods indirectly confirms the

dominance of nonlinear characteristics in mesoscale eddies.

Furthermore, Case 1, where only SLA parameters are used as

input to train the ERCACN model, outperforms the RFR method

in Case 6 and the CNNs method in Case 7, both of which utilize

multiple parameters. These show the better performance of our
TABLE 3 Performance of ESTA vertical profiles fitted on the test data.

A. Anticyclonic eddies

Case Different variables Methods Testing RMSE (°C) Testing R

Case 1 SLA ERCACN 0.8571 0.7507

Case 2 SLA, SSTA ERCACN 0.8426 0.7660

Case 3 SLA, SSTA, SSWAS ERCACN 0.8358 0.7727

Case 4
SLA, SSTA, SSWAS,
UWA, VWA

ERCACN 0.8328 0.7758

Case 5
SLA, SSTA, SSWAS,
UWA, VWA

MLR 1.1816 0.5677

Case 6
SLA, SSTA, SSWAS,
UWA, VWA

RFR 0.9308 0.6396

Case 7
SLA, SSTA, SSWAS,
UWA, VWA

CNNs 0.8679 0.7342

B. Cyclone eddies

Case Different variables Methods Testing RMSE (°C) Testing R

Case 1 SLA ERCACN 0.8604 0.7343

Case 2 SLA, SSTA ERCACN 0.8454 0.7502

Case 3 SLA, SSTA, SSWAS ERCACN 0.8433 0.7524

Case 4
SLA, SSTA, SSWAS,
UWA, VWA

ERCACN 0.8404 0.7540

Case 5
SLA, SSTA, SSWAS,
UWA, VWA

MLR 1.2018 0.5353

Case 6
SLA, SSTA, SSWAS,
UWA, VWA

RFR 0.9394 0.6217

Case 7
SLA, SSTA, SSWAS,
UWA, VWA

CNNs 0.8767 0.7164
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proposed ERCACN model’s residual multi-channel attention

module with the adaptive threshold.

Figure 6 illustrates the RMSE and R values of ESTA estimated

for anticyclonic (A and C) and cyclonic (B and D) eddies. These are

derived by using the combination of various surface features (SLA,

SSTA, SSWAS, UWA and VWA) with MLR, RFR, CNNs and

ERCACN methods on the test dataset at depths of 46 levels,

corresponding to Cases 5, 6, 7 and 4 in Table 3. It can be

observed that the vertical distribution of R and RMSE values

obtained by various methods on the test dataset exhibits a similar

pattern in terms of vertical structure. In Figure 6A, the RMSE values

of diverse methods on the test dataset for anticyclonic eddies are

depicted, highlighting the better performance of our proposed
Frontiers in Marine Science 10
ERCACN model across all methods. Most RMSE values are below

1°C at most levels, demonstrating the superiority of our proposed

method. Additionally, even near the surface, most RMSE values are

within an acceptable range of below 1.2°C. CNNs also show a

commendable performance, with a relatively smooth overall trend.

Despite the reasonable performance of the RFR method, it exhibits

fluctuations across different levels, indicating potential instability.

MLR performs the worst among all methods, with a noticeable gap

compared to other methods, primarily due to the dominance of

nonlinear features of mesoscale eddies. Subsequently, Figure 6B

illustrates the RMSE values of different methods for cyclonic eddies

on the test dataset. Similarly, our proposed ERCACN model

consistently exhibits the best performance and the RMSE values
B

C D

A

FIGURE 6

RMSE (°C) and R of ESTA which are estimated from different models by using all variable combinations for anticyclonic eddies (A, C) and cyclonic
eddies (B, D) at depths of 5–1000 meters (comprising a total of 46 levels) on the test dataset. The distinct colors correspond to different methods,
including MLR, RFR, CNNs and ERCACN.
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are below 1.2°C overall. The CNNs model achieves the second-best

performance, followed by the RFR method with satisfactory results,

while the MLR method exhibits the poorest performance.

Additionally, regardless of anticyclonic or cyclonic eddies, our

proposed ERCACN model achieves the best performance. For all

cases, RMSE values above 200 m are relatively large, with a

noticeable “bump” phenomenon observed in the depth range of

50 to 200 m, which may be associated with the depth of the mixed

layer and the thermocline (de Boyer Montégut et al., 2004). The

typical mixed layer depth in the Northwestern Pacific Ocean ranges

from 50–100 m and remains relatively stable, leading to low RMSE

values. In contrast, the water temperature in the thermocline

experiences significant variations, while mesoscale eddies induce

vertical and horizontal displacements of water masses, disrupting

the vertical stratification of the temperature and promoting mixing

between the oceanic mixed layer and the underlying thermocline.

Consequently, this mixing process alters the thermal structure of

the water column, leading to significant temperature fluctuations in

the affected region, which complicates the estimation of

ESTA values.

Figure 6C presents the R values of ESTA estimates from 5–

1000 m on the anticyclonic eddy test dataset obtained by applying

different methods. These results indicate the correlation between

the predicted values of various methods and the actual observed

values. Overall, our proposed ERCACN model exhibits better

performance compared to the CNNs model which shares a

similar architecture but lacks our designed residual multi-

channel attention module with the adaptive threshold, including

most R values exceeding 0.7, particularly at deeper levels

compared to other methods. This may be attributed to our

designed residual multi-channel attention module with the

adaptive threshold, which can capture the nonlinear features of

anticyclonic eddies even under deep-sea conditions, leading to

improved fitting results. Similar to the performance based on

RMSE values, the CNNs method ranks second, the RFR method

holds the third position and the MLR method performs the worst.

Likewise, for cyclonic eddies, the performance rankings of these

methods are similar in Figure 6D, with our proposed ERCACN

model maintaining its superiority. Therefore, whether considering

RMSE values or R values, our proposed ERCACN model can

effectively extract features of mesoscale eddies from various

remote sensing data to achieve the accurate estimation of ESTA

from 5–1000 m.

4.1.2 Profile analysis
Figure 7 illustrates the comparison between the temperature

profiles of eddies at depths ranging from 5 to 1000m obtained by

various methods, including MLR, RFR, CNNs, ERCACN and the

observed temperature from Argo profiles. Estimated temperature

results for eddies can be derived by summing the temperature

anomalies estimated by different models with the WOA18

temperature corresponding to the current location and time.

Profiles of anticyclonic and cyclonic eddies are randomly selected

based on the season and location. It is evident that the temperature

profiles estimated by different methods closely resemble the
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observed profiles from Argo floats, indicating the feasibility of

estimating subsurface temperature structures of eddies from

satellite-derived sea surface data. Figure 7A specifically displays

the estimated temperature profiles of anticyclonic eddies at different

locations and seasons. The performance of MLR in estimating

profiles is comparatively poor, with significant deviations from

Argo profiles at some depths. While RFR performs relatively

better than MLR, it still falls short compared to the results

obtained by using deep learning methods such as CNNs and

proposed ERCACN. Consequently, the temperature profiles of

anticyclonic eddies estimated by deep learning methods exhibit

greater proximity to the measured profiles. The CNNs method

closely approximates the observed temperature profiles from Argo

floats but shows slight deviations at certain depths. In addition, our

proposed ERCACN method demonstrates a closer alignment with

the measured temperature profiles, attributed to the design of our

residual multi-channel attention module with the adaptive

threshold, which assigns different weights to sea surface

information channels and suppress noise signals to obtain

accurate estimations of subsurface temperature profiles of

anticyclonic mesoscale eddies.

Similarly, Figure 7B presents the estimated temperature profiles

of cyclonic eddies across various locations and seasons. It is clear

from the figure that different methods can estimate the temperature

profiles of cyclonic eddies within acceptable ranges, demonstrating

the correlation between various satellite-derived sea surface data

and temperature structures at different depths. Similar to the results

of anticyclonic eddies, the MLR method exhibits the poorest

estimation performance, while the RFR method is comparable to

the CNNs method, and the ERCACN method shows the best

performance. Therefore, whether for anticyclonic or cyclonic

eddies, nonlinear characteristics play a dominant role, which is

the primary reason for the inferior performance of MLR.

Conversely, our proposed ERCACN method consistently

outperforms other methods in estimating temperature profiles

across different mesoscale eddies with diverse locations and

seasons, demonstrating the superiority and robustness of the

ERCACN method, which can be applied to various regions in the

Northwestern Pacific Ocean.
4.2 Result evaluations

4.2.1 The distribution of estimations for
anticyclonic eddies

Figure 8 presents the accuracy distribution of temperature

estimations for anticyclonic eddies using the ERCACN model and

Argo observations. The temperature unit for the plotted points is °

C, and the depths range are respectively (A) 40 m, (B) 85 m, (C)

125 m, (D) 200 m, (E) 400 m and (F) 700 m. The x-axis represents

the temperature values of anticyclonic eddies measured by Argo at

the current depth, while the y-axis displays the temperature values

of anticyclonic eddies estimated by the ERCACN model at the

current depth. RMSE and R values are also provided in figures for

different depths. The y=x line is plotted to indicate that points
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closer to this line represent more accurate temperatures estimated

by the ERCACN model. Additionally, due to the abundance of

observational points in each layer, a Gaussian kernel is applied to

perform kernel density estimation for the points in each layer,

which is a non-parametric method for estimating the probability

density function of a random variable (Viver et al., 2024). Points

are shaded red to indicate higher concentration areas. In Figure 8,

most red points in all subplots are concentrated around or near

the y=x line, suggesting closer agreement between temperature

estimations of anticyclonic eddies by the ERCACN model and

Argo observations at different depths, demonstrating the accuracy

and robustness of our proposed ERCACN model. Furthermore,

the deviations between the temperature estimations of

anticyclonic eddies by the ERCACN model and the data

obtained by Argos are within reasonable ranges across

different depths.

Figure 8A depicts the distribution of temperatures for

anticyclonic eddy at a depth of 40 m, with corresponding RMSE

and R values of 1.0363°C and 0.6767. The data points cluster closely
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around or near the y=x line, with temperature estimations typically

exceeding 23°C due to the shallow depth. Figure 8F exhibits the

distribution of temperatures for anticyclonic eddy at a depth of

700 m, with corresponding RMSE and R values of 0.4017°C and

0.8276, and temperatures of most points cluster around 5°C.

Figures 8B-E represent the temperature distributions of

anticyclonic eddies at depths of 85 m, 125 m, 200 m and 400 m

respectively. The clustering of temperature points for anticyclonic

eddies gradually shifts downward with increasing depths. In

addition, the proximity of temperature points to the y=x line

across different depths demonstrates the accuracy and robustness

of our proposed ERCACN model in this study. Furthermore,

Figures 8A-C show the temperature estimations of anticyclonic

eddies by the ERCACN model in the mixed and thermocline

layers. Despite encountering the broad spectrum of temperatures,

the temperature points largely converge with the y=x line,

underscoring the model’s effectiveness in accurately estimating

ESTA even in deep levels with complex thermal structures such

as the mixed and thermocline layers.
B

A

FIGURE 7

Different methods, including MLR, RFR, CNNs and ERCACN, are compared in terms of their estimation of eddy temperature profiles at depths
ranging from 5 to 1000 meters with the temperature profiles obtained from Argo floats: (A) anticyclonic eddies, and (B) cyclonic eddies. The
selection of profiles is made at random, considering the season and location.
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4.2.2 The distribution of estimations for
cyclonic eddies

Similar to the temperature estimations for anticyclonic

mesoscale eddies, Figure 9 shows the accuracy distribution of

temperature estimations for cyclonic eddies predicted by the

ERCACN model compared to Argo observations. The selected

depths for visualization remain consistent at (A) 40 m, (B) 85 m,

(C) 125 m, (D) 200 m, (E) 400 m and (F) 700 m, enabling direct

comparisons with temperature estimations for anticyclonic

mesoscale eddies at corresponding depths. Additionally, the

precision of temperature estimations by the ERCACN model at

different depths exhibits a similar pattern to that of anticyclonic

eddies, indicating a depth-dependent influence on accuracy.

Furthermore, the distribution of temperature estimations for

cyclonic mesoscale eddies at different depths falls within the

reasonable margin of error.

In Figure 9A, the ERCACN model predicts the temperature

distribution of cyclonic eddies at a depth of 40 m, generating RMSE

and R values of 1.0705°C and 0.6763 respectively, which align with

the values obtained for anticyclonic mesoscale eddies. In addition,

there is a noticeable trend of reduced temperature clustering

compared to the results for anticyclonic eddies. Figure 9B shows

the temperature distribution of cyclonic eddies at a depth of 85 m,

presenting RMSE and R values of 1.1446°C and 0.7488 respectively.

Most points cluster around 20°C, indicating a lower temperature

relative to the temperature observations for anticyclonic eddies.

This disparity could be attributed to cyclonic eddies displacing
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colder deep-ocean water towards the surface, thus replacing the

original water and causing a decline in temperature. Figure 9C

depicts the temperature distribution of cyclonic eddies at a depth of

125 m, exhibiting a similar pattern. As the depth increases, most

points in Figures 9D-F converge near the y=x line, confirming the

capability of the ERCACN model to accurately estimate cyclonic

eddy temperatures at various depths. Moreover, although the

occurrence of outliers may slightly affect the overall precision of

the estimations of the ERCACN model, their frequency remains

within acceptable limits, as depicted in Figure 9. In summary, the

temperature estimates derived from the ERCACN model for both

anticyclonic and cyclonic eddies at various depths closely

correspond to temperature observations from Argo profiles,

which could validate the accuracy and robustness of our proposed

ERCACN model.

4.2.3 Error evaluation
Figure 10 illustrates that RMSE values occupy the percentage of

the mean temperature observed by Argo for estimating ESTA at

different depths, denoting the error through the MLR, RFR, CNNs

and ERCACNmethods. Figure 10A shows the error performance of

various models concerning anticyclonic eddies. The error exhibits

an increasing trend with depth, followed by a subsequent decrease.

Initially, the MLR method demonstrates the worst performance,

with errors exceeding 10% at most depths. It indicates linear

methods have inadequate predictive capabilities for forecasting

temperature results for anticyclonic mesoscale eddies, which are
B C
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FIGURE 8

The accuracy analysis of the anticyclonic mesoscale eddy temperatures estimated by the ERCACN model and those observed by Argos at different
depths. Depths of (A) 40m, (B) 85m, (C) 125m, (D) 200m, (E) 400m and (F) 700m.
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BA

FIGURE 10

The Error values in estimating ESTA at various depths across different models, including (A) anticyclonic eddies and (B) cyclonic eddies.
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FIGURE 9

The accuracy analysis of the cyclonic mesoscale eddy temperatures estimated by the ERCACN model and those observed by Argos at different
depths. Depths of (A) 40m, (B) 85m, (C) 125m, (D) 200m, (E) 400m and (F) 700m.
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characterized by significant nonlinear features. Subsequently, the

performance of the RFR method fluctuates considerably at different

depths, with the majority of errors remaining below 10%,

representing a significant improvement compared to the MLR

method. Moreover, the CNNs method shows additional

enhancement compared to the RFR method, closely approaching

our proposed ERCACN method at shallower depths. However, as

depth increases, the ERCACN method achieves smaller prediction

errors, with most errors falling below 8% at various depths. In

addition, the error peaks around 200m, possibly due to spatial

variations induced by anticyclonic eddies at the thermocline, which

may influence the ability of the ERCACN model to estimate ESTA.

Figure 10B shows the error of various models concerning

cyclonic mesoscale eddies, exhibiting a trend of initial increase

followed by a subsequent decline at deeper levels. However, unlike

anticyclonic eddies, the errors for cyclonic eddies peak around

600 m due to the vertical impact, which typically extends to the

deeper depths. Cyclonic mesoscale eddies induce the upward

movement of deeper water masses, thereby affecting deeper

layers. In contrast, anticyclonic eddies generally influence

shallower depths, resulting in the downward movement of warm

surface water masses. Similarly, the MLR method consistently

exhibits the worst performance in error analysis, with values

mostly below 12%. Errors for the RFR method largely remain

below 10%, which closely compares to the result produced by the

CNNs method. The ERCACN method demonstrates the optimal

performance, with errors usually below 8% at different depths,

which are within acceptable thresholds.

In summary, the ERCACN method demonstrates the accuracy

and robustness in temperature estimations for both anticyclonic

and cyclonic mesoscale eddies at various depths, highlighting its

effectiveness in predicting mesoscale eddy temperatures using

surface remote sensing information. Moreover, the ERCACN

method exhibits superior performance including 46 different

layers at various depths, meeting the requirements for high-

precision resolution in estimating ESTA. Furthermore, the

inherent limitations of MLR and RFR models necessitate the

transformation of two-dimensional sea surface features into a

one-dimensional format. This process restricts the utilization of

spatial information, thereby hindering their performance compared

to deep learning methods. Notably, the better performance

exhibited by RFR relative to MLR indicates the importance of

using algorithms capable of effectively handling complex

nonlinear relationships between input features and target

variables, particularly when estimating ESTA. In comparison to

the CNNs model, our proposed ERCACN model demonstrates

more remarkable performance. Unlike traditional CNN which

processes all features uniformly, the ERCACN model incorporates

an attention mechanism, enabling the network to prioritize the

most influential features, thereby enhancing the identification of

key features. Moreover, the integration of a residual CNN with the

attention mechanism facilitates the dynamic adjustment of

attention weights across different regions, effectively capturing

long-range dependencies and optimizing model performance. An

adaptive thresholding strategy is implemented to mitigate the
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impact of noise interference and redundant features in order to

enhance the robustness and accuracy of the model.
4.3 Metrics analysis of the monthly results

Figure 11 illustrates the temporal variations in estimating the

RMSE and R values for the temperature anomaly of anticyclonic

eddies using the test dataset at depths of 50 m, 100 m, 150 m and

300 m by the ERCACN model. The results at various depths fall

within an acceptable range. The RMSE value peaked at a depth of

100 m in October 2016, while the R value hit its nadir at 50m depth in

November 2017. RMSE values generally increase during autumn at

different depths, while corresponding R values decrease. This trend

may be attributed to the decreased frequency of anticyclonic eddies

during autumn, along with the limited profiles collected by Argos,

thereby affecting the capability of the ERCACN model to estimate

ESTA. In addition, compared to other depth levels, the RMSE value is

generally lower at 300 m depth, with a correspondingly higher R

value, indicating a relatively consistent capability of the ERCACN

model to estimate ESTA on a time scale. This observation may be

associated with the generally lower temperature at 300 m depth

compared to other depths. The RMSE and R values at depths of 50 m,

100 m, and 150 m display consistent temporal variations, potentially

owing to the subsidence of surface seawater induced by anticyclonic

mesoscale eddies affecting shallower depths, deviating from the

pattern at 300 m depth. Furthermore, the RMSE and R values at

depths of 100 m and 150 m remain consistently similar throughout

the observation period, due to their location at the thermocline layer

within analogous oceanic structure.

Similarly, The ERCACN model depicts the temporal changes in

predicting the RMSE and R values for eddy temperature anomalies of

cyclonic mesoscale at depths of 50 m, 100 m, 150 m, and 300 m in

Figure 12. It is evident that the results at different depths fall within a

reasonable range. The RMSE value for the estimated temperature of

cyclonic eddies peaked at a depth of 100 m in October 2016, while the

R value reached its minimum at a depth of 50 m in May 2017.

Analogous to anticyclonic eddies, RMSE values during autumn show a

general upward trend across various depths, while the corresponding R

values exhibit a downward trend. The overall trends of RMSE values at

depths of 50 m, 100 m, 150 m and 300 m, as well as corresponding R

values, are similar, indicating the consistent capability of the ERCACN

model to estimate the temperature anomaly of cyclonic eddies at these

depth levels. This phenomenon may be attributed to the upward

movement of deeper seawater induced by cyclonic eddies, affecting

deeper depths and resulting in similar trends of seawater across these

depth levels. Significant variations in R values across different depth

levels over time suggest discrepancies in the ERCACN model’s

estimation of cyclonic eddy temperature anomalies in different

months, which deserves further exploration in future studies.

To quantify discrepancies in estimating ESTA at various depths

and in different months by using the ERCACN model, this study

applied the Error as a judgment threshold. The evaluation threshold

of 8% was adopted to assess accuracy monthly at different depths. In

the shallow ocean, the ERCACN model’s estimations of error range
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for temperature anomalies are generally consistent across all

months. However, in deeper waters, the error in ESTA slightly

exceeds the threshold. This discrepancy may arise from the decrease

in average temperature observed by Argos with increasing depth,

resulting in a higher percentage of RMSE in the observed

temperature average. Among the ERCACN model’s estimation,

87.71% meet the accuracy threshold for anticyclonic mesoscale

eddies, and the percentage is 88.45% for cyclonic mesoscale

eddies. Overall, the ERCACN model’s estimation of ESTA on the

test data achieves an 88.08% compliance rate with the 8% error as

a threshold.
5 Conclusions

The Northwestern Pacific Ocean, owing to its distinctive regional

oceanic features, is recognized as one of the global hotspots for mesoscale

eddies. In this study, the combination of diverse surface remote sensing data

including SLA, SST, SSWSA, UWA and VWA is designed and the

ERCACN model is proposed, which successfully estimates ESTA at

depths ranging up to 1000 m across 46 levels in the Northwestern Pacific

Ocean. Themodelmakes up for the lack of the observed temperature data of
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mesoscale eddies, providing datawith a temporal resolution of one day and a

spatial resolution of 0.25°. Through validation using independent Argo

profiles, the ERCACN model demonstrates more accurate estimations of

three-dimensional structures of ESTA compared to other methods. In

summary, the results indicate an 88.08% conformity rate with the 8%

error threshold, affirming the effectiveness and robustness of this

combination approach and the proposed ERCACN model for

temperature field estimations.

However, there is a systematic bias in the temporal and spatial

alignment between Argo data and mesoscale eddies. With the

continuous deployment of Argo profiles, the phenomenon could be

further improved. In addition, the gridded data from satellite remote

sensing observations leads to spatial resolution loss and interpolation

errors, hindering accurate estimations of the three-dimensional

temperature structure of mesoscale eddies. Furthermore, the spatial

resolution of input satellite images at different levels may impact the

accuracy and precision of the model, and future plans involve exploring

and evaluating its influence on predictive performance and

computational efficiency. Finally, the estimation of ESTA represents

only the initial step in applying deep learning methods to obtain

subsurface oceanic variables from surface information. Future research

will focus on deriving salinity fields, velocity fields, and other variables
B

A

FIGURE 11

The (A) RMSE and (B) R values of anticyclonic eddies at depths of 50m, 100m, 150m and 300m obtained from the ERCACN model across various
time points on the testing dataset spanning from 2016 to 2017.
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of mesoscale eddies while concurrently enhancing temperature

estimation precision.
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Cárdenas, J., et al. (2024). Towards estimating the number of strains that make up a
natural bacterial population.Nat. Commun. 15, 1–13. doi: 10.1038/s41467-023-44622-z

Wang, C., and Liu, F. (2024). Influence of oceanic mesoscale eddies on the deep
chlorophyll maxima. Sci. Total Environ. 917, 170510. doi: 10.1016/j.scitotenv.2024.170510

Wang, H., Qiu, B., Liu, H., and Zhang, Z. (2023). Doubling of surface oceanic
meridional heat transport by non-symmetry of mesoscale eddies. Nat. Commun. 14, 1–
10. doi: 10.1038/s41467-023-41294-7

Wu, X., Yan, X.-H., Jo, Y.-H., and Liu, W. T. (2012). Estimation of subsurface
temperature anomaly in the North Atlantic using a self-organizing map neural
network. J. Atmos. Oceanic Technol. 29, 1675–1688. doi: 10.1175/JTECH-D-12-00013.1

Xie, H., Xu, Q., Cheng, Y., Yin, X., and Jia, Y. (2022). Reconstruction of subsurface
temperature field in the South China sea from satellite observations based on an
attention U-net model. IEEE Trans. Geosci. Remote Sens. 60, 1–19. doi: 10.1109/
TGRS.2022.3200545

Xu, L., Li, P., Xie, S.-P., Liu, Q., Liu, C., and Gao, W. (2016). Observing mesoscale
eddy effects on mode-water subduction and transport in the North Pacific. Nat.
Commun. 7, 1–9. doi: 10.1038/ncomms10505

Yan, H., Wang, H., Zhang, R., Chen, J., Bao, S., and Wang, G. (2020). A dynamical-
statistical approach to retrieve the ocean interior structure from surface data: SQG-
mEOF-R. J. Geophys. Res. Oceans 125, e2019JC015840. doi: 10.1029/2019JC015840

Yang, P., Jing, Z., and Wu, L. (2018). An assessment of representation of oceanic
mesoscale eddy-atmosphere interaction in the current generation of general circulation
models and reanalyses. Geophys. Res. Lett. 45, 11,856–11,865. doi: 10.1029/
2018GL080678
Frontiers in Marine Science 19
Yang, G., Wang, F., Li, Y., and Lin, P. (2013). Mesoscale eddies in the northwestern
subtropical Pacific Ocean: Statistical characteristics and three-dimensional structures. J.
Geophys. Res. Oceans 118, 1906–1925. doi: 10.1002/jgrc.20164

Yang, Y., Wang, D., Wang, Q., Zeng, L., Xing, T., He, Y., et al. (2019). Eddy-induced
transport of saline kuroshio water into the Northern South China sea. J. Geophys. Res.
Oceans 124, 6673–6687. doi: 10.1029/2018JC014847

Yao, H., Ma, C., Jing, Z., and Zhang, Z. (2023). On the vertical structure of mesoscale
eddies in the kuroshio-oyashio extension. Geophys. Res. Lett. 50, e2023GL105642.
doi: 10.1029/2023GL105642

Yu, F., Wang, Z., Liu, S., and Chen, G. (2021). Inversion of the three-dimensional
temperature structure of mesoscale eddies in the Northwest Pacific based on deep
learning. Acta Oceanolog. Sin. 40, 176–186. doi: 10.1007/s13131-021-1841-z

Yuan, Q., and Hu, J. (2023). Spatiotemporal characteristics and volume transport of
lagrangian eddies in the northwest pacific. Remote Sens. 15, 4355–4374. doi: 10.3390/
rs15174355

Zhang, Y., Liu, Z., Zhao, Y., Wang, W., Li, J., and Xu, J. (2014a). Mesoscale eddies
transport deep-sea sediments. Sci. Rep. 4, 1–7. doi: 10.1038/srep05937

Zhang, Z., Tian, J., Qiu, B., Zhao, W., Chang, P., Wu, D., et al. (2016). Observed 3D
structure, generation, and dissipation of oceanic mesoscale eddies in the South China
sea. Sci. Rep. 6, 1–11. doi: 10.1038/srep24349

Zhang, Z., Wang, W., and Qiu, B. (2014b). Oceanic mass transport by mesoscale
eddies. Science 345, 322–324. doi: 10.1126/science.1252418

Zhang, Z., Zhang, Y., Wang, W., and Huang, R. X. (2013). Universal structure of
mesoscale eddies in the ocean. Geophys. Res. Lett. 40, 3677–3681. doi: 10.1002/
grl.50736

Zhao, N., Huang, B., Yang, J., Radenkovic, M., and Chen, G. (2023). Oceanic eddy
identification using pyramid split attention U-net with remote sensing imagery. IEEE
Geosci. Remote Sens. Lett. 20, 1–5. doi: 10.1109/LGRS.2023.3243902

Zhao, D., Xu, Y., Zhang, X., and Huang, C. (2021). Global chlorophyll distribution
induced by mesoscale eddies. Remote Sens. Environ. 254, 112245–112257. doi: 10.1016/
j.rse.2020.112245

Zhao, Y., Zhang, H., Gao, Z., Guan, W., Nie, J., Liu, A., et al. (2022). A temporal-
aware relation and attention network for temporal action localization. IEEE Trans.
Image Process 31, 4746–4760. doi: 10.1109/TIP.2022.3182866

Zhao, M., Zhong, S., Fu, X., Tang, B., and Pecht, M. (2020). Deep residual shrinkage
networks for fault diagnosis. IEEE Trans. Ind. Inf. 16, 4681–4690. doi: 10.1109/TII.9424
frontiersin.org

https://doi.org/10.1016/j.rse.2015.01.001
https://doi.org/10.3390/rs11131598
https://doi.org/10.3389/fmars.2022.984244
https://doi.org/10.1016/j.pocean.2022.102955
https://doi.org/10.1016/j.pocean.2022.102955
https://doi.org/10.1038/s41467-023-44622-z
https://doi.org/10.1016/j.scitotenv.2024.170510
https://doi.org/10.1038/s41467-023-41294-7
https://doi.org/10.1175/JTECH-D-12-00013.1
https://doi.org/10.1109/TGRS.2022.3200545
https://doi.org/10.1109/TGRS.2022.3200545
https://doi.org/10.1038/ncomms10505
https://doi.org/10.1029/2019JC015840
https://doi.org/10.1029/2018GL080678
https://doi.org/10.1029/2018GL080678
https://doi.org/10.1002/jgrc.20164
https://doi.org/10.1029/2018JC014847
https://doi.org/10.1029/2023GL105642
https://doi.org/10.1007/s13131-021-1841-z
https://doi.org/10.3390/rs15174355
https://doi.org/10.3390/rs15174355
https://doi.org/10.1038/srep05937
https://doi.org/10.1038/srep24349
https://doi.org/10.1126/science.1252418
https://doi.org/10.1002/grl.50736
https://doi.org/10.1002/grl.50736
https://doi.org/10.1109/LGRS.2023.3243902
https://doi.org/10.1016/j.rse.2020.112245
https://doi.org/10.1016/j.rse.2020.112245
https://doi.org/10.1109/TIP.2022.3182866
https://doi.org/10.1109/TII.9424
https://doi.org/10.3389/fmars.2024.1397109
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

	Subsurface temperature estimation of mesoscale eddies in the Northwest Pacific Ocean from satellite observations using a residual muti-channel attention convolution network
	1 Introduction
	2 Materials
	2.1 Satellite data
	2.2 Mesoscale eddy trajectory dataset
	2.3 Argo data
	2.4 Climate state data

	3 Methods
	3.1 Eddy residual muti-channel attention convolution network
	3.1.1 The residual module
	3.1.2 The residual multi-channel attention module with the adaptive threshold
	3.1.3 ELU activation function

	3.2 Compared models

	4 Results and discussion
	4.1 Comparison of different methods
	4.1.1 Feature combinations and evaluations
	4.1.2 Profile analysis

	4.2 Result evaluations
	4.2.1 The distribution of estimations for anticyclonic eddies
	4.2.2 The distribution of estimations for cyclonic eddies
	4.2.3 Error evaluation

	4.3 Metrics analysis of the monthly results

	5 Conclusions
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References


